1
|
Endo H, Rees TD, Niwa H, Kuyama K, Oshima M, Serizawa T, Tanaka S, Komiya M, Ito T. Acantholysis may precede elevation of circulating anti-desmoglein 3 antibody levels in pemphigus vulgaris presenting with desquamative gingivitis. Clin Exp Dent Res 2019; 5:219-224. [PMID: 31249702 PMCID: PMC6585872 DOI: 10.1002/cre2.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune, blistering disease that affects the mucosa and skin. The current theory favors the concept that anti-desmoglein (Dsg) 3 autoimmunity is the only pathogenic event needed to induce acantholysis. However, a few cases of active PV in the oral cavity had no detectable anti-Dsg 3 antibody. The aim of this study was to evaluate the differences in clinical and laboratory findings, whether or not the anti-Dsg 3 antibodies were present. This study was based on a retrospective review of 10 PV cases. The evaluation of the circulating autoantibody titers to Dsg 3 was conducted by using enzyme-linked immunosorbent assay (ELISA). An index value of 20 or more was used as the cutoff for a positive reaction. Only five of the 10 PV cases had a positive Dsg 3 ELISA. There were no differences in clinical, cytological, histopathological, and direct immunofluorescence findings, whether or not the anti-Dsg 3 antibodies were present. Of the five patients with a negative reaction at the time of diagnosis, the Dsg 3 ELISA became positive in the follow-up period in three cases. In the remaining two cases, the Dsg 3 ELISA was consistently negative for 18 months. Dsg 3 ELISA was negative early in some PV cases. Therefore, PV acantholysis may precede the elevation of circulating anti-Dsg 3 antibody levels. The diagnosis of PV should be considered based on comprehensive clinical, histopathological, and immunofluorescent criteria.
Collapse
Affiliation(s)
- Hiroyasu Endo
- Department of Oral DiagnosisNihon University School of Dentistry at MatsudoMatsudoJapan
| | - Terry D. Rees
- Department of PeriodonticsTexas A&M College of DentistryDallasTexasUSA
| | - Hideo Niwa
- Department of Head and Neck SurgeryNihon University School of Dentistry at MatsudoMatsudoJapan
| | - Kayo Kuyama
- Department of PathologyNihon University School of Dentistry at MatsudoMatsudoJapan
| | - Maya Oshima
- Department of Oral SurgeryNihon University School of Dentistry at MatsudoMatsudoJapan
| | - Tae Serizawa
- Department of Oral SurgeryNihon University School of Dentistry at MatsudoMatsudoJapan
| | - Shigeo Tanaka
- Department of Oral SurgeryNihon University School of Dentistry at MatsudoMatsudoJapan
| | - Masamichi Komiya
- Department of Oral SurgeryNihon University School of Dentistry at MatsudoMatsudoJapan
| | - Takanori Ito
- Department of Oral DiagnosisNihon University School of Dentistry at MatsudoMatsudoJapan
| |
Collapse
|
2
|
Saleh MA. A prospective study comparing patients with early and late relapsing pemphigus treated with rituximab. J Am Acad Dermatol 2018; 79:97-103. [PMID: 29408700 DOI: 10.1016/j.jaad.2018.01.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rituximab (RTX) is an effective therapy for patients with pemphigus; however, the therapy does not prevent relapse. OBJECTIVES To compare early relapsing patients (before 12 months) and late relapsing patients (after 24 months) following RTX therapy. METHOD In this prospective study, 19 patients were enrolled (14 with pemphigus vulgaris and 5 with pemphigus foliaceus). The baseline disease score, autoantibody levels, and percentage of CD20+ cells of patients with pemphigus were measured. Patients received 1 cycle of RTX and were followed for 26 months. RESULTS Among early relapsing patients (n = 5), the time to relapse was 6 to 11 months. Among late relapsing patients (n = 6), the time to relapse was 24 to 26 months. A significant difference was observed in the mean baseline anti-desmoglein 1 (DSG1) index between early relapsing (705.72) and late relapsing patients (210.4) (P = .0014). A significant negative correlation was found between the baseline anti-DSG1 index and time to relapse (r = -0.777, P = .00009). LIMITATIONS The small number of patients with pemphigus foliaceus. CONCLUSIONS Because patients with high baseline anti-DSG1 indices relapsed earlier, it may be important to follow these patients closely for the initial 12 months after RTX therapy. These patients may require a maintenance RTX dose during the first 12 months after RTX therapy.
