1
|
Biradar S, Agarwal Y, Das A, Shu ST, Samal J, Ho S, Kelly N, Mahesh D, Teredesai S, Castronova I, Mussina L, Mailliard RB, Smithgall TE, Bility MT. Nef defect attenuates HIV viremia and immune dysregulation in the bone marrow-liver-thymus-spleen (BLTS) humanized mouse model. Virology 2024; 598:110192. [PMID: 39106585 PMCID: PMC11458258 DOI: 10.1016/j.virol.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
In vitro studies have shown that deletion of nef and deleterious mutation in the Nef dimerization interface attenuates HIV replication and associated pathogenesis. Humanized rodents with human immune cells and lymphoid tissues are robust in vivo models for investigating the interactions between HIV and the human immune system. Here, we demonstrate that nef deletion impairs HIV replication and HIV-induced immune dysregulation in the blood and human secondary lymphoid tissue (human spleen) in bone marrow-liver-thymus-spleen (BLTS) humanized mice. Furthermore, we also show that nef defects (via deleterious mutations in the dimerization interface) impair HIV replication and HIV-induced immune dysregulation in the blood and human spleen in BLTS-humanized mice. We demonstrate that the reduced replication of nef-deleted and nef-defective HIV is associated with robust antiviral innate immune response, and T helper 1 response. Our results support the proposition that Nef may be a therapeutic target for adjuvants in HIV cure strategies.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Yash Agarwal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Antu Das
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jasmine Samal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Nickolas Kelly
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Deepika Mahesh
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Shreya Teredesai
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - London Mussina
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Moses T Bility
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA; Department of Microbiology, Howard University, Washington, DC, USA.
| |
Collapse
|
2
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Lorenzo EC, Torrance BL, Haynes L. Impact of senolytic treatment on immunity, aging, and disease. FRONTIERS IN AGING 2023; 4:1161799. [PMID: 37886012 PMCID: PMC10598643 DOI: 10.3389/fragi.2023.1161799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/31/2023] [Indexed: 10/28/2023]
Abstract
Cellular senescence has been implicated in the pathophysiology of many age-related diseases. However, it also plays an important protective role in the context of tumor suppression and wound healing. Reducing senescence burden through treatment with senolytic drugs or the use of genetically targeted models of senescent cell elimination in animals has shown positive results in the context of mitigating disease and age-associated inflammation. Despite positive, albeit heterogenous, outcomes in clinical trials, very little is known about the short-term and long-term immunological consequences of using senolytics as a treatment for age-related conditions. Further, many studies examining cellular senescence and senolytic treatment have been demonstrated in non-infectious disease models. Several recent reports suggest that senescent cell elimination may have benefits in COVID-19 and influenza resolution and disease prognosis. In this review, we discuss the current clinical trials and pre-clinical studies that are exploring the impact of senolytics on cellular immunity. We propose that while eliminating senescent cells may have an acute beneficial impact on primary immune responses, immunological memory may be negatively impacted. Closer investigation of senolytics on immune function and memory generation would provide insight as to whether senolytics could be used to enhance the aging immune system and have potential to be used as therapeutics or prophylactics in populations that are severely and disproportionately affected by infections such as the elderly and immunocompromised.
Collapse
Affiliation(s)
- Erica C. Lorenzo
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Blake L. Torrance
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Laura Haynes
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
4
|
Mazaya M, Kwon YK. In Silico Pleiotropy Analysis in KEGG Signaling Networks Using a Boolean Network Model. Biomolecules 2022; 12:biom12081139. [PMID: 36009032 PMCID: PMC9406064 DOI: 10.3390/biom12081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pleiotropy, which refers to the ability of different mutations on the same gene to cause different pathological effects in human genetic diseases, is important in understanding system-level biological diseases. Although some biological experiments have been proposed, still little is known about pleiotropy on gene–gene dynamics, since most previous studies have been based on correlation analysis. Therefore, a new perspective is needed to investigate pleiotropy in terms of gene–gene dynamical characteristics. To quantify pleiotropy in terms of network dynamics, we propose a measure called in silico Pleiotropic Scores (sPS), which represents how much a gene is affected against a pair of different types of mutations on a Boolean network model. We found that our model can identify more candidate pleiotropic genes that are not known to be pleiotropic than the experimental database. In addition, we found that many types of functionally important genes tend to have higher sPS values than other genes; in other words, they are more pleiotropic. We investigated the relations of sPS with the structural properties in the signaling network and found that there are highly positive relations to degree, feedback loops, and centrality measures. This implies that the structural characteristics are principles to identify new pleiotropic genes. Finally, we found some biological evidence showing that sPS analysis is relevant to the real pleiotropic data and can be considered a novel candidate for pleiotropic gene research. Taken together, our results can be used to understand the dynamics pleiotropic characteristics in complex biological systems in terms of gene–phenotype relations.
Collapse
Affiliation(s)
- Maulida Mazaya
- Research Center for Computing, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, West Java, Indonesia
| | - Yung-Keun Kwon
- School of IT Convergence, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Korea
- Correspondence:
| |
Collapse
|
5
|
Griffith AA, Callahan KP, King NG, Xiao Q, Su X, Salomon AR. SILAC Phosphoproteomics Reveals Unique Signaling Circuits in CAR-T Cells and the Inhibition of B Cell-Activating Phosphorylation in Target Cells. J Proteome Res 2022; 21:395-409. [PMID: 35014847 PMCID: PMC8830406 DOI: 10.1021/acs.jproteome.1c00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) is a single-pass transmembrane receptor designed to specifically target and eliminate cancers. While CARs prove highly efficacious against B cell malignancies, the intracellular signaling events which promote CAR T cell activity remain elusive. To gain further insight into both CAR T cell signaling and the potential signaling response of cells targeted by CAR, we analyzed phosphopeptides captured by two separate phosphoenrichment strategies from third generation CD19-CAR T cells cocultured with SILAC labeled Raji B cells by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we report that CD19-CAR T cells upregulated several key phosphorylation events also observed in canonical T cell receptor (TCR) signaling, while Raji B cells exhibited a significant decrease in B cell receptor-signaling related phosphorylation events in response to coculture. Our data suggest that CD19-CAR stimulation activates a mixture of unique CD19-CAR-specific signaling pathways and canonical TCR signaling, while global phosphorylation in Raji B cells is reduced after association with the CD19-CAR T cells.
