1
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
2
|
Ungerechts G, Engeland CE, Buchholz CJ, Eberle J, Fechner H, Geletneky K, Holm PS, Kreppel F, Kühnel F, Lang KS, Leber MF, Marchini A, Moehler M, Mühlebach MD, Rommelaere J, Springfeld C, Lauer UM, Nettelbeck DM. Virotherapy Research in Germany: From Engineering to Translation. Hum Gene Ther 2018; 28:800-819. [PMID: 28870120 DOI: 10.1089/hum.2017.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.
Collapse
Affiliation(s)
- Guy Ungerechts
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany .,3 Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Christine E Engeland
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian J Buchholz
- 4 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany .,5 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Heidelberg, Germany
| | - Jürgen Eberle
- 6 Charité -Universitätsmedizin Berlin, Department of Dermatology, Skin Cancer Centre Charité , Berlin, Germany
| | - Henry Fechner
- 7 Technische Universität Berlin, Institute of Biotechnology , Department of Applied Biochemistry, Berlin, Germany
| | - Karsten Geletneky
- 8 Department of Neurosurgery, Klinikum Darmstadt , Darmstadt, Germany
| | - Per Sonne Holm
- 9 Department of Urology, Klinikum rechts der Isar, Technical University Munich , Munich, Germany
| | - Florian Kreppel
- 10 Chair of Biochemistry and Molecular Medicine, Center for Biomedical Research and Education (ZBAF), Faculty of Health, University Witten/Herdecke (UW/H), Witten, Germany
| | - Florian Kühnel
- 11 Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Karl Sebastian Lang
- 12 Institute of Immunology, Medical Faculty, University of Duisburg-Essen , Essen, Germany
| | - Mathias F Leber
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonio Marchini
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany .,14 Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Markus Moehler
- 15 University Medical Center Mainz , I. Dept. of Internal Medicine, Mainz, Germany
| | - Michael D Mühlebach
- 16 Product Testing of Immunological Veterinary Medicinal Products, Paul-Ehrlich-Institut , Langen, Germany
| | - Jean Rommelaere
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Springfeld
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany
| | - Ulrich M Lauer
- 17 Department of Clinical Tumor Biology, Medical University Hospital , Tübingen, Germany .,18 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Tübingen, Germany
| | | |
Collapse
|
3
|
Lee CT, Zhou Y, Roy-Choudhury K, Siamakpour-Reihani S, Young K, Hoang P, Kirkpatrick JP, Chi JT, Dewhirst MW, Horton JK. Subtype-Specific Radiation Response and Therapeutic Effect of FAS Death Receptor Modulation in Human Breast Cancer. Radiat Res 2017; 188:169-180. [PMID: 28598289 DOI: 10.1667/rr14664.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Breast cancer is the most common malignancy diagnosed among women and represents a heterogeneous group of subtypes. Radiation therapy is a critical component of treatment for breast cancer patients. However, little is known about radiation response among these intrinsic subtypes. In previous studies, we identified a significant induction of FAS after irradiation in biologically favorable breast cancer patients and breast cancer cell lines. Here, we expanded our study and investigated radiation response in a mouse model of breast cancer. MCF7 (luminal), HCC1954 (HER2+) or SUM159 (basal) cells were implanted orthotopically into the dorsal mammary fat pad of nude mice. These mice were then treated with different doses of radiation to assess tumor growth control. We further investigated the therapeutic effect of FAS modulation by silencing FAS in radiation-responsive tumors and injecting FAS agonist antibody into radiation-resistant tumors. Exposure to radiation inhibited MCF7, and to a lesser extent HCC1954 tumor growth in a dose-dependent manner. In contrast, SUM159 tumors were resistant to radiation. The estimated TCD50 values were 19.3 Gy for MCF7 and 44.9 Gy for SUM159. Radiation induced FAS expression in MCF7 tumors, but not SUM159 tumors. We found that silencing of FAS did not negatively impact radiation response in MCF7 tumors, possibly due to compensation by other apoptotic pathways. On the other hand, FAS activating antibody in combination with radiation treatment delayed SUM159 and HCC1954 tumor growth. However, it did not reach statistical significance compared to radiation treatment alone. Our results suggest that there is intrinsic variation in radiation response among breast cancer subtypes. FAS activation concurrent with radiation slows tumor growth in the radiation-resistant subtypes, but the effect was not significant. Alternative subtype-specific modulators of radiation response are under investigation.