Collapse
|
3
|
Spindler V, Eming R, Schmidt E, Amagai M, Grando S, Jonkman MF, Kowalczyk AP, Müller EJ, Payne AS, Pincelli C, Sinha AA, Sprecher E, Zillikens D, Hertl M, Waschke J. Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. J Invest Dermatol 2017; 138:32-37. [PMID: 29037765 DOI: 10.1016/j.jid.2017.06.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
The autoimmune blistering skin disease pemphigus is caused by IgG autoantibodies against desmosomal cadherins, but the precise mechanisms are in part a matter of controversial discussions. This review focuses on the currently existing models of the disease and highlights the relevance of desmoglein-specific versus nondesmoglein autoantibodies, the contribution of nonautoantibody factors, and the mechanisms leading to cell dissociation and blister formation in response to autoantibody binding. As the review brings together the majority of laboratories currently working on pemphigus pathogenesis, it aims to serve as a solid basis for further investigations for the entire field.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Rüdiger Eming
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Sergei Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, California, USA
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew P Kowalczyk
- Departments of Cell Biology and Dermatology, Emory University, Atlanta, Georgia, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Bern, Switzerland; Vetsuisse Faculty, DermFocus, Bern, Switzerland; Department of Dermatology, University Hospital of Bern, Bern, Switzerland
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, University of Modena and Reggio Emilia, Modena, Italy
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
4
|
Chen Y, Chernyavsky A, Webber RJ, Grando SA, Wang PH. Critical Role of the Neonatal Fc Receptor (FcRn) in the Pathogenic Action of Antimitochondrial Autoantibodies Synergizing with Anti-desmoglein Autoantibodies in Pemphigus Vulgaris. J Biol Chem 2015; 290:23826-37. [PMID: 26260795 DOI: 10.1074/jbc.m115.668061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 01/23/2023] Open
Abstract
Pemphigus vulgaris (PV) is a life-long, potentially fatal IgG autoantibody-mediated blistering disease targeting mucocutaneous keratinocytes (KCs). PV patients develop pathogenic anti-desmoglein (Dsg) 3 ± 1 and antimitochondrial antibodies (AMA), but it remained unknown whether and how AMA enter KCs and why other cell types are not affected in PV. Therefore, we sought to elucidate mechanisms of cell entry, trafficking, and pathogenic action of AMA in PV. We found that PVIgGs associated with neonatal Fc receptor (FcRn) on the cell membrane, and the PVIgG-FcRn complexes entered KCs and reached mitochondria where they dissociated. The liberated AMA altered mitochondrial membrane potential, respiration, and ATP production and induced cytochrome c release, although the lack or inactivation of FcRn abolished the ability of PVIgG to reach and damage mitochondria and to cause detachment of KCs. The assays of mitochondrial functions and keratinocyte adhesion demonstrated that although the pathobiological effects of AMA on KCs are reversible, they become irreversible, leading to epidermal blistering (acantholysis), when AMA synergize with anti-Dsg antibodies. Thus, it appears that AMA enter a keratinocyte in a complex with FcRn, become liberated from the endosome in the cytosol, and are trafficked to the mitochondria, wherein they trigger pro-apoptotic events leading to shrinkage of basal KCs uniquely expressing FcRn in epidermis. During recovery, KCs extend their cytoplasmic aprons toward neighboring cells, but anti-Dsg antibodies prevent assembly of nascent desmosomes due to steric hindrance, thus rendering acantholysis irreversible. In conclusion, FcRn is a common acceptor protein for internalization of AMA and, perhaps, for PV autoantibodies to other intracellular antigens, and PV is a novel disease paradigm for investigating and elucidating the role of FcRn in this autoimmune disease and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Yumay Chen
- From the Irvine Diabetes Center, Department of Medicine, and
| | | | | | - Sergei A Grando
- Departments of Dermatology and Biological Chemistry, and the Institute for Immunology, University of California at Irvine, Irvine, California 92967 and
| | - Ping H Wang
- From the Irvine Diabetes Center, Department of Medicine, and Biological Chemistry, and
| |
Collapse
|
5
|
Kitajima Y. New insights into desmosome regulation and pemphigus blistering as a desmosome-remodeling disease. Kaohsiung J Med Sci 2013; 29:1-13. [DOI: 10.1016/j.kjms.2012.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/29/2012] [Indexed: 11/15/2022] Open
|
6
|
Tsang SM, Brown L, Lin K, Liu L, Piper K, O'Toole EA, Grose R, Hart IR, Garrod DR, Fortune F, Wan H. Non-junctional human desmoglein 3 acts as an upstream regulator of Src in E-cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. J Pathol 2012; 227:81-93. [DOI: 10.1002/path.3982] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/03/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022]
|
7
|
Grando SA, Laquer VT, Le HM. Sirolimus for acute pemphigus vulgaris: a case report and discussion of dualistic action providing for both immunosuppression and keratinocyte protection. J Am Acad Dermatol 2011; 65:684-686. [PMID: 21839342 DOI: 10.1016/j.jaad.2011.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/11/2011] [Accepted: 01/26/2011] [Indexed: 10/17/2022]
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Irvine, California.