Collapse
Affiliation(s)
- Alijah A. Griffith
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Kenneth P. Callahan
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Nathan Gordo King
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06520
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06520
| | - Arthur R. Salomon
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912,
| |
Collapse
|
6
|
Bonifacio M, Maheshwari V, Tran D, Agostoni G, Filioussi K, Viana R. Economic Model to Evaluate the Cost-Effectiveness of Second-Line Nilotinib Versus Dasatinib for the Treatment of Philadelphia Chromosome-Positive Chronic Myeloid Leukemia (CML-CP) in Italy. PHARMACOECONOMICS - OPEN 2022; 6:95-104. [PMID: 34297312 PMCID: PMC8807738 DOI: 10.1007/s41669-021-00286-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the cost effectiveness of second-line nilotinib versus dasatinib for the treatment of Philadelphia chromosome-positive chronic myeloid leukemia (CML-CP) patients who are intolerant or resistant to imatinib and can transition to treatment-free remission (TFR). METHODS A partitioned survival model was developed to compare the cost effectiveness of nilotinib versus dasatinib. The model was developed from the Italian healthcare payer perspective and included the following health states: on second-line tyrosine kinase inhibitor (TKI), off second-line TKI, accelerated phase/blastic crisis, TFR, and death. Progression-free and overall survival curves were derived from patient-level data that compared nilotinib and dasatinib as second-line therapy in CML-CP patients who were resistant or intolerant to imatinib. Drug costs, healthcare costs, and adverse event costs were based on real-world evidence and publicly available databases. Cost effectiveness was estimated over a 40-year time horizon. Scenario analyses were performed by adjusting time horizon, TFR parameters, costs, and utilities. RESULTS Second-line nilotinib resulted in greater time spent in TFR (0.91 life-years), increased quality-adjusted life-years (QALYs) (1.89), increased life-years (2.16), and decreased per-patient costs (- 38,760 €). Therefore, nilotinib was strongly dominant compared with dasatinib in the base-case analysis. Nilotinib remained strongly dominant in most scenario analyses including shorter time horizon, exclusion of TFR, and varying TKI drug costs. CONCLUSIONS While the model showed that nilotinib treatment of imatinib-intolerant or resistant CML-CP patients was more effective and less costly than dasatinib treatment, there is considerable uncertainty in the findings.
Collapse
Affiliation(s)
| | | | - Diana Tran
- EVERSANA Life Science Services, LLC, Burlington, Ontario, Canada
| | - Gianluca Agostoni
- Region Europe Value and Access, Novartis Farma S.p.A, Origgio, Italy
| | - Kalitsa Filioussi
- Region Europe Value and Access, Novartis Farma S.p.A, Origgio, Italy
| | - Ricardo Viana
- Global Value & Access, Oncology, Novartis Pharma AG, WSJ- Fabrikstrasse 18-3.330, 4056, Basel, Switzerland.
| |
Collapse
|
7
|
Liu H, Cui Y, Bai Y, Fang Y, Gao T, Wang G, Zhu L, Dong Q, Zhang S, Yao Y, Song C, Niu X, Jin Y, Li P, Cao C, Liu X. The tyrosine kinase c-Abl potentiates interferon-mediated antiviral immunity by STAT1 phosphorylation. iScience 2021; 24:102078. [PMID: 33644712 PMCID: PMC7887405 DOI: 10.1016/j.isci.2021.102078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/28/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
Interferon (IFN)-induced activation of the signal transducer and activator of transcription (STAT) family is an important event in antiviral immunity. Here, we show that the nonreceptor kinases c-Abl and Arg directly interact with STAT1 and potentiate the phosphorylation of STAT1 on Y701. c-Abl/Arg could mediate STAT1 phosphorylation independent of Janus kinases in the absence of IFNγ and potentiate IFNγ-mediated STAT1 phosphorylation. Moreover, STAT1 dimerization, nuclear translocation, and downstream gene transcription are regulated by c-Abl/Arg. c-Abl/Arg (abl1/abl2) deficiency significantly suppresses antiviral responses in vesicular stomatitis virus-infected cells. Compared to vehicle, administration of the c-Abl/Arg selective inhibitor AMN107 resulted in significantly increased mortality in mice infected with human influenza virus. Our study demonstrates that c-Abl plays an essential role in the STAT1 activation signaling pathway and provides an important approach for antiviral immunity regulation.
Collapse
Affiliation(s)
- Hainan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yan Cui
- Beijing Institute of Biotechnology, Beijing 100850, China.,Staidson Bio-pharmaceutics (Beijing) Co. Ltd, Beijing 100176, China
| | - Yu Bai
- Anhui University, Hefei 230601, China
| | - Yi Fang
- The Fifth MedicaI Centre, Chinese PLA GeneraI HospitaI, Beijing 100071, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Guangfei Wang
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Lin Zhu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Qincai Dong
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shuwei Zhang
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yi Yao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Caiwei Song
- Beijing Institute of Biotechnology, Beijing 100850, China
| | | | - Yanwen Jin
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China
| |
Collapse
|
8
|
Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, Toubert A, Zeiser R, Galimberti S. New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions. Front Immunol 2020; 11:578314. [PMID: 33162993 PMCID: PMC7583636 DOI: 10.3389/fimmu.2020.578314] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Anne Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ulrike Koehl
- Faculty of Medicine, Institute of Clinical Immunology, University Leipzig and Fraunhofer IZI, Leipzig, Germany
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
- Laboratoire d'Immunologie et d`Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris, France
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Targeting ABL1 or ARG Tyrosine Kinases to Restrict HIV-1 Infection in Primary CD4+ T-Cells or in Humanized NSG Mice. J Acquir Immune Defic Syndr 2020; 82:407-415. [PMID: 31658184 DOI: 10.1097/qai.0000000000002144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies support dasatinib as a potent inhibitor of HIV-1 replication. However, a functional distinction between 2 kinase targets of the drug, ABL1 and ARG, has not been assessed. SETTING We used primary CD4 T-cells, CD8-depleted peripheral blood mononuclear cells (PBMCs) from a treatment naïve HIV-1 patient, and a humanized mouse model of HIV-1 infection. We assessed the roles of ABL1 and ARG during HIV-1 infection and use of dasatinib as a potential antiviral against HIV-1 in humanized mice. METHODS Primary CD4 T-cells were administered siRNA targeting ABL1 or ARG, then infected with HIV-1 containing luciferase reporter viruses. Quantitative polymerase chain reaction of viral integration of 4 HIV-1 strains was also assessed. CD8-depleted PBMCs were treated for 3 weeks with dasatinib. NSG mice were engrafted with CD34 pluripotent stem cells from human fetal cord blood, and infected with Ba-L virus after 19 weeks. Mice were treated daily with dasatinib starting 5 weeks after infection. RESULTS siRNA knockdown of ABL1 or ARG had no effect on viral reverse transcripts, but increased 2-LTR circles 2- to 4-fold and reduced viral integration 2- to 12-fold. siRNA knockdown of ARG increased SAMHD1 activation, whereas knockdown of either kinase reduced RNA polymerase II activation. Treating CD8-depleted PBMCs from a treatment-naïve patient with 50 nM of dasatinib for 3 weeks reduced p24 levels by 99.8%. Ba-L (R5)-infected mice injected daily with dasatinib showed a 95.1% reduction in plasma viral load after 2 weeks of treatment. CONCLUSIONS We demonstrate a novel nuclear role for ABL1 and ARG in ex vivo infection experiments, and proof-of-principle use of dasatinib in a humanized mouse model of HIV-1 infection.
