1
|
Van Eden W, Waksman BH. Immune regulation in adjuvant-induced arthritis: possible implications for innovative therapeutic strategies in arthritis. ARTHRITIS AND RHEUMATISM 2003; 48:1788-96. [PMID: 12847671 DOI: 10.1002/art.11077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Waksman BH. Immune regulation in adjuvant disease and other arthritis models: relevance to pathogenesis of chronic arthritis. Scand J Immunol 2002; 56:12-34. [PMID: 12100468 DOI: 10.1046/j.1365-3083.2002.01106.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experimental models of arthritis and their human counterparts fall into three distinct classes: (a) responses of T cells to disseminated microbial antigens (Ags) as such; (b) responses of T cells to cartilage autoAgs; and (c) responses of T cells to major histocompatibility complex (HLA-B27, DRB1) or other membrane components (LFA-1) expressed on bone marrow-derived cells. The primary immune response is driven, in naturally occurring disease, by microbial infection, e.g. with streptococci, enteric gram-negative rods or spirochetes, or is experimentally induced with mycobacterial and other adjuvants. The response to cartilage components, such as collagen type-II and various proteoglycans, may be driven by cross-reactive microbial Ags, heat shock proteins (HSPs) in particular, or the adjuvant effect of intense primary joint inflammation, as in rheumatoid arthritis and the spondyloarthropathies. Adjuvant disease appears to be purely T-cell-mediated, whereas both T cells and antibody play a role in collagen and many other forms of arthritis. Experimental evidence suggests a pathogenetic role for T-cell receptor gammadelta T cells in some lesions. Arthritis may be regulated by microbial and tissue HSPs, when these are administered by a nonimmunizing route or as altered peptide ligands, by anti-idiotypic responses that block the action of effector T cells, and by competing Ags. Immune regulation involving natural killer (NK), NK T and certain subsets of gammadelta and alphabeta T cells, which may affect the occurrence, localization and character of this group of diseases, presents a challenge for further investigation.
Collapse
Affiliation(s)
- B H Waksman
- Department of Pathology, NYU School of Medicine, New York 10016, USA.
| |
Collapse
|
3
|
Abstract
Mammalian and avian CD3+ T cells can be separated into two lymphocyte subsets bearing heterodimeric T-cell receptors (TCR) composed of either alphabeta or gammadelta chains. Although it is now widely accepted that gammadelta and alphabeta T cells fulfill mandatory and nonredundant roles, the generality of this assumption and the exact functions played by gammadelta T cells remain uncertain. While an early protective role of gammadelta T cells has long been suspected, recent observations drawn in particular from transgenic models suggest their implication in the homeostatic control of immune and nonimmune processes. This hypothesis is also supported by the existence of several self-reactive gammadelta T-cell subsets in rodents and humans, whose specificity and effector properties will be detailed and discussed here. The present review will also describe several mechanisms that could allow efficient control of these self-reactive subsets while permitting expression of their regulatory and/or protective properties.
Collapse
Affiliation(s)
- F Halary
- INSERM U463, Institut de Biologie, Nantes, France
| | | | | |
Collapse
|
4
|
|
5
|
Rimm IJ, Fruman DA, Abhyankar S, Sakamoto H, Orme IM, Milstone D, Seidman JG, Ferrara JL. T cell receptor (beta chain) transgenic mice have selective deficits in gamma delta T cell subpopulations. Transpl Immunol 1994; 2:218-24. [PMID: 8000850 DOI: 10.1016/0966-3274(94)90063-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
TCR-beta (T cell receptor-beta chain) transgenic mice have altered lymphocyte development. TCR-beta transgenic mice are hyporesponsive to alloantigens in vivo and are deficient in gamma delta T cells. In order to begin a study of the relationship between a deficiency of alloreactive gamma delta cells and the defective function of in vivo alloantigen recognition, we analysed the gamma delta T cell development in TCR-beta mice. The presence of the TCR-V beta 8.2 chain transgene is associated with inhibition of gamma chain gene rearrangement. In order to determine how the presence of the TCR-beta transgene affects gamma delta T cell development, gamma delta T cells were studied in the skin, intestine and spleen. TCR-beta mice have dramatically reduced numbers of gamma delta T cells in the spleen and moderately reduced numbers of gamma delta T cells among intestinal intraepithelial lymphocytes. In contrast, these mice have normal numbers of gamma delta dendritic epidermal cells (DEC). These selective deficits could be due to the developmental regulation of transgene transcription during fetal life. We examined transcription of the TCR-beta transgene in the fetal thymus and found that the TCR-beta transgene is first transcribed at high levels on day 16 of fetal life, after DEC have already migrated from the thymus to the epidermis. Furthermore, mRNA from the transgene was detected in DEC, ruling out the formal possibility that DEC bear a gamma delta receptor only because they are incapable of expressing the transgene.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I J Rimm
