1
|
Wojczulanis-Jakubas K, Hoover B, Jakubas D, Fort J, Grémillet D, Gavrilo M, Zielińska S, Zagalska-Neubauer M. Diversity of major histocompatibility complex of II B gene and mate choice in a monogamous and long-lived seabird, the Little Auk (Alle alle). PLoS One 2024; 19:e0304275. [PMID: 38865310 PMCID: PMC11168636 DOI: 10.1371/journal.pone.0304275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
The major histocompatibility complex (MHC) plays a key role in the adaptive immune system of vertebrates, and is known to influence mate choice in many species. In birds, the MHC has been extensively examined but mainly in galliforms and passerines while other taxa that represent specific ecological and evolutionary life-histories, like seabirds, are underexamined. Here, we characterized diversity of MHC Class II B exon 2 in a colonial pelagic seabird, the Little Auk (or Dovekie Alle alle). We further examined whether MHC variation could be maintained through balancing selection and disassortative mating. We found high polymorphism at the genotyped MHC fragment, characterizing 99 distinct alleles across 140 individuals from three populations. The alleles frequencies exhibited a similar skewed distribution in both sexes, with the four most commonly occurring alleles representing approximately 35% of allelic variation. The results of a Bayesian site-by-site selection analysis suggest evidence of balancing selection and no direct evidence for MHC-dependent disassortative mating preferences in the Little Auk. The latter result might be attributed to the high overall polymorphism of the examined fragment, which itself may be maintained by the large population size of the species.
Collapse
Affiliation(s)
| | - Brian Hoover
- Farallon Institute, Petaluma, California, United States of America
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS – La Rochelle University, 17000 La Rochelle, France
| | - David Grémillet
- Excellence Chair Nouvelle Aquitaine - CEBC UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois, France & FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | | | - Sylwia Zielińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
2
|
Tshabalala M, Mellet J, Vather K, Nelson D, Mohamed F, Christoffels A, Pepper MS. High Resolution HLA ∼A, ∼B, ∼C, ∼DRB1, ∼DQA1, and ∼DQB1 Diversity in South African Populations. Front Genet 2022; 13:711944. [PMID: 35309124 PMCID: PMC8931603 DOI: 10.3389/fgene.2022.711944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Lack of HLA data in southern African populations hampers disease association studies and our understanding of genetic diversity in these populations. We aimed to determine HLA diversity in South African populations using high resolution HLA ∼A, ∼B, ∼C, ∼DRB1, ∼DQA1 and ∼DQB1 data, from 3005 previously typed individuals. Methods: We determined allele and haplotype frequencies, deviations from Hardy-Weinberg equilibrium (HWE), linkage disequilibrium (LD) and neutrality test. South African HLA class I data was additionally compared to other global populations using non-metrical multidimensional scaling (NMDS), genetic distances and principal component analysis (PCA). Results: All loci strongly (p < 0.0001) deviated from HWE, coupled with excessive heterozygosity in most loci. Two of the three most frequent alleles, HLA ∼DQA1*05:02 (0.2584) and HLA ∼C*17:01 (0.1488) were previously reported in South African populations at lower frequencies. NMDS showed genetic distinctness of South African populations. Phylogenetic analysis and PCA clustered our current dataset with previous South African studies. Additionally, South Africans seem to be related to other sub-Saharan populations using HLA class I allele frequencies. Discussion and Conclusion: Despite the retrospective nature of the study, data missingness, the imbalance of sample sizes for each locus and haplotype pairs, and induced methodological difficulties, this study provides a unique and large HLA dataset of South Africans, which might be a useful resource to support anthropological studies, disease association studies, population based vaccine development and donor recruitment programs. We additionally provide simulated high resolution HLA class I data to augment the mixed resolution typing results generated from this study.