Collapse
Affiliation(s)
- Chen-Ting Lee
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Yingchun Zhou
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kingshuk Roy-Choudhury
- b Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | | | - Kenneth Young
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter Hoang
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P Kirkpatrick
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jen-Tsan Chi
- c Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina.,d Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Janet K Horton
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
4
|
Hossini AM, Quast AS, Plötz M, Grauel K, Exner T, Küchler J, Stachelscheid H, Eberle J, Rabien A, Makrantonaki E, Zouboulis CC. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0154770. [PMID: 27138223 PMCID: PMC4854383 DOI: 10.1371/journal.pone.0154770] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/19/2016] [Indexed: 12/20/2022] Open
Abstract
Apoptosis is a highly conserved biochemical mechanism which is tightly controlled in cells. It contributes to maintenance of tissue homeostasis and normally eliminates highly proliferative cells with malignant properties. Induced pluripotent stem cells (iPSCs) have recently been described with significant functional and morphological similarities to embryonic stem cells. Human iPSCs are of great hope for regenerative medicine due to their broad potential to differentiate into specialized cell types in culture. They may be useful for exploring disease mechanisms and may provide the basis for future cell-based replacement therapies. However, there is only poor insight into iPSCs cell signaling as the regulation of apoptosis. In this study, we focused our attention on the apoptotic response of Alzheimer fibroblast-derived iPSCs and two other Alzheimer free iPSCs to five biologically relevant kinase inhibitors as well as to the death ligand TRAIL. To our knowledge, we are the first to report that the relatively high basal apoptotic rate of iPSCs is strongly suppressed by the pancaspase inhibitor QVD-Oph, thus underlining the dependency on proapoptotic caspase cascades. Furthermore, wortmannin, an inhibitor of phosphoinositid-3 kinase / Akt signaling (PI3K-AKT), dramatically and rapidly induced apoptosis in iPSCs. In contrast, parental fibroblasts as well as iPSC-derived neuronal cells were not responsive. The resulting condensation and fragmentation of DNA and decrease of the membrane potential are typical features of apoptosis. Comparable effects were observed with an AKT inhibitor (MK-2206). Wortmannin resulted in disappearance of phosphorylated AKT and activation of the main effector caspase-3 in iPSCs. These results clearly demonstrate for the first time that PI3K-AKT represents a highly essential survival signaling pathway in iPSCs. The findings provide improved understanding on the underlying mechanisms of apoptosis regulation in iPSCs.
Collapse
Affiliation(s)
- Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Annika S Quast
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Plötz
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Grauel
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Tarik Exner
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Judit Küchler
- Berlin Institute of Health-Stem Cell Core Facility, Berlin, Germany
| | - Harald Stachelscheid
- Berlin Institute of Health-Stem Cell Core Facility, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Rabien
- Department of Urology and Berlin Institute of Urologic Research, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Evgenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany.,Research Geriatrics Group, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Dermatology and Allergology, Universitätsklinikum Ulm, Ulm, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| |
Collapse
|
5
|
Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, Schröter F, Nuernberg P, Kroll H, Makrantonaki E, Zouboulis CC, Zoubouliss CC, Adjaye J. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 2015; 16:84. [PMID: 25765079 PMCID: PMC4344782 DOI: 10.1186/s12864-015-1262-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish. Results In this study, employing iPS technology, we derived and characterized iPSCs from dermal fibroblasts of an 82-year-old female patient affected by sporadic AD. The AD-iPSCs were differentiated into neuronal cells, in order to generate disease-specific protein association networks modeling the molecular pathology on the transcriptome level of AD, to analyse the reflection of the disease phenotype in gene expression in AD-iPS neuronal cells, in particular in the ubiquitin-proteasome system (UPS), and to address expression of typical AD proteins. We detected the expression of p-tau and GSK3B, a physiological kinase of tau, in neuronal cells derived from AD-iPSCs. Treatment of neuronal cells differentiated from AD-iPSCs with an inhibitor of γ-secretase resulted in the down-regulation of p-tau. Transcriptome analysis of AD-iPS derived neuronal cells revealed significant changes in the expression of genes associated with AD and with the constitutive as well as the inducible subunits of the proteasome complex. The neuronal cells expressed numerous genes associated with sub-regions within the brain thus suggesting the usefulness of our in-vitro model. Moreover, an AD-related protein interaction network composed of APP and GSK3B among others could be generated using neuronal cells differentiated from two AD-iPS cell lines. Conclusions Our study demonstrates how an iPSC-based model system could represent (i) a tool to study the underlying molecular basis of sporadic AD, (ii) a platform for drug screening and toxicology studies which might unveil novel therapeutic avenues for this debilitating neuronal disorder. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1262-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany.
