1
|
|
2
|
Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability. J Immunol Res 2017; 2017:4758539. [PMID: 28612032 PMCID: PMC5458376 DOI: 10.1155/2017/4758539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/27/2017] [Indexed: 11/17/2022] Open
Abstract
Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame) termed BART (BamHI A right transcripts) are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA) protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript), a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1), may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.
Collapse
|
3
|
Dreyfus DH. Gene sharing between Epstein–Barr virus and human immune response genes. Immunol Res 2016; 65:37-45. [DOI: 10.1007/s12026-016-8814-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Dreyfus DH. Herpesviruses and the microbiome. J Allergy Clin Immunol 2013; 132:1278-86. [PMID: 23611298 DOI: 10.1016/j.jaci.2013.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/07/2013] [Accepted: 02/25/2013] [Indexed: 12/15/2022]
Abstract
The focus of this article will be to examine the role of common herpesviruses as a component of the microbiome of atopic patients and to review clinical observations suggesting that atopic patients might be predisposed to more severe and atypical herpes-related illness because their immune response is biased toward a TH2 cytokine profile. Human populations are infected with 8 herpesviruses, including herpes simplex virus HSV1 and HSV2 (also termed HHV1 and HHV2), varicella zoster virus (VZV or HHV3), EBV (HHV4), cytomegalovirus (HHV5), HHV6, HHV7, and Kaposi sarcoma-associated herpesvirus (termed KSV or HHV8). Herpesviruses are highly adapted to lifelong infection of their human hosts and thus can be considered a component of the human "microbiome" in addition to their role in illness triggered by primary infection. HSV1 and HSV2 infection and reactivation can present with more severe cutaneous symptoms termed eczema herpeticum in the atopic population, similar to the more severe eczema vaccinatum, and drug reaction with eosinophilia and systemic symptoms syndrome (DRESS) is associated with reactivation of HSV6 and possibly other herpesviruses in both atopic and nonatopic patients. In this review evidence is reviewed that primary infection with herpesviruses may have an atypical presentation in the atopic patient and conversely that childhood infection might alter the atopic phenotype. Reactivation of latent herpesviruses can directly alter host cytokine profiles through viral expression of cytokine-like proteins, such as IL-10 (EBV) or IL-6 (cytomegalovirus and HHV8), viral encoded and secreted siRNA and microRNAs, and modulation of expression of host transcription pathways, such as nuclear factor κB. Physicians caring for allergic and atopic populations should be aware of common and uncommon presentations of herpes-related disease in atopic patients to provide accurate diagnosis and avoid unnecessary laboratory testing or incorrect diagnosis of other conditions, such as drug allergy or autoimmune disease. Antiviral therapy and vaccines should be administered promptly when indicated clinically.
Collapse
Affiliation(s)
- David H Dreyfus
- Department of Pediatrics, Clinical Faculty, Yale School of Medicine, New Haven, and the Center for Allergy, Asthma, and Immunology, Waterbury, Conn.