Collapse
Affiliation(s)
- Mqondisi Tshabalala
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kuben Vather
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Derrick Nelson
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Fathima Mohamed
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Michael S. Pepper,
| |
Collapse
|
3
|
Cheng X, DeGiorgio M. Flexible Mixture Model Approaches That Accommodate Footprint Size Variability for Robust Detection of Balancing Selection. Mol Biol Evol 2020; 37:3267-3291. [PMID: 32462188 PMCID: PMC7820363 DOI: 10.1093/molbev/msaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long-term balancing selection typically leaves narrow footprints of increased genetic diversity, and therefore most detection approaches only achieve optimal performances when sufficiently small genomic regions (i.e., windows) are examined. Such methods are sensitive to window sizes and suffer substantial losses in power when windows are large. Here, we employ mixture models to construct a set of five composite likelihood ratio test statistics, which we collectively term B statistics. These statistics are agnostic to window sizes and can operate on diverse forms of input data. Through simulations, we show that they exhibit comparable power to the best-performing current methods, and retain substantially high power regardless of window sizes. They also display considerable robustness to high mutation rates and uneven recombination landscapes, as well as an array of other common confounding scenarios. Moreover, we applied a specific version of the B statistics, termed B2, to a human population-genomic data set and recovered many top candidates from prior studies, including the then-uncharacterized STPG2 and CCDC169-SOHLH2, both of which are related to gamete functions. We further applied B2 on a bonobo population-genomic data set. In addition to the MHC-DQ genes, we uncovered several novel candidate genes, such as KLRD1, involved in viral defense, and SCN9A, associated with pain perception. Finally, we show that our methods can be extended to account for multiallelic balancing selection and integrated the set of statistics into open-source software named BalLeRMix for future applications by the scientific community.
Collapse
Affiliation(s)
- Xiaoheng Cheng
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL
| |
Collapse
|
4
|
Footprints of natural selection at the mannose-6-phosphate isomerase locus in barnacles. Proc Natl Acad Sci U S A 2020; 117:5376-5385. [PMID: 32098846 PMCID: PMC7071928 DOI: 10.1073/pnas.1918232117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rocky intertidal is a natural laboratory to study how natural selection acts on the genes and proteins responsible for organismal survival and reproduction. Alternative forms of enzymes that differ across the intertidal have been known for decades and have provided examples of selection, but the genetic basis of such enzyme variation is known in only a few cases. In this paper, we present molecular evidence of natural selection at the Mpi gene, a key enzyme in energy metabolism that alters survival of barnacles living across the stress gradient imposed by the intertidal. Our study demonstrates how natural selection can facilitate survival in highly heterogeneous environments through the maintenance of multiple molecular solutions to ecological stresses. The mannose-6-phosphate isomerase (Mpi) locus in Semibalanus balanoides has been studied as a candidate gene for balancing selection for more than two decades. Previous work has shown that Mpi allozyme genotypes (fast and slow) have different frequencies across Atlantic intertidal zones due to selection on postsettlement survival (i.e., allele zonation). We present the complete gene sequence of the Mpi locus and quantify nucleotide polymorphism in S. balanoides, as well as divergence to its sister taxon Semibalanus cariosus. We show that the slow allozyme contains a derived charge-altering amino acid polymorphism, and both allozyme classes correspond to two haplogroups with multiple internal haplotypes. The locus shows several footprints of balancing selection around the fast/slow site: an enrichment of positive Tajima’s D for nonsynonymous mutations, an excess of polymorphism, and a spike in the levels of silent polymorphism relative to silent divergence, as well as a site frequency spectrum enriched for midfrequency mutations. We observe other departures from neutrality across the locus in both coding and noncoding regions. These include a nonsynonymous trans-species polymorphism and a recent mutation under selection within the fast haplogroup. The latter suggests ongoing allelic replacement of functionally relevant amino acid variants. Moreover, predicted models of Mpi protein structure provide insight into the functional significance of the putatively selected amino acid polymorphisms. While footprints of selection are widespread across the range of S. balanoides, our data show that intertidal zonation patterns are variable across both spatial and temporal scales. These data provide further evidence for heterogeneous selection on Mpi.