| | - Matthias Megges
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany. .,Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| | - Alessandro Prigione
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Current address: Max Delbrueck Center for Molecular Medicine (MDC), Robert Roessle Str. 10, D-13125, Berlin, Germany.
| | - Bjoern Lichtner
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Mohammad R Toliat
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany.
| | - Wasco Wruck
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| | - Friederike Schröter
- Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| | - Peter Nuernberg
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany.
| | - Hartmut Kroll
- Institute for Transfusion Medicine Dessau, Red Cross Blood Transfusion Service NSTOB, 06847, Dessau, Germany.
| | - Eugenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany. .,Geriatrics Research Group, Department of Geriatric Medicine, Charité Universitätsmedizin Berlin, Reinickendorfer Str. 61, 13447, Berlin, Germany.
| | | | - Christos C Zoubouliss
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, 06847, Dessau, Germany.
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany. .,Molecular Embryology and Aging Group, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| |
Collapse
|
6
|
Fernández-Ulibarri I, Hammer K, Arndt MAE, Kaufmann JK, Dorer D, Engelhardt S, Kontermann RE, Hess J, Allgayer H, Krauss J, Nettelbeck DM. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. Int J Cancer 2014; 136:2228-40. [PMID: 25303768 DOI: 10.1002/ijc.29258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
Abstract
Antibody therapy of solid cancers is well established, but suffers from unsatisfactory tumor penetration of large immunoglobulins or from low serum retention of antibody fragments. Oncolytic viruses are in advanced clinical development showing excellent safety, but suboptimal potency due to limited virus spread within tumors. Here, by developing an immunoRNase-encoding oncolytic adenovirus, we combine viral oncolysis with intratumoral genetic delivery of a small antibody-fusion protein for targeted bystander killing of tumor cells (viro-antibody therapy). Specifically, we explore genetic delivery of a small immunoRNase consisting of an EGFR-binding scFv antibody fragment fused to the RNase Onconase (ONC(EGFR)) that induces tumor cell death by RNA degradation after cellular internalization. Onconase is a frog RNase that combines lack of immunogenicity and excellent safety in patients with high tumor killing potency due to its resistance to the human cytosolic RNase inhibitor. We show that ONC(EGFR) expression by oncolytic adenoviruses is feasible with an optimized, replication-dependent gene expression strategy. Virus-encoded ONC(EGFR) induces potent and EGFR-dependent bystander killing of tumor cells. Importantly, the ONC(EGFR)-encoding oncolytic adenovirus showed dramatically increased cytotoxicity specifically to EGFR-positive tumor cells in vitro and significantly enhanced therapeutic activity in a mouse xenograft tumor model. The latter demonstrates that ONC(EGFR) is expressed at levels sufficient to trigger tumor cell killing in vivo. The established ONC(EGFR)-encoding oncolytic adenovirus represents a novel agent for treatment of EGFR-positive tumors. This viro-antibody therapy platform can be further developed for targeted/personalized cancer therapy by exploiting antibody diversity to target further established or emerging tumor markers or combinations thereof.