| |
Collapse
|
5
|
Autoimmune disease: A role for new anti-viral therapies? Autoimmun Rev 2011; 11:88-97. [DOI: 10.1016/j.autrev.2011.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 08/11/2011] [Indexed: 12/30/2022]
|
6
|
Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV) BZLF-1 (ZEBRA) protein: implications for interactions with NF-κB and p53. Virol J 2011; 8:422. [PMID: 21892957 PMCID: PMC3180424 DOI: 10.1186/1743-422x-8-422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/05/2011] [Indexed: 12/19/2022] Open
Abstract
Background The carboxyl terminal of Epstein-Barr virus (EBV) ZEBRA protein (also termed BZLF-1 encoded replication protein Zta or ZEBRA) binds to both NF-κB and p53. The authors have previously suggested that this interaction results from an ankyrin-like region of the ZEBRA protein since ankyrin proteins such as IκB interact with NF-κB and p53 proteins. These interactions may play a role in immunopathology and viral carcinogenesis in B lymphocytes as well as other cell types transiently infected by EBV such as T lymphocytes, macrophages and epithelial cells. Methods Randomization of the ZEBRA terminal amino acid sequence followed by statistical analysis suggest that the ZEBRA carboxyl terminus is most closely related to ankyrins of the invertebrate cactus IκB-like protein. This observation is consistent with an ancient origin of ZEBRA resulting from a recombination event between an ankyrin regulatory protein and a fos/jun DNA binding factor. In silico modeling of the partially solved ZEBRA carboxyl terminus structure using PyMOL software demonstrate that the carboxyl terminus region of ZEBRA can form a polymorphic structure termed ZANK (ZEBRA ANKyrin-like region) similar to two adjacent IκB ankyrin domains. Conclusions Viral capture of an ankyrin-like domain provides a mechanism for ZEBRA binding to proteins in the NF-κB and p53 transcription factor families, and also provides support for a process termed "Ping-Pong Evolution" in which DNA viruses such as EBV are formed by exchange of information with the host genome. An amino acid polymorphism in the ZANK region is identified in ZEBRA from tumor cell lines including Akata that could alter binding of Akata ZEBRA to the p53 tumor suppressor and other ankyrin binding protein, and a novel model of antagonistic binding interactions between ZANK and the DNA binding regions of ZEBRA is suggested that may be explored in further biochemical and molecular biological models of viral replication.
Collapse
|
7
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
8
|
Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PLoS One 2009; 4:e5778. [PMID: 19492059 PMCID: PMC2686171 DOI: 10.1371/journal.pone.0005778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 04/22/2009] [Indexed: 11/29/2022] Open
Abstract
Background The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”. Methodology/Principal Findings Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). Conclusions/Significance A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination.
Collapse
|
9
|
Sinkovics JG. "Up-dating the monograph." [corrected] Cytolytic immune lymphocytes in the armamentarium of the human host. Acta Microbiol Immunol Hung 2008; 55:371-82. [PMID: 19130745 DOI: 10.1556/amicr.55.2008.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The author of the monograph "Cytolytic Immune Lymphocytes..." (published in 2008 by Schenk Buchverlag Campus Dialog, Budapest, Passau, Pécs) proposed several research projects and described certain clinical events that require further elaboration and documentation. In this article the author provides what is required and has since become available. The first subject matter in question concerns the fusogenic viruses. The ancient fusogenic viruses might have created the first eukaryotic cell(s) by uniting archaeabacterial and prokaryotic/protobacterial protospheroplasts. Extant fusogenic viruses either produce tumor cell syncytia and lyse them, thus practicing viral oncolysis. Or, create chimaeric fusion products, the so-called "natural hybridomas", of lymphoma cells exhibiting transmembrane budding of retrovirus particles or envelope proteins, and anti-viral specific antibody-producing plasma cells. The second topic concerns the horizontal-lateral mode of acquisition of those genes, which were "present in the waiting" in the amphioxus, sea urchin, and the agnathans, and met in the primitive gnatostomata sharks to encode in unison the entire adaptive immune system. The consensus of opinion is such that these genes derived from newly acquired transposons/retrotransposons. The author points out that the extant Epstein-Barr virus harbors genes displaying sequence homology with those genes from the sharks up to mammals that regulate the somatic hypermutation of specific antibody production. The author proposes that an ancient herpesvirus might have propagated the V(D)J and RAG genes from sea urchins to sharks. The third area is that of lymphocytes cytotoxic/cytolytic to virally infected or malignantly transformed host cells. This discovery led to the adoptive immune lymphocyte therapy of tumors. Installed in the adaptive immune system are regulatory T cells and myeloid-derived suppressor cells for he protection of "self". Tumor cells masquerading as "self" are protected by these cells from attacks launched by immune T cells. The author supports the replacement of IL-2 by IL-15, inasmuch as IL-2 stimulates not only immune T cells, but also regulatory T cells expressing the CD25 IL-2 receptor. The administration of low dose whole body radiotherapy prior to immune lymphocyte therapy increases the efficacy of immune lymphocyte therapy. The author observed this phenomenon in the mid-1960s. The explanation of this phenomenon revealed itself just recently. In pre-irradiated hosts the intestinal wall becomes permeable to the gut flora; the intestinal bacteria activate the entire innate immune system in the mesenteric lymph nodes and a rapid activation of the adaptive immune faculties follows.