Collapse
|
10
|
Qi J, Du L, Deng J, Qin Y, Su G, Hou S, Lv M, Zhang Q, Kijlstra A, Yang P. Replication of Genome-Wide Association Analysis Identifies New Susceptibility Loci at Long Noncoding RNA Regions for Vogt-Koyanagi-Harada Disease. ACTA ACUST UNITED AC 2019; 60:4820-4829. [PMID: 31747682 DOI: 10.1167/iovs.19-27708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jian Qi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| | - Liping Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| | - Jing Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| | - Yang Qin
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| | - Meng Lv
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| | - Qi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, The People's Republic of China
| |
Collapse
|
11
|
Bohio AA, Sattout A, Wang R, Wang K, Sah RK, Guo X, Zeng X, Ke Y, Boldogh I, Ba X. c-Abl-Mediated Tyrosine Phosphorylation of PARP1 Is Crucial for Expression of Proinflammatory Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1521-1531. [PMID: 31399520 PMCID: PMC6731455 DOI: 10.4049/jimmunol.1801616] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribosyl)ation is a rapid and transient posttranslational protein modification mostly catalyzed by poly(ADP-ribose) polymerase-1 (PARP1). Fundamental roles of activated PARP1 in DNA damage repair and cellular response pathways are well established; however, the precise mechanisms by which PARP1 is activated independent of DNA damage, and thereby playing a role in expression of inflammatory genes, remain poorly understood. In this study, we show that, in response to LPS or TNF-α exposure, the nonreceptor tyrosine kinase c-Abl undergoes nuclear translocation and interacts with and phosphorylates PARP1 at the conserved Y829 site. Tyrosine-phosphorylated PARP1 is required for protein poly(ADP-ribosyl)ation of RelA/p65 and NF-κB-dependent expression of proinflammatory genes in murine RAW 264.7 macrophages, human monocytic THP1 cells, or mouse lungs. Furthermore, LPS-induced airway lung inflammation was reduced by inhibition of c-Abl activity. The present study elucidated a novel signaling pathway to activate PARP1 and regulate gene expression, suggesting that blocking the interaction of c-Abl with PARP1 or pharmaceutical inhibition of c-Abl may improve the outcomes of PARP1 activation-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ameer Ali Bohio
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Aman Sattout
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ruoxi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ke Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Rajiv Kumar Sah
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun 130024, China; and
| | - Xiaolan Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yueshuang Ke
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China;
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
12
|
Fisher J, Sharma R, Don DW, Barisa M, Hurtado MO, Abramowski P, Porter L, Day W, Borea R, Inglott S, Anderson J, Pe'er D. Engineering γδT cells limits tonic signaling associated with chimeric antigen receptors. Sci Signal 2019; 12:eaax1872. [PMID: 31506382 PMCID: PMC7055420 DOI: 10.1126/scisignal.aax1872] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the benefits of chimeric antigen receptor (CAR)-T cell therapies against lymphoid malignancies, responses in solid tumors have been more limited and off-target toxicities have been more marked. Among the possible design limitations of CAR-T cells for cancer are unwanted tonic (antigen-independent) signaling and off-target activation. Efforts to overcome these hurdles have been blunted by a lack of mechanistic understanding. Here, we showed that single-cell analysis with time course mass cytometry provided a rapid means of assessing CAR-T cell activation. We compared signal transduction in expanded T cells to that in T cells transduced to express second-generation CARs and found that cell expansion enhanced the response to stimulation. However, expansion also induced tonic signaling and reduced network plasticity, which were associated with expression of the T cell exhaustion markers PD-1 and TIM-3. Because this was most evident in pathways downstream of CD3ζ, we performed similar analyses on γδT cells that expressed chimeric costimulatory receptors (CCRs) lacking CD3ζ but containing DAP10 stimulatory domains. These CCR-γδT cells did not exhibit tonic signaling but were efficiently activated and mounted cytotoxic responses in the presence of CCR-specific stimuli or cognate leukemic cells. Single-cell signaling analysis enabled detailed characterization of CAR-T and CCR-T cell activation to better understand their functional activities. Furthermore, we demonstrated that CCR-γδT cells may offer the potential to avoid on-target, off-tumor toxicity and allo-reactivity in the context of myeloid malignancies.