Collapse
Affiliation(s)
- Inés Fernández-Ulibarri
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Plötz M, Eberle J. BH3-only proteins - possible proapoptotic triggers for melanoma therapy. Exp Dermatol 2014; 23:375-8. [DOI: 10.1111/exd.12399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Plötz
- Department of Dermatology, Venerology and Allergology; HTCC - Skin Cancer Center; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology; HTCC - Skin Cancer Center; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
8
|
Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc Natl Acad Sci U S A 2014; 111:E554-62. [PMID: 24449891 DOI: 10.1073/pnas.1318563111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aptazymes are small, ligand-dependent self-cleaving ribozymes that function independently of transcription factors and can be customized for induction by various small molecules. Here, we introduce these artificial riboswitches for regulation of DNA and RNA viruses. We hypothesize that they represent universally applicable tools for studying viral gene functions and for applications as a safety switch for oncolytic and live vaccine viruses. Our study shows that the insertion of artificial aptazymes into the adenoviral immediate early gene E1A enables small-molecule-triggered, dose-dependent inhibition of gene expression. Aptazyme-mediated shutdown of E1A expression translates into inhibition of adenoviral genome replication, infectious particle production, and cytotoxicity/oncolysis. These results provide proof of concept for the aptazyme approach for effective control of biological outcomes in eukaryotic systems, specifically in virus infections. Importantly, we also demonstrate aptazyme-dependent regulation of measles virus fusion protein expression, translating into potent reduction of progeny infectivity and virus spread. This not only establishes functionality of aptazymes in fully cytoplasmic genetic systems, but also implicates general feasibility of this strategy for application in viruses with either DNA or RNA genomes. Our study implies that gene regulation by artificial riboswitches may be an appealing alternative to Tet- and other protein-dependent gene regulation systems, based on their small size, RNA-intrinsic mode of action, and flexibility of the inducing molecule. Future applications range from gene analysis in basic research to medicine, for example as a safety switch for new generations of efficiency-enhanced oncolytic viruses.
Collapse
|
9
|
Ketzer P, Haas SF, Engelhardt S, Hartig JS, Nettelbeck DM. Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res 2012; 40:e167. [PMID: 22885302 PMCID: PMC3505972 DOI: 10.1093/nar/gks734] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Therapeutic gene transfer by replication-defective viral vectors or, for cancer treatment, by replication-competent oncolytic viruses shows high promise for treatment of major diseases. To ensure safety, timing or dosing in patients, external control of therapeutic gene expression is desirable or even required. In this study, we explored the potential of artificial aptazymes, ligand-dependent self-cleaving ribozymes, as an innovative tool for regulation of therapeutic gene expression. Importantly, aptazymes act on RNA intrinsically, independent of regulatory protein–nucleic acid interactions and stoichiometry, are non-immunogenic and of small size. These are key advantages compared with the widely used inducible promoters, which were also reported to lose regulation at high copy numbers, e.g. after replication of oncolytic viruses. We characterized aptazymes in therapeutic gene transfer utilizing adenovectors (AdVs), adeno-associated vectors (AAVs) and oncolytic adenoviruses (OAds), which are all in advanced clinical testing. Our results show similar aptazyme-mediated regulation of gene expression by plasmids, AdVs, AAVs and OAds. Insertion into the 5′-, 3′- or both untranslated regions of several transgenes resulted in ligand-responsive gene expression. Notably, aptazyme regulation was retained during OAd replication and spread. In conclusion, our study demonstrates the fidelity of aptazymes in viral vectors and oncolytic viruses and highlights the potency of riboswitches for medical applications.