| | - Vivian T Laquer
- Department of Dermatology, University of California, Irvine, California
| | - Hai M Le
- Scripps Coastal Medical Center, Vista, California
| |
Collapse
|
8
|
Bektas M, Rubenstein DS. The role of intracellular protein O-glycosylation in cell adhesion and disease. J Biomed Res 2011; 25:227-36. [PMID: 23554695 PMCID: PMC3597071 DOI: 10.1016/s1674-8301(11)60031-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/28/2011] [Indexed: 12/16/2022] Open
Abstract
Post-translational protein modification, including phosphorylation, is generally quick and reversible, facilitating rapid biologic adjustments to altered cellular physiologic demands. In addition to protein phosphorylation, other post-translational modifications have been identified. Intracellular protein O-glycosylation, the addition of the simple sugar O-linked N-acetylglucosamine (O-GlcNAc) to serine/threonine residues, is a relatively recently identified post-translational modification that has added to the complexity by which protein function is regulated. Two intracellular enzymes, O-GlcNAc transferase and O-GlcNAcase, catalyze the addition and removal, respectively, of O-GlcNAc to serine and threonine side-chain hydroxyl groups. Numerous proteins, including enzymes, transcription factors, receptors and structural proteins have been shown to be modified by intracellular O-glycosylation. In this review, the mechanism and relevance of O-GlcNAc protein modification are discussed in the context of cell adhesion and several representative diseases.
Collapse
Affiliation(s)
| | - David S. Rubenstein
- Department of Dermatology,
- Department of Pharmacology,
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599-7287, USA.
| |
Collapse
|
9
|
Tsunoda K, Ota T, Saito M, Hata T, Shimizu A, Ishiko A, Yamada T, Nakagawa T, Kowalczyk AP, Amagai M. Pathogenic relevance of IgG and IgM antibodies against desmoglein 3 in blister formation in pemphigus vulgaris. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:795-806. [PMID: 21718682 DOI: 10.1016/j.ajpath.2011.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 04/19/2011] [Accepted: 04/29/2011] [Indexed: 11/17/2022]
Abstract
Pemphigus vulgaris is an autoimmune disease caused by IgG antibodies against desmoglein 3 (Dsg3). Previously, we isolated a pathogenic mAb against Dsg3, AK23 IgG, which induces a pemphigus vulgaris-like phenotype characterized by blister formation. In the present study, we generated a transgenic mouse expressing AK23 IgM to examine B-cell tolerance and the pathogenic role of IgM. Autoreactive transgenic B cells were found in the spleen and lymph nodes, whereas anti-Dsg3 AK23 IgM was detected in the cardiovascular circulation. The transgenic mice did not develop an obvious pemphigus vulgaris phenotype, however, even though an excess of AK23 IgM was passively transferred to neonatal mice. Similarly, when hybridoma cells producing AK23 IgM were inoculated into adult mice, no blistering was observed. Immunoelectron microscopy revealed IgM binding at the edges of desmosomes or interdesmosomal cell membranes, but not in the desmosome core, where AK23 IgG binding has been frequently detected. Furthermore, in an in vitro dissociation assay using cultured keratinocytes, AK23 IgG and AK23 IgM F(ab')(2) fragments, but not AK23 IgM, induced fragmentation of epidermal sheets. Together, these observations indicate that antibodies must gain access to Dsg3 integrated within desmosomes to induce the loss of keratinocyte cell-cell adhesion. These findings provide an important framework for improved understanding of B-cell tolerance and the pathophysiology of blister formation in pemphigus.