- Department of Microbiology, University of Colorado, Fort Collins
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Roger T, Miconnet I, Bruley-Rosset M, Seman M. Coding sequence polymorphism of Tcrg-V1, -V2, and -V4 genes in mice bearing Tcr-gA and -gC haplotypes. Immunogenetics 1994; 39:68-70. [PMID: 8225440 DOI: 10.1007/bf00171801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Haplotypes/genetics
- Mice
- Mice, Inbred BALB C/genetics
- Mice, Inbred DBA/genetics
- Mice, Inbred Strains/genetics
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- T Roger
- Laboratoire d'Immunodifférenciation, Université Denis Diderot, Paris, France
| | | | | | | |
Collapse
|
7
|
Abstract
In recent years, much interest has centered on the commonalities and bi-directional interactions between the nervous system and the immune system. This review focuses on mechanisms through which, catecholamines, a class of neuro-endocrine molecules, modulate immune functions. Catecholamines can be immune suppressive and inhibit lymphocyte activation of both T and B cells as well as the generation of immune-mediated anti-tumor responses. Some of these catecholamine-regulated activities appear to be modulated through the second messenger, cyclic AMP, whereas others appear to be catecholamine-dependent but cyclic AMP independent. Further delineation of the interacting ligand-receptor complexes, populations of responding cells and signal transduction mechanisms leading to the activation of specifically involved genes and gene products, will lead to enhanced understanding of the integratory functions of the nervous system in immune responses, the biology of stress, the role of stress-associated molecular mechanisms in perturbations of physiological homeostasis and the development of a new biological psychiatry with accompanying rational therapeutic modalities.
Collapse
Affiliation(s)
- D A Chambers
- Department of Biochemistry, University of Illinois, Chicago 60612
| | | | | |
Collapse
|
8
|
Eilat D, Kikuchi GE, Coligan JE, Shevach EM. Secretion of a soluble, chimeric gamma delta T-cell receptor-immunoglobulin heterodimer. Proc Natl Acad Sci U S A 1992; 89:6871-5. [PMID: 1495977 PMCID: PMC49606 DOI: 10.1073/pnas.89.15.6871] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Soluble derivatives of T-cell antigen receptors (TCRs) should prove invaluable for studying the interaction of these receptors with antigens and major histocompatibility complex molecules, for structural studies, and for the identification of unknown ligands. We have engineered chimeric proteins, containing the extracellular domains of the mouse V gamma 1.1-C gamma 4 and V delta 6.2-C delta (V, variable; C, constant) TCR chains fused to the hinge region, CH2 (H, heavy), and CH3 domains of human IgG1 heavy chain, and expressed them by transient transfection in COS cells. We show here that TCR gamma-IgH and TCR delta-IgH chimeric chains are produced intracellularly in significant amounts, that the two chains can assemble correctly to form disulfide-linked, glycosylated heterodimers, and that a selective mechanism allows secretion of correctly paired receptor chains into the medium. Identity of the chimeric secreted TCR gamma delta-IgH heterodimer was confirmed by immunoblot analysis using V gamma 1-specific anti-peptide antiserum and immunoprecipitation analysis using the monoclonal antibody UC7, which is shown to be specific for the TCR delta chain. In addition, the soluble TCR gamma delta-IgH heterodimer can be immunoprecipitated with the anti-clonotypic monoclonal antibody F10/56, which suggests that the fusion protein likely has a structural conformation similar to that of the native TCR. The COS cell expression system may prove useful for the production of additional TCR-IgH fusion proteins.
Collapse
Affiliation(s)
- D Eilat
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
9
|
Abstract
The gamma delta T-cell population, a subpopulation of T cells formed through cell lineages that are independent of the alpha beta T-cell lineage, consists of multiple subsets with distinct receptor repertoires and homing properties. While the cell sublineage is a critical factor in the determination of homing specificity, both cell sublineage and receptor-dependent selection are instrumental in the determination of the functional repertoire.