Collapse
Affiliation(s)
- Patrick Ketzer
- Helmholtz-University Group Oncolytic Adenoviruses, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center) and Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
10
|
Sun H, Liu Y, Bu D, Liu X, Norris JS, Xiao S. Efficient growth suppression and apoptosis in human laryngeal carcinoma cell line HEP-2 induced by an adeno-associated virus expressing human FAS ligand. Head Neck 2012; 34:1628-33. [PMID: 22267220 DOI: 10.1002/hed.21985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 08/03/2011] [Accepted: 09/08/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Apoptosis induced by Fas/FasL system has been proposed as a gene therapy methold for various cancers. METHODS We used adeno-associated virus-expressing enhanced green fluorescent protein (EGFP)-human FasL (AAV-EGFP-hFasL) to deliver FasL into Hep-2 cells, cytotoxicity was detected by MTS assay , apoptosis was confirmed by flow cytometry. We also treated the xenograft of Hep-2 tumor in nude mice with intratumoral injection of AAV-EGFP-hFasL. The size of the xenograft, the apoptosis in the xenograft, and the survival rate of the inoculated mice were then evaluated. RESULTS Hep-2 cells infected with AAV-EGFP-hFasL showed increased apoptosis rate and killing effect compared with AAV-EGFP-infected cells. In addition intratumoral injections of AAV-EGFP-hFasL into Hep-2 xenografts induced significant growth suppression of tumors. CONCLUSION Our findings suggest that the introduction of FasL into head and neck squamous cell carcinoma may induce significant apoptosis, and adeno-associated virus may be a useful vehicle for gene therapy.
Collapse
Affiliation(s)
- Haili Sun
- Department of Otolaryngology-Head & Neck Surgery, Peking University First Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
11
|
Villa-Morales M, Fernández-Piqueras J. Targeting the Fas/FasL signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16:85-101. [PMID: 22239437 DOI: 10.1517/14728222.2011.628937] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The Fas/FasL system plays a significant role in tumorigenesis. Research has shown that its impairment in cancer cells may lead to apoptosis resistance and contribute to tumor progression. Thus, the development of effective therapies targeting the Fas/FasL system may play an important role in the fight against cancer. AREAS COVERED In this review the recent literature on targeting the Fas/FasL system for therapeutic exploitation at different levels is reviewed. Promising pre-clinical approaches and various exceptions are highlighted. The potential of combined therapies is also explored, whereby tumor sensitivity to Fas-mediated apoptosis is restored, before an effective targeted therapy is employed. EXPERT OPINION The success of the Fas/FasL system targeting for therapeutics will require a better understanding of the alterations conferring resistance, in order to use the most appropriate sensitizing chemotherapeutic or radiotherapeutic agents in combination with effective targeted therapies.
Collapse
Affiliation(s)
- María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, CIBER de Enfermedades Raras, Madrid, Spain
| | | |
Collapse
|
12
|
Fecker LF, Rückert S, Kurbanov BM, Schmude M, Stockfleth E, Fechner H, Eberle J. Efficient melanoma cell killing and reduced melanoma growth in mice by a selective replicating adenovirus armed with tumor necrosis factor-related apoptosis-inducing ligand. Hum Gene Ther 2011; 22:405-17. [PMID: 20977303 DOI: 10.1089/hum.2010.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
High mortality and therapy resistance of melanoma demand the development of new strategies, and overcoming apoptosis deficiency appears as particularly promising. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown high potential for apoptosis induction in melanoma cells and may be applicable for gene therapy because of its selective impact on tumor cells. We have constructed a conditional replication-competent adenoviral vector with TRAIL controlled by a tetracycline-inducible promoter (AdV-TRAIL). A variant E1A protein and the lack of E1B aimed at the restriction of viral replication to tumor cells. In particular, the replication gene E1A is controlled by a tyrosinase promoter with high selectivity for melanoma cells. AdV-TRAIL mediated strong expression of E1A and doxycycline-dependent induction of TRAIL selectively in melanoma cells, which resulted in tumor cell lysis and induction of apoptosis. In contrast, non-melanoma cells and normal human melanocytes appeared to be protected. Comparison of the AdV-TRAIL approach with a comparable CD95L vector revealed similar efficacy in vitro. In mouse xenotransplantation models, AdV-TRAIL demonstrated its activity by significant melanoma growth reduction. Melanoma cell killing by AdV-TRAIL was further improved in vitro by combinations with chemotherapeutics. We demonstrate that melanoma cells may be efficiently targeted by TRAIL-based gene therapy, and resistance may be overcome by combined chemotherapy.
Collapse
Affiliation(s)
- Lothar F Fecker
- Department of Dermatology and Allergy, Skin Cancer Center, University Medical Center Charité, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|