Collapse
Affiliation(s)
- Kazuyuki Tsunoda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
From Cell Signaling to Novel Therapeutic Concepts: International Pemphigus Meeting on Advances in Pemphigus Research and Therapy. J Invest Dermatol 2010; 130:1764-8. [DOI: 10.1038/jid.2010.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Gliem M, Heupel WM, Spindler V, Harms GS, Waschke J. Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris. Am J Physiol Cell Physiol 2010; 299:C606-13. [PMID: 20554911 DOI: 10.1152/ajpcell.00075.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the human autoimmune blistering skin disease pemphigus vulgaris autoantibodies (PV-IgG), which are mainly directed against keratinocyte cell adhesion molecules desmoglein (Dsg) 3 and Dsg1, cause keratinocyte cell dissociation (acantholysis). Recent studies reported that loss of keratinocyte cell adhesion was accompanied by profound alterations of the actin cytoskeleton. Nevertheless, the relevance of actin reorganization in this process is unclear at present. In this study, we provide evidence for an important role of actin reorganization in pemphigus pathogenesis. In parallel to loss of cell adhesion and fragmentation of Dsg3 staining along cell borders, PV-IgG treatment resulted in striking changes in actin cytoskeleton organization. Moreover, in experiments using fluorescence recovery after photobleaching (FRAP), PV-IgG were detected to interfere with actin dynamics. Therefore, we investigated whether pharmacological manipulation of actin polymerization modulates pathogenic effects of PV-IgG. Pharmacological stabilization of actin filaments via jasplakinolide significantly blocked cell dissociation and Dsg3 fragmentation, whereas cytochalasin D-induced actin depolymerization strongly enhanced pathogenic effects of PV-IgG. To substantiate these findings, we studied whether the protective effects of Rho GTPases, which are potent regulators of the actin cytoskeleton and were shown to be involved in pemphigus pathogenesis, were dependent on modulation of actin dynamics. Cytotoxic necrotizing factor-1 (CNF-1)-mediated activation of Rho-GTPases enhanced the cortical junction-associated actin belt and blunted PV-IgG-induced cell dissociation. However, when actin polymerization was blocked under these conditions via addition of latrunculin B, the protective effects of CNF-1 were abrogated. Taken together, these experiments indicate that reorganization of cortical actin filaments is a critical step in PV-IgG-induced keratinocyte dissociation.
Collapse
Affiliation(s)
- Martin Gliem
- Institute of Anatomy and Cell Biology, Univ. of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Superficial dsg2 expression limits epidermal blister formation mediated by pemphigus foliaceus antibodies and exfoliative toxins. Dermatol Res Pract 2010; 2010:410278. [PMID: 20631906 PMCID: PMC2902105 DOI: 10.1155/2010/410278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/23/2010] [Accepted: 03/10/2010] [Indexed: 11/17/2022] Open
Abstract
Cell-cell adhesion mediated by desmosomes is crucial for maintaining proper epidermal structure and function, as evidenced by several severe and potentially fatal skin disorders involving impairment of desmosomal proteins. Pemphigus foliaceus (PF) and staphylococcal scalded skin syndrome (SSSS) are subcorneal blistering diseases resulting from loss of function of the desmosomal cadherin, desmoglein 1 (Dsg1). To further study the pathomechanism of these diseases and to assess the adhesive properties of Dsg2, we employed a recently established transgenic (Tg) mouse model expressing Dsg2 in the superficial epidermis. Neonatal Tg and wild type (WT) mice were injected with purified ETA or PF Ig. We showed that ectopic expression of Dsg2 reduced the extent of blister formation in response to both ETA and PF Ig. In response to PF Ig, we observed either a dramatic loss or a reorganization of Dsg1-alpha, Dsg1-beta, and, to a lesser extent, Dsg1-gamma, in WT mice. The Inv-Dsg2 Tg mice showed enhanced retention of Dsg1 at the cell-cell border. Collectively, our data support the role for Dsg2 in cell adhesion and suggest that ectopic superficial expression of Dsg2 can increase membrane preservation of Dsg1 and limit epidermal blister formation mediated by PF antibodies and exfoliative toxins.
Collapse
|
13
|
Mouse models for blistering skin disorders. Dermatol Res Pract 2010; 2010:584353. [PMID: 20585602 PMCID: PMC2879910 DOI: 10.1155/2010/584353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/24/2010] [Indexed: 11/24/2022] Open
Abstract
Genetically engineered mice have been essential tools for elucidating the pathological mechanisms underlying human diseases. In the case of diseases caused by impaired desmosome function, mouse models have helped to establish causal links between mutations and disease phenotypes. This review focuses on mice that lack the desmosomal cadherins desmoglein 3 or desmocollin 3 in stratified epithelia. A comparison of the phenotypes observed in these mouse lines is provided and the relationship between the mutant mouse phenotypes and human diseases, in particular pemphigus vulgaris, is discussed. Furthermore, we will discuss the advantages and potential limitations of genetically engineered mouse lines in our ongoing quest to understand blistering skin diseases.