Collapse
MESH Headings
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Cytotoxicity, Immunologic/immunology
- Genetic Engineering
- HEK293 Cells
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Jonathan Fisher
- UCL/GOSH Institute of Child Health, Cancer Section, 30 Guilford Street, London WC1N 1EH, UK
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roshan Sharma
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Dilu Wisidagamage Don
- UCL/GOSH Institute of Child Health, Cancer Section, 30 Guilford Street, London WC1N 1EH, UK
| | - Marta Barisa
- UCL/GOSH Institute of Child Health, Cancer Section, 30 Guilford Street, London WC1N 1EH, UK
| | - Marina Olle Hurtado
- UCL/GOSH Institute of Child Health, Cancer Section, 30 Guilford Street, London WC1N 1EH, UK
| | - Pierre Abramowski
- UCL/GOSH Institute of Child Health, Cancer Section, 30 Guilford Street, London WC1N 1EH, UK
| | - Lucy Porter
- UCL/GOSH Institute of Child Health, Cancer Section, 30 Guilford Street, London WC1N 1EH, UK
| | - William Day
- UCL Cancer Institute, 72 Huntley St., Fitzrovia, London WC1E 6AG, UK
| | - Roberto Borea
- UCL/GOSH Institute of Child Health, Cancer Section, 30 Guilford Street, London WC1N 1EH, UK
| | - Sarah Inglott
- Department of Haematology and Oncology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - John Anderson
- UCL/GOSH Institute of Child Health, Cancer Section, 30 Guilford Street, London WC1N 1EH, UK.
- UCL Cancer Institute, 72 Huntley St., Fitzrovia, London WC1E 6AG, UK
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
13
|
Solouki S, August A, Huang W. Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. Pharmacol Ther 2019; 201:39-50. [PMID: 31082431 DOI: 10.1016/j.pharmthera.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases are characterized by impaired immune tolerance towards self-antigens, leading to enhanced immunity to self by dysfunctional B cells and/or T cells. The activation of these cells is controlled by non-receptor tyrosine kinases (NRTKs), which are critical mediators of antigen receptor and cytokine receptor signaling pathways. NRTKs transduce, amplify and sustain activating signals that contribute to autoimmunity, and are counter-regulated by protein tyrosine phosphatases (PTPs). The function of and interaction between NRTKs and PTPs during the development of autoimmunity could be key points of therapeutic interference against autoimmune diseases. In this review, we summarize the current state of knowledge of the functions of NRTKs and PTPs involved in B cell receptor (BCR), T cell receptor (TCR), and cytokine receptor signaling pathways that contribute to autoimmunity, and discuss their targeting for therapeutic approaches against autoimmune diseases.
Collapse
Affiliation(s)
- Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
14
|
Luo F, Liu H, Yang S, Fang Y, Zhao Z, Hu Y, Jin Y, Li P, Gao T, Cao C, Liu X. Nonreceptor Tyrosine Kinase c-Abl- and Arg-Mediated IRF3 Phosphorylation Regulates Innate Immune Responses by Promoting Type I IFN Production. THE JOURNAL OF IMMUNOLOGY 2019; 202:2254-2265. [PMID: 30842273 DOI: 10.4049/jimmunol.1800461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023]
Abstract
The nonreceptor tyrosine kinase c-Abl plays important roles in T cell development and immune responses; however, the mechanism is poorly understood. IFN regulatory factor 3 (IRF3) is a key transcriptional regulator of type I IFN-dependent immune responses against DNA and RNA viruses. The data in this study show that IRF3 is physically associated with c-Abl in vivo and directly binds to c-Abl in vitro. IRF3 is phosphorylated by c-Abl and c-Abl-related kinase, Arg, mainly at Y292. The inhibitor AMN107 inhibits IFN-β production induced by poly(dA:dT), poly(I:C), and Sendai virus in THP-1 and mouse bone marrow-derived macrophage cells. IRF3-induced transcription of IFN-β is significantly reduced by the mutation of Y292 to F. Moreover, AMN107 suppresses gene expression of absent in melanoma 2 (AIM2) and subsequently reduces inflammasome activation induced by cytosolic bacteria, dsDNA, and DNA viruses. Consistent with this finding, Francisella tularensis subsp. holarctica live vaccine strain (Ft LVS), which is known as an activator of AIM2 inflammasome, induces death in significantly more C57BL/6 mice treated with the Abl inhibitor AMN107 or c-Abl/Arg small interfering RNA than in untreated mice. This study provides new insight into the function of c-Abl and Arg in regulating immune responses and AIM2 inflammasome activation, especially against Ft LVS infection.
Collapse
Affiliation(s)
- Fengyan Luo
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shasha Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; and
| | - Yi Fang
- 307 Hospital, Beijing 100850, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yanwen Jin
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China;
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China;
| |
Collapse
|
15
|
Ferguson ID, Griffin P, Michel JJ, Yano H, Gaffen SL, Mueller RG, Dvergsten JA, Piganelli JD, Rosenkranz ME, Kietz DA, Vallejo AN. T Cell Receptor-Independent, CD31/IL-17A-Driven Inflammatory Axis Shapes Synovitis in Juvenile Idiopathic Arthritis. Front Immunol 2018; 9:1802. [PMID: 30127787 PMCID: PMC6087740 DOI: 10.3389/fimmu.2018.01802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
T cells are considered autoimmune effectors in juvenile idiopathic arthritis (JIA), but the antigenic cause of arthritis remains elusive. Since T cells comprise a significant proportion of joint-infiltrating cells, we examined whether the environment in the joint could be shaped through the inflammatory activation by T cells that is independent of conventional TCR signaling. We focused on the analysis of synovial fluid (SF) collected from children with oligoarticular and rheumatoid factor-negative polyarticular JIA. Cytokine profiling of SF showed dominance of five molecules including IL-17A. Cytometric analysis of the same SF samples showed enrichment of αβT cells that lacked both CD4 and CD8 co-receptors [herein called double negative (DN) T cells] and also lacked the CD28 costimulatory receptor. However, these synovial αβT cells expressed high levels of CD31, an adhesion molecule that is normally employed by granulocytes when they transit to sites of injury. In receptor crosslinking assays, ligation of CD31 alone on synovial CD28nullCD31+ DN αβT cells effectively and sufficiently induced phosphorylation of signaling substrates and increased intracytoplasmic stores of cytokines including IL-17A. CD31 ligation was also sufficient to induce RORγT expression and trans-activation of the IL-17A promoter. In addition to T cells, SF contained fibrocyte-like cells (FLC) expressing IL-17 receptor A (IL-17RA) and CD38, a known ligand for CD31. Stimulation of FLC with IL-17A led to CD38 upregulation, and to production of cytokines and tissue-destructive molecules. Addition of an oxidoreductase analog to the bioassays suppressed the CD31-driven IL-17A production by T cells. It also suppressed the downstream IL-17A-mediated production of effectors by FLC. The levels of suppression of FLC effector activities by the oxidoreductase analog were comparable to those seen with corticosteroid and/or biologic inhibitors to IL-6 and TNFα. Collectively, our data suggest that activation of a CD31-driven, αβTCR-independent, IL-17A-mediated T cell-FLC inflammatory circuit drives and/or perpetuates synovitis. With the notable finding that the oxidoreductase mimic suppresses the effector activities of synovial CD31+CD28null αβT cells and IL-17RA+CD38+ FLC, this small molecule could be used to probe further the intricacies of this inflammatory circuit. Such bioactivities of this small molecule also provide rationale for new translational avenue(s) to potentially modulate JIA synovitis.