Collapse
Affiliation(s)
- J G Sinkovics
- Department of Medical Microbiology/Immunology, St. Joseph's Hospital Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center, University of South Florida College of Medicine, Tampa, FL, USA.
| |
Collapse
|
10
|
Dreyfus DH. The DDE recombinases: diverse roles in acquired and innate immunity. Ann Allergy Asthma Immunol 2007; 97:567-76; quiz 576-8, 602. [PMID: 17165262 DOI: 10.1016/s1081-1206(10)61083-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The RAG proteins required for V(D)J recombination of immunoglobulin and T-cell receptor genes in the acquired immune response contain a magnesium ion-binding site termed a DDE site, composed of D (aspartic acid) and E (glutamic acid) amino acids. A similar DDE-like magnesium binding site also is present in transposases, retroviral integrases, and the innate antiviral response enzymes RNAse H and RNA-induced silencing complex (RISC). OBJECTIVE To help clinicians understand immunodeficiency that results from deficiencies of RAG protein functions, such as severe combined immunodeficiency disorders, Omenn syndrome, and ataxia telangiectasia, and to be familiar with the diverse roles of other DDE enzymes. METHODS Literature published in peer-reviewed journals during the past 2 decades that identified and characterized DDE enzymes, including RAG proteins, RISC and RNA silencing, RNAse H, retroviral integrases, transposases, and a putative DDE recombinase required for herpes virus replication, was selectively reviewed and summarized by the author. RESULTS DDE enzymes play a critical role in acquired immunity through RAG-mediated immunoglobulin and T-cell receptor V(D)J recombination in innate immunity through RISC and RNAse H. Paradoxically, DDE enzymes are critical components of pathogen-specific enzymes such as retroviral integrase and other pathogen-encoded proteins. CONCLUSION Because of their critical role in acquired and innate immunity, the DDE recombinases are attractive targets for novel pharmacologic therapies. Currently, retroviral integrase inhibitors in clinical trial for human immunodeficiency virus infection appear to be safe and effective and could provide a paradigm for inactivating DDE sites in other viral pathogens, as well as RAG and RISC.
Collapse
Affiliation(s)
- David H Dreyfus
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut 06511, USA.
| |
Collapse
|
11
|
Dreyfus DH. Role of T Cells in EBV-Infected Systemic Lupus Erythematosus Patients. THE JOURNAL OF IMMUNOLOGY 2005; 175:3460; author reply 3461. [PMID: 16148086 DOI: 10.4049/jimmunol.175.6.3460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Dreyfus DH. Immunopathology associated with Epstein-Barr virus (EBV) infection: Evidence for interactions with T-lymphocyte EBV receptor CD21. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.cair.2005.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Abstract
Genomic DNA is often thought of as the stable template of heredity, largely dormant and unchanging, apart from perhaps the occasional point mutation. But it has become increasingly clear that DNA is dynamic rather than static, being subjected to rearrangements, insertions and deletions. Much of this plasticity can be attributed to transposable elements and their genomic relatives.