Collapse
|
14
|
Nagel A, Lang A, Engel D, Podstawa E, Hunzelmann N, de Pita O, Borradori L, Uter W, Hertl M. Clinical activity of pemphigus vulgaris relates to IgE autoantibodies against desmoglein 3. Clin Immunol 2009; 134:320-30. [PMID: 20015693 DOI: 10.1016/j.clim.2009.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/16/2009] [Accepted: 11/16/2009] [Indexed: 01/13/2023]
Abstract
Pemphigus vulgaris (PV) is a severe autoimmune bullous skin disease and is primarily associated with IgG against desmoglein 3 (dsg3), a desmosomal adhesion protein. In light of the recent association of autoreactive T helper (Th) 2 cells with active PV, the present study sought to relate the occurrence of Th2-regulated dsg3-specific autoantibody subtypes, i.e. IgE and IgG4, in 93 well-characterized PV patients. Patients with acute onset PV (n=37) showed the highest concentrations of serum IgE and IgG4 autoantibodies, which were significantly lower in PV patients in remission (n=14). Furthermore, there was a strong correlation between dsg3-reactive IgE and IgG4 in acute onset, but not in chronic active (n=42) or remittent patients. Additionally, intercellular IgE deposits were detected in the epidermis of acute onset PV. Thus, dsg3-specific IgE and IgG4 autoantibodies are related to acute onset disease which provides additional support to the concept that PV is a Th2-driven autoimmune disorder.
Collapse
Affiliation(s)
- Angela Nagel
- Department of Dermatology and Allergology, Philipps University Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takae Y, Nishikawa T, Amagai M. Pemphigus mouse model as a tool to evaluate various immunosuppressive therapies. Exp Dermatol 2009; 18:252-60. [DOI: 10.1111/j.1600-0625.2008.00776.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
|
17
|
Yamagami J, Takahashi H, Ota T, Amagai M. Genetic characterization of human Dsg3-specific B cells isolated by flow cytometry from the peripheral blood of patients with pemphigus vulgaris. J Dermatol Sci 2008; 52:98-107. [DOI: 10.1016/j.jdermsci.2008.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 11/16/2022]
|
18
|
Cirillo N, Campisi G, Gombos F, Perillo L, Femiano F, Lanza A. Cleavage of desmoglein 3 can explain its depletion from keratinocytes in pemphigus vulgaris. Exp Dermatol 2008; 17:858-63. [PMID: 18505410 DOI: 10.1111/j.1600-0625.2008.00719.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Szegedi A, Páyer E, Czifra G, Tóth BI, Schmidt E, Kovács L, Blumberg PM, Bíró T. Protein kinase C isoenzymes differentially regulate the differentiation-dependent expression of adhesion molecules in human epidermal keratinocytes. Exp Dermatol 2008; 18:122-9. [PMID: 18637128 DOI: 10.1111/j.1600-0625.2008.00771.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidermal expression of adhesion molecules such as desmogleins (Dsg) and cadherins is strongly affected by the differentiation status of keratinocytes. We have previously shown that certain protein kinase C (PKC) isoforms differentially alter the growth and differentiation of human epidermal HaCaT keratinocytes. In this paper, using recombinant overexpression and RNA interference, we define the specific roles of the different PKC isoenzymes in modulation of expression of adhesion molecules in HaCaT keratinocytes. The level of Dsg1, a marker of differentiating keratinocytes, was antagonistically regulated by two Ca-independent 'novel' nPKC isoforms; i.e. it increased by the differentiation-promoting nPKCdelta and decreased by the growth-promoting nPKCepsilon. The expression of Dsg3 (highly expressed in proliferating epidermal layers) was conversely regulated by these isoenzymes, and was also inhibited by the differentiation inducer Ca-dependent 'conventional' cPKCalpha. Finally, the expression of P-cadherin (a marker of proliferating keratinocytes) was regulated by all of the examined PKCs, also in an antagonistic manner (inhibited by cPKCalpha/nPKCdelta and stimulated by cPKCbeta/nPKCepsilon). Collectively, the presented results strongly argue for the marked, differential, and in some instances antagonistic roles of individual Ca-dependent and Ca-independent PKC isoforms in the regulation of expression of adhesion molecules of desmosomes and adherent junctions in human epidermal keratinocytes.