Collapse
Affiliation(s)
- Ian D Ferguson
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Patricia Griffin
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua J Michel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hiroshi Yano
- Graduate Program in Microbiology and Immunology School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah L Gaffen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert G Mueller
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jeffrey A Dvergsten
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Jon D Piganelli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Margalit E Rosenkranz
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Daniel A Kietz
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Abbe N Vallejo
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
17
|
Liu H, Cui Y, Wang GF, Dong Q, Yao Y, Li P, Cao C, Liu X. The nonreceptor tyrosine kinase c-Abl phosphorylates Runx1 and regulates Runx1-mediated megakaryocyte maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1060-1072. [PMID: 29730354 DOI: 10.1016/j.bbamcr.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
The transcription factor Runx1 is an essential regulator of definitive hematopoiesis, megakaryocyte (MK) maturation, and lymphocyte differentiation. Runx1 mutations that interfere with its transcriptional activity are often present in leukemia patients. Recent work demonstrated that the transcriptional activity of Runx1 is regulated by kinase-mediated phosphorylation. In this study, we showed that c-Abl, but not Arg tyrosine kinase, associated with Runx1 both in cultured cells and in vitro. c-Abl-mediated tyrosine phosphorylation in the Runx1 transcription inhibition domain negatively regulated the transcriptional activity of Runx1 and inhibited Runx1-mediated MK maturation. Consistent with these findings, increased numbers of MKs were detected in the spleens and bone marrow of abl gene conditional knockout mice. Our findings demonstrate an important role of c-Abl kinase in Runx1-mediated MK maturation and platelet formation and provide a potential mechanism of Abl kinase-regulated hematopoiesis.
Collapse
Affiliation(s)
- Hainan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Yan Cui
- Department of Laboratory Animal Science, Third Military Medical University, Chongqing 400038, China
| | - Guang-Fei Wang
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Qincai Dong
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Yebao Yao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| |
Collapse
|
18
|
c-Abl regulates gastrointestinal muscularis propria homeostasis via ERKs. Sci Rep 2017; 7:3563. [PMID: 28620185 PMCID: PMC5472598 DOI: 10.1038/s41598-017-03569-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is responsible for food digestion and absorption. The muscularis propria propels the foodstuff through the GI tract and defects in intestine motility may cause obstruction disorders. Our present genetic studies identified non-receptor tyrosine kinase c-Abl as an important regulator of the muscularis propria homeostasis and a risk factor for rectal prolapse. Mouse deficient for c-Abl showed defects in the muscularis propria of gastrointestinal tract and older c-Abl -/- mice developed megaesophagus and rectal prolapse. Inhibition of c-Abl with imatinib mesylate, an anti-CML drug, or ablation of c-Abl using Prx1-Cre, which marks smooth muscle cells, recapitulated most of the muscularis propria phenotypes. The pathogenesis of rectal prolapse was attributable to overproliferation of smooth muscle cells, which was caused by enhanced ERK1/2 activation. Administration of ERK inhibitor U0126 impeded the development of rectal prolapse in c-Abl deficient mice. These results reveal a role for c-Abl-regulated smooth muscle proliferation in the pathogenesis of rectal prolapse, and imply that long-term use of imatinib mesylate may cause gastrointestinal problems in patients while ERK inhibitor may be effective in treating rectal prolapse.
Collapse
|
19
|
Haddon DJ, Wand HE, Jarrell JA, Spiera RF, Utz PJ, Gordon JK, Chung LS. Proteomic Analysis of Sera from Individuals with Diffuse Cutaneous Systemic Sclerosis Reveals a Multianalyte Signature Associated with Clinical Improvement during Imatinib Mesylate Treatment. J Rheumatol 2017; 44:631-638. [PMID: 28298564 PMCID: PMC5860882 DOI: 10.3899/jrheum.160833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Imatinib has been investigated for the treatment of systemic sclerosis (SSc) because of its ability to inhibit the platelet-derived growth factor receptor and transforming growth factor-β signaling pathways, which have been implicated in SSc pathogenesis. In a 12-month open-label clinical trial assessing the safety and efficacy of imatinib in the treatment of diffuse cutaneous SSc (dcSSc), significant improvements in skin thickening were observed. Here, we report our analysis of sera collected during the clinical trial. METHODS We measured the levels of 46 cytokines, chemokines, and growth factors in the sera of individuals with dcSSc using Luminex and ELISA. Autoantigen microarrays were used to measure immunoglobulin G reactivity to 28 autoantigens. Elastic net regularization was used to identify a signature that was predictive of clinical improvement (reduction in the modified Rodnan skin score ≥ 5) during treatment with imatinib. The signature was also tested using sera from a clinical trial of nilotinib, a tyrosine kinase inhibitor that is structurally related to imatinib, in dcSSc. RESULTS The elastic net algorithm identified a signature, based on levels of CD40 ligand, chemokine (C-X-C motif) ligand 4 (CXCL4), and anti-PM/Scl-100, that was significantly higher in individuals who experienced clinical improvement than in those who did not (p = 0.0011). The signature was validated using samples from a clinical trial of nilotinib. CONCLUSION Identification of patients with SSc with the greatest probability of benefit from treatment with imatinib has the potential to guide individualized treatment. Validation of the signature will require testing in randomized, placebo-controlled studies. Clinicaltrials.gov NCT00555581 and NCT01166139.