Collapse
Affiliation(s)
- E T Prak
- Department of Genetics, 475 Clinical Research Building, 415 Curie Boulevard, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
14
|
Imashuku S, Tabata Y, Teramura T, Hibi S. Treatment strategies for Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH). Leuk Lymphoma 2000; 39:37-49. [PMID: 10975382 DOI: 10.3109/10428190009053537] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In Epstein-Barr virus (EBV) infection, the virus immortalizes B lymphocytes and cytotoxic T lymphocytes (CTLs) are directed toward both latent and lytic viral antigens expressed on EBV-infected B-cells. Various EBV-associated diseases occur as a result of this disruption of immune surveillance. In the majority of EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) cases, the major cell types containing EBV DNA are not B-cells, but clonally proliferating T-cells or NK-cells. Proliferation of these cells produces severe immune reactions in the host, and the clinical features related to massive cytokine production at the onset of disease are unique and distinct from other EBV-associated diseases. In the treatment of EBV-HLH, therapeutic infusion of EBV-specific CTLs appears to be ineffective, and eradication of EBV-containing cells is useful but not sufficient to save lives, because of high incidence of acute mortality due to cytokine-induced multiple organ failure and neutropenia-associated opportunistic infections. The optimal treatment strategy for this disease consists of three steps: (1) control of cytokine storm including coagulopathy and multiple organ failure, (2) control of opportunistic infections, and (3) eradication of clonally proliferating EBV-containing T- or NK- cells by immunochemotherapy and, if necessary, hemopoietic stem cell/bone marrow transplantation (SCT/BMT).
Collapse
Affiliation(s)
- S Imashuku
- Kyoto City Institute of Health and Environmental Sciences, Kyoto, Japan.
| | | | | | | |
Collapse
|
15
|
Stable expression of Epstein-Barr virus BZLF-1–encoded ZEBRA protein activates p53-dependent transcription in human Jurkat T-lymphoblastoid cells. Blood 2000. [DOI: 10.1182/blood.v96.2.625.014k27_625_634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction between viral proteins and tumor suppressor p53 is a common mechanism of viral pathogenesis. The Epstein-Barr virus (EBV) BZLF-1 ORF-encoded ZEBRA protein (also denoted EB1, Z, Zta) binds to p53 in vitro and has been associated with the altered transcription of p53-regulated genes in B lymphocytes and epithelial cells. In this work, Jurkat T-lymphoblastoid cells that express ZEBRA were characterized by the use of transiently transfected p53 and p53 reporter genes. Stable expression of ZEBRA was associated with the activation of p53-dependent transcription and increased p53 dependent apoptotic cell death. In Jurkat cell lines, stably expressed ZEBRA protein was apparently localized to the cell cytoplasm, in contrast to the typical nuclear localization of this protein in other cell types. Previous studies have suggested that EBV infection of T lymphocytes may contribute to the malignant transformation of T cells and the increased replication of human immunodeficiency virus. Our observations suggest a mechanism through which ZEBRA protein expressed in human T lymphocytes could alter T-cell proliferation and apoptosis during EBV infection.
Collapse
|
16
|
Stable expression of Epstein-Barr virus BZLF-1–encoded ZEBRA protein activates p53-dependent transcription in human Jurkat T-lymphoblastoid cells. Blood 2000. [DOI: 10.1182/blood.v96.2.625] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractInteraction between viral proteins and tumor suppressor p53 is a common mechanism of viral pathogenesis. The Epstein-Barr virus (EBV) BZLF-1 ORF-encoded ZEBRA protein (also denoted EB1, Z, Zta) binds to p53 in vitro and has been associated with the altered transcription of p53-regulated genes in B lymphocytes and epithelial cells. In this work, Jurkat T-lymphoblastoid cells that express ZEBRA were characterized by the use of transiently transfected p53 and p53 reporter genes. Stable expression of ZEBRA was associated with the activation of p53-dependent transcription and increased p53 dependent apoptotic cell death. In Jurkat cell lines, stably expressed ZEBRA protein was apparently localized to the cell cytoplasm, in contrast to the typical nuclear localization of this protein in other cell types. Previous studies have suggested that EBV infection of T lymphocytes may contribute to the malignant transformation of T cells and the increased replication of human immunodeficiency virus. Our observations suggest a mechanism through which ZEBRA protein expressed in human T lymphocytes could alter T-cell proliferation and apoptosis during EBV infection.