Collapse
|
5
|
Hanley KA, Fisher RN, Case TJ. LOWER MITE INFESTATIONS IN AN ASEXUAL GECKO COMPARED WITH ITS SEXUAL ANCESTORS. Evolution 2017; 49:418-426. [PMID: 28565091 DOI: 10.1111/j.1558-5646.1995.tb02274.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1993] [Accepted: 11/16/1993] [Indexed: 11/28/2022]
Abstract
What advantage do sexually reproducing organisms gain from their mode of reproduction that compensates for their twofold loss in reproductive rate relative to their asexual counterparts? One version of the Red Queen hypothesis suggests that selective pressure from parasites is strongest on the most common genotype in a population, and thus genetically identical clonal lineages are more vulnerable to parasitism over time than genetically diverse sexual lineages. Our surveys of the ectoparasites of an asexual gecko and its two sexual ancestral species show that the sexuals have a higher prevalence, abundance, and mean intensity of mites than asexuals sharing the same habitat. Our experimental data indicate that in one sexual/asexual pair this pattern is at least partly attributable to higher attachment rates of mites to sexuals. Such a difference may occur as a result of exceptionally high susceptibility of the sexuals to mites because of their low genetic diversity (relative to other more-outbred sexual species) and their potentially high stress levels, or as a result of exceptionally low susceptibility of the asexuals to mites because of their high levels of heterozygosity.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology-0116, University of California at San Diego, La Jolla, California, 92093-0116
| | - Robert N Fisher
- Department of Biology-0116, University of California at San Diego, La Jolla, California, 92093-0116
| | - Ted J Case
- Department of Biology-0116, University of California at San Diego, La Jolla, California, 92093-0116
| |
Collapse
|
6
|
Ejsmond MJ, Babik W, Radwan J. MHC allele frequency distributions under parasite-driven selection: A simulation model. BMC Evol Biol 2010; 10:332. [PMID: 20979635 PMCID: PMC2978226 DOI: 10.1186/1471-2148-10-332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extreme polymorphism that is observed in major histocompatibility complex (MHC) genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage) and/or by rare MHC alleles (negative frequency-dependent selection). The Ewens-Watterson test (EW) is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately. RESULTS In agreement with simple models of symmetrical overdominance, we found that heterozygote advantage acting alone in populations does, indeed, result in more even allele frequency distributions than expected under neutrality, and this is easily detectable by EW. However, under negative frequency-dependent selection, or under the joint action of negative frequency-dependent selection and heterozygote advantage, distributions of allele frequencies were less predictable: the majority of distributions were indistinguishable from neutral expectations, while the remaining runs resulted in either more even or more skewed distributions than under neutrality. CONCLUSIONS Our results indicate that, as long as negative frequency-dependent selection is an important force maintaining MHC variation, the EW test has limited utility in detecting selection acting on these genes.
Collapse
Affiliation(s)
- Maciej Jan Ejsmond
- Institute of Environmental Sciences, Jagiellonian University, ul, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
7
|
|
8
|
|
9
|
|
10
|
Nongenetic and non-Darwinian evolution. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
|
12
|
|
13
|
Abstract
AbstractIn both biology and the human sciences, social groups are sometimes treated as adaptive units whose organization cannot be reduced to individual interactions. This group-level view is opposed by a more individualistic one that treats social organization as a byproduct of self-interest. According to biologists, group-level adaptations can evolve only by a process of natural selection at the group level. Most biologists rejected group selection as an important evolutionary force during the 1960s and 1970s but a positive literature began to grow during the 1970s and is rapidly expanding today. We review this recent literature and its implications for human evolutionary biology. We show that the rejection of group selection was based on a misplaced emphasis on genes as “replicators” which is in fact irrelevant to the question of whether groups can be like individuals in their functional organization. The fundamental question is whether social groups and other higher-level entities can be “vehicles” of selection. When this elementary fact is recognized, group selection emerges as an important force in nature and what seem to be competing theories, such as kin selection and reciprocity, reappear as special cases of group selection. The result is a unified theory of natural selection that operates on a nested hierarchy of units.The vehicle-based theory makes it clear that group selection is an important force to consider in human evolution. Humans can facultatively span the full range from self-interested individuals to “organs” of group-level “organisms.” Human behavior not only reflects the balance between levels of selection but it can also alter the balance through the construction of social structures that have the effect of reducing fitness differences within groups, concentrating natural selection (and functional organization) at the group level. These social structures and the cognitive abilities that produce them allow group selection to be important even among large groups of unrelated individuals.