Collapse
Affiliation(s)
- D James Haddon
- From the Division of Immunology and Rheumatology, Stanford University School of Medicine; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford; Department of Rheumatology, Palo Alto VA Health Care System, Palo Alto, California; Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
- D.J. Haddon, PhD, Research Associate, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine; H.E. Wand, BS, Genetic Counseling Candidate, Division of Immunology and Rheumatology, Stanford University School of Medicine; J.A. Jarrell, PhD Candidate, Immunology, Division of Immunology and Rheumatology, Stanford University School of Medicine; R.F. Spiera, MD, Professor of Clinical Medicine, Rheumatology and Director, Vasculitis and Scleroderma Program, Department of Rheumatology, Hospital for Special Surgery; P.J. Utz, MD, Professor of Medicine, Immunology and Rheumatology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; J.K. Gordon, MD, Assistant Professor of Medicine, Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York; L.S. Chung, MD, MS, Associate Professor of Medicine, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, and Department of Rheumatology, Palo Alto VA Health Care System
| | - Hannah E Wand
- From the Division of Immunology and Rheumatology, Stanford University School of Medicine; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford; Department of Rheumatology, Palo Alto VA Health Care System, Palo Alto, California; Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
- D.J. Haddon, PhD, Research Associate, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine; H.E. Wand, BS, Genetic Counseling Candidate, Division of Immunology and Rheumatology, Stanford University School of Medicine; J.A. Jarrell, PhD Candidate, Immunology, Division of Immunology and Rheumatology, Stanford University School of Medicine; R.F. Spiera, MD, Professor of Clinical Medicine, Rheumatology and Director, Vasculitis and Scleroderma Program, Department of Rheumatology, Hospital for Special Surgery; P.J. Utz, MD, Professor of Medicine, Immunology and Rheumatology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; J.K. Gordon, MD, Assistant Professor of Medicine, Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York; L.S. Chung, MD, MS, Associate Professor of Medicine, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, and Department of Rheumatology, Palo Alto VA Health Care System
| | - Justin A Jarrell
- From the Division of Immunology and Rheumatology, Stanford University School of Medicine; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford; Department of Rheumatology, Palo Alto VA Health Care System, Palo Alto, California; Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
- D.J. Haddon, PhD, Research Associate, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine; H.E. Wand, BS, Genetic Counseling Candidate, Division of Immunology and Rheumatology, Stanford University School of Medicine; J.A. Jarrell, PhD Candidate, Immunology, Division of Immunology and Rheumatology, Stanford University School of Medicine; R.F. Spiera, MD, Professor of Clinical Medicine, Rheumatology and Director, Vasculitis and Scleroderma Program, Department of Rheumatology, Hospital for Special Surgery; P.J. Utz, MD, Professor of Medicine, Immunology and Rheumatology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; J.K. Gordon, MD, Assistant Professor of Medicine, Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York; L.S. Chung, MD, MS, Associate Professor of Medicine, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, and Department of Rheumatology, Palo Alto VA Health Care System
| | - Robert F Spiera
- From the Division of Immunology and Rheumatology, Stanford University School of Medicine; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford; Department of Rheumatology, Palo Alto VA Health Care System, Palo Alto, California; Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
- D.J. Haddon, PhD, Research Associate, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine; H.E. Wand, BS, Genetic Counseling Candidate, Division of Immunology and Rheumatology, Stanford University School of Medicine; J.A. Jarrell, PhD Candidate, Immunology, Division of Immunology and Rheumatology, Stanford University School of Medicine; R.F. Spiera, MD, Professor of Clinical Medicine, Rheumatology and Director, Vasculitis and Scleroderma Program, Department of Rheumatology, Hospital for Special Surgery; P.J. Utz, MD, Professor of Medicine, Immunology and Rheumatology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; J.K. Gordon, MD, Assistant Professor of Medicine, Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York; L.S. Chung, MD, MS, Associate Professor of Medicine, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, and Department of Rheumatology, Palo Alto VA Health Care System
| | - Paul J Utz
- From the Division of Immunology and Rheumatology, Stanford University School of Medicine; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford; Department of Rheumatology, Palo Alto VA Health Care System, Palo Alto, California; Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
- D.J. Haddon, PhD, Research Associate, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine; H.E. Wand, BS, Genetic Counseling Candidate, Division of Immunology and Rheumatology, Stanford University School of Medicine; J.A. Jarrell, PhD Candidate, Immunology, Division of Immunology and Rheumatology, Stanford University School of Medicine; R.F. Spiera, MD, Professor of Clinical Medicine, Rheumatology and Director, Vasculitis and Scleroderma Program, Department of Rheumatology, Hospital for Special Surgery; P.J. Utz, MD, Professor of Medicine, Immunology and Rheumatology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; J.K. Gordon, MD, Assistant Professor of Medicine, Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York; L.S. Chung, MD, MS, Associate Professor of Medicine, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, and Department of Rheumatology, Palo Alto VA Health Care System
| | - Jessica K Gordon
- From the Division of Immunology and Rheumatology, Stanford University School of Medicine; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford; Department of Rheumatology, Palo Alto VA Health Care System, Palo Alto, California; Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA
- D.J. Haddon, PhD, Research Associate, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine; H.E. Wand, BS, Genetic Counseling Candidate, Division of Immunology and Rheumatology, Stanford University School of Medicine; J.A. Jarrell, PhD Candidate, Immunology, Division of Immunology and Rheumatology, Stanford University School of Medicine; R.F. Spiera, MD, Professor of Clinical Medicine, Rheumatology and Director, Vasculitis and Scleroderma Program, Department of Rheumatology, Hospital for Special Surgery; P.J. Utz, MD, Professor of Medicine, Immunology and Rheumatology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; J.K. Gordon, MD, Assistant Professor of Medicine, Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York; L.S. Chung, MD, MS, Associate Professor of Medicine, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, and Department of Rheumatology, Palo Alto VA Health Care System
| | - Lorinda S Chung
- From the Division of Immunology and Rheumatology, Stanford University School of Medicine; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford; Department of Rheumatology, Palo Alto VA Health Care System, Palo Alto, California; Department of Rheumatology, Hospital for Special Surgery, New York, New York, USA.