Collapse
|
17
|
Abstract
It has been suggested that the Epstein-Barr virus (EBV) plays a role in the etiology of multiple sclerosis (MS), but individual epidemiologic studies have been inconclusive, in part because of the high prevalence of previous infection among individuals without MS. We conducted a systematic review of case-control studies comparing EBV serology in MS patients and controls. Eight published investigations were identified, including a total of 1,005 cases and 1,060 controls. The summary odds ratio of MS comparing EBV seropositive individuals with EBV seronegative individuals was 13.5 (95% CI = 6.3-31.4). The strength and consistency of this association and the high sensitivity and specificity of EBV serology suggest that these results are not readily explained by an aspecific immune activation among MS patients. These findings support a role of EBV in the etiology of MS.
Collapse
Affiliation(s)
- A Ascherio
- Department of Nutrition and Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
18
|
Affiliation(s)
- E G Neilson
- Division of Nephrology and Hypertension, Departments of Medicine and Cell Biology, Vanderbilt University Medical Center, D-3100 Medical Center North, Nashville, Tennessee 37232, USA.
| |
Collapse
|
19
|
Abstract
Transgenic technology is currently applied to several animal species of agricultural or medical importance, such as fish, cattle, mosquitos and parasitic worms. However, the repertoire of genetic tools used for molecular analyses of mice and Drosophila is not always applicable to other species. For example, while retroviral enhancer-trap experiments in mice can be based on embryonic stem (ES) cell technology, this is not currently an option with other animals. Similarly, the germline transformation of Drosophila depends on the use of the P-element transposon, which does not jump in other genera. This article analyses the main characteristics of Tc1/mariner transposable elements, examines some of the factors that have contributed to their evolutionary success, and describes their potential, as well as their limitations, for transgenesis and insertional mutagenesis in diverse animals.
Collapse
Affiliation(s)
- R H Plasterk
- Division of Molecular Biology, Netherlands Cancer Institute and Center for Biomedical Genetics, Division of Molecular Biology, Plesmanlaan 121, Amsterdam 1066CX, The Netherlands.
| | | | | |
Collapse
|
20
|
Dreyfus DH, Jones JF, Gelfand EW. Asymmetric DDE (D35E)-like sequences in the RAG proteins: implications for V(D)J recombination and retroviral pathogenesis. Med Hypotheses 1999; 52:545-9. [PMID: 10459836 DOI: 10.1054/mehy.1997.0691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Experimental evidence suggests that the mechanism of vertebrate V(D)J recombination catalyzed by the vertebrate RAG proteins is similar to both retroviral integration and the transposition of IS630/Tc1-family transposons. The mechanism of both retroviral integration and IS630/Tc1 element transposition is well characterized and utilizes a functional metal ion binding site termed the DDE (or D35E) motif. We have previously identified a DDE-like region in the RAG-2 protein and a similar region within the RAG-1 protein. In this work, we propose that interference between DDE-like regions in the RAG proteins and the DDE-site of the HIV integrase may be a mechanism of retroviral pathogenesis in cells in which both the RAG proteins and retroviral integrase are co-expressed.
Collapse
Affiliation(s)
- D H Dreyfus
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
21
|
Knecht H, Berger C, al-Homsi AS, McQuain C, Brousset P. Epstein-Barr virus oncogenesis. Crit Rev Oncol Hematol 1997; 26:117-35. [PMID: 9298328 DOI: 10.1016/s1040-8428(97)00016-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- H Knecht
- LINK Laboratories, University of Massachusetts Medical Center, Division of Hematology/Oncology, Worcester, USA
| | | | | | | | | |
Collapse
|