Collapse
|
14
|
The maintenance of behavioral diversity in human societies. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Empirically equivalent theories. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0003630x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Driving both ways: Wilson & Sober's conflicting criteria for the identification of groups as vehicles of selection. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
|
27
|
|
28
|
Beyond shared fate: Group-selected mechanisms for cooperation and competition in fuzzy, fluid vehicles. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036360] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
|
30
|
Different vehicles for group selection in humans. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00036335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Gould SJ, Hildreth JEK, Booth AM. The Evolution of Alloimmunity and the Genesis of Adaptive Immunity. QUARTERLY REVIEW OF BIOLOGY 2004; 79:359-82. [PMID: 15669770 DOI: 10.1086/426088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Infectious agents select for host immune responses that destroy infectious nonself yet maintain tolerance to self. Here we propose that retroviruses and other host-antigen associated pathogens (HAAPs) select for the genetic, biochemical, and cell biological properties of alloimmunity, also known as the histocompatibility or tissue rejection response. This hypothesis predicts the major observations regarding histocompatibility responses, including: (i) their existence in animals as diverse as sponges and humans; (ii) extreme polymorphism and balanced allele frequencies at histocompatibility loci, including the human MHC and blood group loci; (iii) the frequency dependent selection of histocompatibility alleles; (iv) the ancient age of many alloantigenic polymorphisms; (v) the high ratio of nonsynonymous mutations to synonymous mutations at histocompatibility loci; (vi) disassortative mating based on MHC alleles; (vii) the inability to explain the existence and continuing selection of histocompatibility alleles by other more conventional biochemical and genetic paradigms; and (viii) the susceptibility of HAAPs, particularly retroviruses such as HIV (human immunodeficiency virus), to histocompatibility reactions. In addition, the hypothesis that HAAPs select the forms and molecules of alloimmunity offers simple explanations for the evolution of histocompatibility systems over time, the initial selection of hypervariable immune mechanisms, and the genesis of adaptive immunity.
Collapse
Affiliation(s)
- Stephen J Gould
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
32
|
Borghans JAM, Beltman JB, De Boer RJ. MHC polymorphism under host-pathogen coevolution. Immunogenetics 2004; 55:732-9. [PMID: 14722687 DOI: 10.1007/s00251-003-0630-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 11/11/2003] [Indexed: 11/28/2022]
Abstract
The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.
Collapse
Affiliation(s)
- José A M Borghans
- Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | |
Collapse
|
33
|
Affiliation(s)
- C Wills
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
34
|
|
35
|
Putting the cart back behind the horse: Group selection does not require that groups be “organisms”. Behav Brain Sci 1994. [DOI: 10.1017/s0140525x0003627x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Groups as vehicles and replicators: The problem of group-level adaptation. Behav Brain Sci 1994. [DOI: 10.1017/s0140525x00036311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Subtle ways of shifting the balance in favor of between-group selection. Behav Brain Sci 1994. [DOI: 10.1017/s0140525x00036220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
|
39
|
|
40
|
Rx: Distinguish group selection from group adaptation. Behav Brain Sci 1994. [DOI: 10.1017/s0140525x00036347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Group selection and the group mind in science. Behav Brain Sci 1994. [DOI: 10.1017/s0140525x00036153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Some philosophical implications of the rehabilitation of group selection. Behav Brain Sci 1994. [DOI: 10.1017/s0140525x00036232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Unnecessary competition requirement makes group selection harder to demonstrate. Behav Brain Sci 1994. [DOI: 10.1017/s0140525x00036177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Vehicles all the way down? Behav Brain Sci 1994. [DOI: 10.1017/s0140525x00036426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Abstract
The major histocompatibility complex (MHC) is a fascinating region of the human genome. More is known about this 4 Mb of DNA (0.1% of the genome) on the short arm of chromosome 6 than about any other region of similar size. Among the 80 or so MHC genes found so far are several clusters with related functions in antigen processing and presentation. In addition to its importance in immunology, the MHC is a useful model for investigating gene organization, polymorphism, linkage disequilibrium and recombination. A large number of diseases, many of the autoimmune type, are associated with the region.