Collapse
Affiliation(s)
- W Haas
- Hoffman-LaRoche Inc., Nutley, New Jersey
| | | |
Collapse
|
10
|
Susceptibility to cell death is a dominant phenotype: triggering of activation-driven T-cell death independent of the T-cell antigen receptor complex. Mol Cell Biol 1992. [PMID: 1346063 DOI: 10.1128/mcb.12.1.379] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The failure of Thy-1 and Ly-6 to trigger interleukin-2 production in the absence of surface T-cell antigen receptor complex (TCR) expression has been interpreted to suggest that functional signalling via these phosphatidylinositol-linked alternative activation molecules is dependent on the TCR. We find, in contrast, that stimulation of T cells via Thy-1 or Ly-6 in the absence of TCR expression does trigger a biological response, the cell suicide process of activation-driven cell death. Activation-driven cell death is a process of physiological cell death that likely represents the mechanism of negative selection of T cells. The absence of the TCR further reveals that signalling leading to activation-driven cell death and to lymphokine production are distinct and dissociable. In turn, the ability of alternative activation molecules to function in the absence of the TCR raises another issue: why immature T cells, thymomas, and hybrids fail to undergo activation-driven cell death in response to stimulation via Thy-1 and Ly-6. One possibility is that these activation molecules on immature T cells are defective. Alternatively, susceptibility to activation-driven cell death may be developmentally regulated by TCR-independent factors. We have explored these possibilities with somatic cell hybrids between mature and immature T cells, in which Thy-1 and Ly-6 are contributed exclusively by the immature partner. The hybrid cells exhibit sensitivity to activation-driven cell death triggered via Thy-1 and Ly-6. Thus, the Thy-1 and Ly-6 molecules of the immature T cells can function in a permissive environment. Moreover, with regard to susceptibility to Thy-1 and Ly-6 molecules of the immature T cells can function in a permissive environment. Moreover, with regard to susceptibility to Thy-1 and Ly-6 triggering, the mature phenotype of sensitivity to cell death is genetically dominant.
Collapse
|
11
|
Nickas G, Meyers J, Hebshi LD, Ashwell JD, Gold DP, Sydora B, Ucker DS. Susceptibility to cell death is a dominant phenotype: triggering of activation-driven T-cell death independent of the T-cell antigen receptor complex. Mol Cell Biol 1992; 12:379-85. [PMID: 1346063 PMCID: PMC364132 DOI: 10.1128/mcb.12.1.379-385.1992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The failure of Thy-1 and Ly-6 to trigger interleukin-2 production in the absence of surface T-cell antigen receptor complex (TCR) expression has been interpreted to suggest that functional signalling via these phosphatidylinositol-linked alternative activation molecules is dependent on the TCR. We find, in contrast, that stimulation of T cells via Thy-1 or Ly-6 in the absence of TCR expression does trigger a biological response, the cell suicide process of activation-driven cell death. Activation-driven cell death is a process of physiological cell death that likely represents the mechanism of negative selection of T cells. The absence of the TCR further reveals that signalling leading to activation-driven cell death and to lymphokine production are distinct and dissociable. In turn, the ability of alternative activation molecules to function in the absence of the TCR raises another issue: why immature T cells, thymomas, and hybrids fail to undergo activation-driven cell death in response to stimulation via Thy-1 and Ly-6. One possibility is that these activation molecules on immature T cells are defective. Alternatively, susceptibility to activation-driven cell death may be developmentally regulated by TCR-independent factors. We have explored these possibilities with somatic cell hybrids between mature and immature T cells, in which Thy-1 and Ly-6 are contributed exclusively by the immature partner. The hybrid cells exhibit sensitivity to activation-driven cell death triggered via Thy-1 and Ly-6. Thus, the Thy-1 and Ly-6 molecules of the immature T cells can function in a permissive environment. Moreover, with regard to susceptibility to Thy-1 and Ly-6 molecules of the immature T cells can function in a permissive environment. Moreover, with regard to susceptibility to Thy-1 and Ly-6 triggering, the mature phenotype of sensitivity to cell death is genetically dominant.