- D.J. Haddon, PhD, Research Associate, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine; H.E. Wand, BS, Genetic Counseling Candidate, Division of Immunology and Rheumatology, Stanford University School of Medicine; J.A. Jarrell, PhD Candidate, Immunology, Division of Immunology and Rheumatology, Stanford University School of Medicine; R.F. Spiera, MD, Professor of Clinical Medicine, Rheumatology and Director, Vasculitis and Scleroderma Program, Department of Rheumatology, Hospital for Special Surgery; P.J. Utz, MD, Professor of Medicine, Immunology and Rheumatology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; J.K. Gordon, MD, Assistant Professor of Medicine, Rheumatology, Department of Rheumatology, Hospital for Special Surgery, New York; L.S. Chung, MD, MS, Associate Professor of Medicine, Immunology and Rheumatology, Division of Immunology and Rheumatology, Stanford University School of Medicine, and Department of Rheumatology, Palo Alto VA Health Care System.
| |
Collapse
|
20
|
Tyrosine kinase c-Abl regulates the survival of plasma cells. Sci Rep 2017; 7:40133. [PMID: 28057924 PMCID: PMC5216354 DOI: 10.1038/srep40133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
Tyrosine kinase c-Abl plays an important role in early B cell development. Its deletion leads to reduced pro- and pre-B cell generation in mice. However, its function in B cell terminal differentiation remains unexplored. Here, we used c-Ablf/f Aicdacre/+ mice, in which c-Abl is ablated only in antigen-activated B cells, to study the role of c-Abl in germinal center (GC) B and antibody-secreting plasma cell formation. Upon challenge with a model antigen, we found normal GC and memory B but reduced plasma cells and antigen-specific antibody response in the mutant mice. In-vitro studies revealed that plasma cells lacking c-Abl could be generated but did not accumulate in culture, indicative of survival defect. They also exhibited impaired STAT3 phosphorylation. The plasma cell defects could be rectified by introduction of Bim-deficiency or delivery of colivelin, a STAT3 activator, into c-Ablf/f Aicdacre/+ mice. Hence, c-Abl signalling regulates the survival of plasma cells.
Collapse
|
21
|
|
22
|
Schiffer CA, Cortes JE, Hochhaus A, Saglio G, le Coutre P, Porkka K, Mustjoki S, Mohamed H, Shah NP. Lymphocytosis after treatment with dasatinib in chronic myeloid leukemia: Effects on response and toxicity. Cancer 2016; 122:1398-407. [PMID: 26998677 PMCID: PMC5071708 DOI: 10.1002/cncr.29933] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND The proliferation of clonal cytotoxic T‐cells or natural killer cells has been observed after dasatinib treatment in small studies of patients with chronic myeloid leukemia (CML). METHODS The incidence of lymphocytosis and its association with response, survival, and side effects were assessed in patients from 3 large clinical trials. Overall, 1402 dasatinib‐treated patients with newly diagnosed CML in chronic phase (CML‐CP), CML‐CP refractory/intolerant to imatinib, or with CML in accelerated or myeloid‐blast phase were analyzed. RESULTS Lymphocytosis developed in 32% to 35% of patients and persisted for >12 months. This was not observed in the patients who received treatment with imatinib. Dasatinib‐treated patients in all stages of CML who developed lymphocytosis were more likely to achieve a complete cytogenetic response, and patients who had CML‐CP with lymphocytosis were more likely to achieve major and deep molecular responses. Progression‐free and overall survival rates were significantly longer in patients with CML‐CP who were refractory to or intolerant of imatinib and had lymphocytosis. Pleural effusions developed more commonly in patients with lymphocytosis. CONCLUSIONS Overall, lymphocytosis occurred and persisted in many dasatinib‐treated patients in all phases of CML. Its presence was associated with higher response rates, significantly longer response durations, and increased overall survival, suggesting an immunomodulatory effect. Prospective studies are warranted to characterize the functional activity of these cells and to assess whether an immunologic effect against CML is detectable. Cancer 2016;122:1398–1407. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. Lymphocytosis develops frequently after treatment of chronic myeloid leukemia with dasatinib and is associated with higher response rates, significantly longer response durations, and increased overall survival. Prospective studies are warranted to assess whether dasatinib produces an immunomodulatory effect against chronic myeloid leukemia.
Collapse
Affiliation(s)
- Charles A Schiffer
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Jorge E Cortes
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Giuseppe Saglio
- San Luigi Gonaga Hospital, University of Turin, Orbassano-Turin, Italy
| | - Philipp le Coutre
- Charite-Campus Virchow Clinic, Berlin Medical University, Berlin, Germany
| | - Kimmo Porkka
- Department of Hematology and Hematology Research Unit, Helsinki University Central Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Department of Hematology and Hematology Research Unit, Helsinki University Central Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | | | - Neil P Shah
- University of California, San Francisco School of Medicine, San Francisco, California
| |
Collapse
|
23
|
Jacobsen FA, Hulst C, Bäckström T, Koleske AJ, Andersson Å. Arg Deficiency Does not Influence the Course of Myelin Oligodendrocyte Glycoprotein (MOG35-55)-induced Experimental Autoimmune Encephalomyelitis. ACTA ACUST UNITED AC 2016; 7. [PMID: 34527426 PMCID: PMC8439389 DOI: 10.4172/2155-9899.1000420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background Inhibition of Abl kinases has an ameliorating effect on the rodent model for multiple sclerosis, experimental autoimmune encephalomyelitis, and arrests lymphocyte activation. The family of Abl kinases consists of the Abl1/Abl and Abl2/Arg tyrosine kinases. While the Abl kinase has been extensively studied in immune activation, roles for Arg are incompletely characterized. To investigate the role for Arg in experimental autoimmune encephalomyelitis, we studied disease development in Arg-/- mice. Methods Arg-/- and Arg+/+ mice were generated from breeding of Arg+/- mice on the C57BL/6 background. Mice were immunized with the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide and disease development recorded. Lymphocyte phenotypes of wild type Arg+/+ and Arg-/- mice were studied by in vitro stimulation assays and flow cytometry. Results The breeding of Arg+/+ and Arg-/- mice showed skewing in the frequency of born Arg-/- mice. Loss of Arg function did not affect development of experimental autoimmune encephalomyelitis, but reduced the number of splenic B-cells in Arg-/- mice following immunization with MOG peptide. Conclusions Development of MOG-induced experimental autoimmune encephalomyelitis is not dependent on Arg, but Arg plays a role for the number of B cells in immunized mice. This might suggest a novel role for the Arg kinase in B-cell trafficking or regulation. Furthermore, the results suggest that Arg is important for normal embryonic development.