Collapse
Affiliation(s)
- J Trowsdale
- Human Immunogenetics Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK
| |
Collapse
|
46
|
Garred P, Madsen HO, Kurtzhals JA, Lamm LU, Thiel S, Hey AS, Svejgaard A. Diallelic polymorphism may explain variations of the blood concentration of mannan-binding protein in Eskimos, but not in black Africans. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 1992; 19:403-12. [PMID: 1477092 DOI: 10.1111/j.1744-313x.1992.tb00083.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mannan-binding protein (MBP) is a lectin which, upon binding to certain carbohydrates, activates the classical pathway of complement without the involvement of antibody or C1q. Deficiency of the MBP is associated with an opsonic defect and recurrent infections during early life. An amino acid substitution in the exon 1 at codon 54 in the MBP gene (GGC [glycine] to GAC [aspartic acid]) has been shown to be closely associated with low MBP concentration in Caucasoids. The gene frequency of the mutant allele in this population has been estimated at 0.13. In the study described here, we investigated the association between the mutant allele and MBP protein concentration in Eskimos from East-Greenland and black Africans from the Baringo District in Kenya. The frequency of the GAC allele was identical in Eskimos and Caucasoids (0.13). No overlap with regard to MBP concentration between the genotypes was found in the Eskimos. In contrast, the Africans revealed a low frequency of the GAC allele (0.009). However, the median MBP protein concentration was approximately 5 times lower among the Africans than the Eskimos. In 12.6% of the Africans and in 2.5% of the Eskimos, MBP was undetectable. Thus, MBP deficiency is the most frequent immunodeficiency so far described. The high prevalence of MBP deficiency among healthy individuals indicates that MBP deficiency also confers some selective advantages. We advance the hypothesis that MBP deficiency is maintained in populations because MBP deficiency decreases the infectivity of some intracellular micro-organisms which are dependent on opsonization.
Collapse
Affiliation(s)
- P Garred
- Department of Clinical Immunology, State University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- S M Hedrick
- Department of Biology, University of California, San Diego, La Jolla 92093-0063
| |
Collapse
|
48
|
Belich MP, Madrigal JA, Hildebrand WH, Zemmour J, Williams RC, Luz R, Petzl-Erler ML, Parham P. Unusual HLA-B alleles in two tribes of Brazilian Indians. Nature 1992; 357:326-9. [PMID: 1317015 DOI: 10.1038/357326a0] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Kaingang and Guarani are culturally and linguistically distinct tribes of southern Brazil. Like all Amerindian groups they show limited HLA polymorphism, which probably reflects the small founder populations that colonized America by overland migration from Asia 11,000-40,000 years ago. We find the nucleotide sequences of HLA-B alleles from the Kaingang and Guarani to be distinct from those characterized in caucasian, oriental and other populations. By comparison, the HLA-A and C alleles are familiar. These results and those reported in the accompanying paper on the Waorani of Ecuador reveal that a marked evolution of HLA-B has occurred since humans first entered South America. New alleles have been formed through recombination between pre-existing alleles, not by point mutation, giving rise to distinctive diversification of HLA-B in different South American Indian tribes.
Collapse
Affiliation(s)
- M P Belich
- Department of Cell Biology, Stanford University, California 94305
| | | | | | | | | | | | | | | |
Collapse
|