Collapse
Affiliation(s)
- Andrea Szegedi
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stern JNH, Keskin DB, Barteneva N, Zuniga J, Yunis EJ, Ahmed AR. Possible role of natural killer cells in pemphigus vulgaris - preliminary observations. Clin Exp Immunol 2008; 152:472-81. [PMID: 18373702 DOI: 10.1111/j.1365-2249.2008.03638.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease that affects the skin and multiple mucous membranes, and is caused by antibodies to desmoglein (Dsg) 1 and 3. Natural killer (NK) cells have a role in autoimmunity, but their role in PV is not known. NK cells in the peripheral blood leucocytes (PBL) of 15 untreated Caucasian patients with active PV were studied and compared with healthy controls for the expression of major histocompatibility complex (MHC) class II and co-stimulatory molecules. CD56+ CD16- CD3- NK or CD56+ CD16+ CD3- NK cells from the PBL of PV patients co-express MHC class II and co-stimulatory molecule B7-H3 without exogenous stimulation. CD4+ T cells from the PBL and perilesional skin of PV patients were co-cultured with CD56+ CD3- NK cells from the PBL of the same patients; in the presence of Dsg3 peptides underwent statistically significant proliferation, indicating that NK cells functioned as antigen-presenting cells. Supernatants from these co-cultures and serum of the same patients with active PV had statistically significantly elevated levels of interleukin (IL)-6, IL-8 and interferon-gamma, compared with controls indicating that the NK cells stimulated CD4+ T cells to produce proinflammatory cytokines. In these experiments, we present preliminary evidence that NK cells may play a role in the pathobiology of PV.
Collapse
Affiliation(s)
- J N H Stern
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 2008; 128:501-16. [PMID: 18268536 DOI: 10.1038/sj.jid.5701248] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The process of epidermal renewal persists throughout the entire life of an organism. It begins when a keratinocyte progenitor leaves the stem cell compartment, undergoes a limited number of mitotic divisions, exits the cell cycle, and commits to terminal differentiation. At the end of this phase, the postmitotic keratinocytes detach from the basement membrane to build up the overlaying stratified epithelium. Although highly coordinated, this sequence of events is endowed with a remarkable versatility, which enables the quiescent keratinocyte to reintegrate into the cell cycle and become migratory when necessary, for example after wounding. It is this versatility that represents the Achilles heel of epithelial cells allowing for the development of severe pathologies. Over the past decade, compelling evidence has been provided that epithelial cancer cells achieve uncontrolled proliferation following hijacking of a "survival program" with PI3K/Akt and a "proliferation program" with growth factor receptor signaling at its core. Recent insights into adhesion receptor signaling now propose that integrins, but also cadherins, can centrally control these programs. It is suggested that the two types of adhesion receptors act as sensors to transmit extracellular stimuli in an outside-in mode, to inversely modulate epidermal growth factor receptor signaling and ensure cell survival. Hence, cell-matrix and cell-cell adhesion receptors likely play a more powerful and wide-ranging role than initially anticipated. This Perspective article discusses the relevance of this emerging field for epidermal growth and differentiation, which can be of importance for severe pathologies such as tumorigenesis and invasive metastasis, as well as psoriasis and Pemphigus vulgaris.
Collapse
|
22
|
Abstract
Desmosomes are highly specialized anchoring junctions that link intermediate filaments to sites of intercellular adhesion, thus facilitating the formation of a supracellular scaffolding that distributes mechanical forces throughout a tissue. These junctions are thus particularly important for maintaining the integrity of tissues that endure physical stress, such as the epidermis and myocardium. The importance of the classic mechanical functions of desmosomal constituents is underscored by pathologies reported in animal models and an ever-expanding list of human mutations that target both desmosomal cadherins and their associated cytoskeletal anchoring proteins. However, the notion that desmosomes are static structures that exist simply to glue cells together belies their susceptibility to remodeling in response to environmental cues and their important tissue-specific roles in cell behavior and signaling. Here, we review the molecular blueprint of the desmosome and models for assembling its protein components to form an adhesive interface and the desmosomal plaque. We also discuss emerging evidence of supra-adhesive roles for desmosomal proteins in regulating tissue morphogenesis and homeostasis. Finally, we highlight the dynamic nature of these adhesive organelles, examining mechanisms in health and disease for modulating adhesive strength and stability of desmosomes.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|