Collapse
Affiliation(s)
- G Nickas
- Division of Immunology, Medical Biology Institute, La Jolla, California 92037
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The work reviewed in this article separates T cell development into four phases. First is an expansion phase prior to TCR rearrangement, which appears to be correlated with programming of at least some response genes for inducibility. This phase can occur to some extent outside of the thymus. However, the profound T cell deficit of nude mice indicates that the thymus is by far the most potent site for inducing the expansion per se, even if other sites can induce some response acquisition. Second is a controlled phase of TCR gene rearrangement. The details of the regulatory mechanism that selects particular loci for rearrangement are still not known. It seems that the rearrangement of the TCR gamma loci in the gamma delta lineage may not always take place at a developmental stage strictly equivalent to the rearrangement of TCR beta in the alpha beta lineage, and it is not clear just how early the two lineages diverge. In the TCR alpha beta lineage, however, the final gene rearrangement events are accompanied by rapid proliferation and an interruption in cellular response gene inducibility. The loss of conventional responsiveness is probably caused by alterations at the level of signaling, and may be a manifestation of the physiological state that is a precondition for selection. Third is the complex process of selection. Whereas peripheral T cells can undergo forms of positive selection (by antigen-driven clonal expansion) and negative selection (by abortive stimulation leading to anergy or death), neither is exactly the same phenomenon that occurs in the thymic cortex. Negative selection in the cortex appears to be a suicidal inversion of antigen responsiveness: instead of turning on IL-2 expression, the activated cell destroys its own chromatin. The genes that need to be induced for this response are not yet identified, but it is unquestionably a form of activation. It is interesting that in humans and rats, cortical thymocytes undergoing negative selection can still induce IL-2R alpha expression and even be rescued in vitro, if exogenous IL-2 is provided. Perhaps murine thymocytes are denied this form of rescue because they shut off IL-2R beta chain expression at an earlier stage or because they may be uncommonly Bcl-2 deficient (cf. Sentman et al., 1991; Strasser et al., 1991). Even so, medullary thymocytes remain at least partially susceptible to negative selection even as they continue to mature.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD3 Complex
- Cell Death
- Cell Differentiation
- Cell Division
- Cell Movement
- Chick Embryo
- Gene Expression Regulation
- Gene Rearrangement, T-Lymphocyte
- Hematopoietic Stem Cells/cytology
- Humans
- Immune Tolerance
- Immunity, Cellular
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Lymphocyte Activation
- Lymphokines/biosynthesis
- Lymphokines/physiology
- Mice
- Mice, Nude/immunology
- Mice, SCID/genetics
- Mice, SCID/immunology
- Models, Biological
- Proto-Oncogene Proteins/physiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/growth & development
- Transcription Factors/physiology
Collapse
Affiliation(s)
- E V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena 91125
| |
Collapse
|
13
|
Wu M, van Kaer L, Itohara S, Tonegawa S. Highly restricted expression of the thymus leukemia antigens on intestinal epithelial cells. J Exp Med 1991; 174:213-8. [PMID: 1711563 PMCID: PMC2118879 DOI: 10.1084/jem.174.1.213] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The TL region of the major histocompatibility complex of the mouse contains dozens of tandemly arranged class I genes, including those encoding the thymus leukemia (TL) antigens. TL antigens have been thought to be expressed only on the surface of some T lineage cells, namely immature thymocytes of some mouse strains (TL+ strains), some leukemia cells, and activated T cells. While the function of TL antigens is unknown, recent studies have implicated the products of at least some TL region class I genes as molecules that present antigens to gamma/delta T cells. Since some gamma/delta T cells are known to be specifically associated with certain epithelial tissues, we have investigated the expression of some TL region class I genes in a variety of epithelium-containing tissues. Our results show that the TL antigen gene of C57BL/6 mice, T3b, and the TL antigen genes of BALB/c mice, T3d (previously T3c) and T18d (previously T13c), are highly expressed in the epithelium of the small intestine. In the case of T3b, we further show, using a T3 product-specific antibody, that its product is expressed on the surface of the columnar epithelial cells. In addition, we demonstrated that two other TL region class I genes of C57BL/6 origin, T9b and T21b, are also expressed nearly exclusively in intestinal epithelial cells. These results are consistent with the hypothesis that the products of these TL region class I genes are recognized by gamma/delta T cell receptors of intestinal intraepithelial lymphocytes, a subset of gamma/delta T cells that is localized in the intestinal epithelium and has a restricted V gamma repertoire. Finally, our study indicates that the relative levels of expression of the two homologous TL antigen genes, T3d and T18d, differ widely between the thymus and the intestine.
Collapse
Affiliation(s)
- M Wu
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|