Collapse
Affiliation(s)
- Freja Aksel Jacobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk A/S, Gentofte, Denmark
| | - Camilla Hulst
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk A/S, Gentofte, Denmark
| | | | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven CT 06520, USA
| | - Åsa Andersson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Prodinger J, Loacker LJ, Schmidt RLJ, Ratzinger F, Greiner G, Witzeneder N, Hoermann G, Jutz S, Pickl WF, Steinberger P, Marculescu R, Schmetterer KG. The tryptophan metabolite picolinic acid suppresses proliferation and metabolic activity of CD4+ T cells and inhibits c-Myc activation. J Leukoc Biol 2015; 99:583-94. [PMID: 26497245 DOI: 10.1189/jlb.3a0315-135r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Tryptophan metabolites, including kynurenine, 3-hydroxyanthranilic acid, and picolinic acid, are key mediators of immunosuppression by cells expressing the tryptophan-catabolizing enzyme indoleamine2,3-dioxygenase. In this study, we assessed the influence of picolinic acid on cell viability and effector functions of CD4(+)T cells following in vitro activation with agonistic anti-CD3/anti-CD28 antibodies. In contrast to kynurenine and 3-hydroxyanthranilic acid, exposure of T cells with picolinic acid did not affect cell viability, whereas proliferation and metabolic activity were suppressed in a dose-dependent manner. On the other hand, cytokine secretion and up-regulation of cell surface activation markers were not or only weakly inhibited by picolinic acid. Picolinic acid exposure induced a state of deep anergy that could not be overcome by the addition of exogenous IL-2 and inhibited Th cell polarization. On the molecular level, important upstream signaling molecules, such as the MAPKs ERK and p38 and the mammalian target of rapamycin target protein S6 ribosomal protein, were not affected by picolinic acid. Likewise, NFAT, NF-κB, and AP-1 promoter activity in Jurkat T cells was not influenced by exposure to picolinic acid. Whereas transcriptional levels of v-myc avian myelocytomatosis viral oncogene homolog were not affected by picolinic acid, phosphorylation at Ser62 was strongly reduced in picolinic acid-exposed T cells following activation. In conclusion, picolinic acid mediates a unique immunosuppressive program in T cells, mainly inhibiting cell cycle and metabolic activity, while leaving other effector functions intact. These functional features are accompanied by reduced phosphorylation of v-myc avian myelocytomatosis viral oncogene homolog. It remains to be determined whether this effect is mediated by direct inhibition of ERK activity or whether indirect mechanisms apply.
Collapse
Affiliation(s)
- Johanna Prodinger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa J Loacker
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ralf L J Schmidt
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Franz Ratzinger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadine Witzeneder
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus G Schmetterer
- *Department of Laboratory Medicine and Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Braiman A, Isakov N. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Front Immunol 2015; 6:509. [PMID: 26500649 PMCID: PMC4593252 DOI: 10.3389/fimmu.2015.00509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites.
Collapse
Affiliation(s)
- Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, The Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel ; School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
26
|
Rizzo AN, Aman J, van Nieuw Amerongen GP, Dudek SM. Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome. Arterioscler Thromb Vasc Biol 2015; 35:1071-9. [PMID: 25814671 DOI: 10.1161/atvbaha.115.305085] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 01/27/2023]
Abstract
The vascular endothelium separates circulating fluid and inflammatory cells from the surrounding tissues. Vascular leak occurs in response to wide-spread inflammatory processes, such as sepsis and acute respiratory distress syndrome, because of the formation of gaps between endothelial cells. Although these disorders are leading causes of mortality in the intensive care unit, no medical therapies exist to restore endothelial cell barrier function. Recent evidence highlights a key role for the Abl family of nonreceptor tyrosine kinases in regulating vascular barrier integrity. These kinases have well-described roles in cancer progression and neuronal morphogenesis, but their functions in the vasculature have remained enigmatic until recently. The Abl family kinases, c-Abl (Abl1) and Abl related gene (Arg, Abl2), phosphorylate several cytoskeletal effectors that mediate vascular permeability, including nonmuscle myosin light chain kinase, cortactin, vinculin, and β-catenin. They also regulate cell-cell and cell-matrix junction dynamics, and the formation of actin-based cellular protrusions in multiple cell types. In addition, both c-Abl and Arg are activated by hyperoxia and contribute to oxidant-induced endothelial cell injury. These numerous roles of Abl kinases in endothelial cells and the current clinical usage of imatinib and other Abl kinase inhibitors have spurred recent interest in repurposing these drugs for the treatment of vascular barrier dysfunction. This review will describe the structure and function of Abl kinases with an emphasis on their roles in mediating vascular barrier integrity. We will also provide a critical evaluation of the potential for exploiting Abl kinase inhibition as a novel therapy for inflammatory vascular leak syndromes.
Collapse
Affiliation(s)
- Alicia N Rizzo
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Jurjan Aman
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Steven M Dudek
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Hrincius ER, Liedmann S, Anhlan D, Wolff T, Ludwig S, Ehrhardt C. Avian influenza viruses inhibit the major cellular signalling integrator c-Abl. Cell Microbiol 2014; 16:1854-74. [PMID: 25052580 DOI: 10.1111/cmi.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
The non-structural protein 1 (NS1) of influenza A viruses (IAV) encodes several src homology (SH) binding motifs (bm) (one SH2bm, up to two SH3bm), which mediate interactions with host cell proteins. In contrast to NS1 of human IAV, NS1 of avian strains possess the second SH3bm (SH3(II)bm) consensus sequence. Since our former studies demonstrated an NS1-CRK interaction, mediated by this motif, here, we addressed the regulatory properties of this SH3bm for cellular signalling. Initially, we observed a reduced basal CRK phosphorylation upon infection with avian IAV harbouring an NS1 with an SH3(II)bm in contrast to human IAV. Reduced activity of the tyrosine kinase c-Abl was identified to be responsible for reduced CRK phosphorylation. Further, binding of NS1 to c-Abl was determined, and mutational manipulation of the SH3(II)bm illustrated the necessity of this motif for c-Abl inhibition. Interestingly, Abl kinase inhibition resulted in impaired avian IAV propagation and pathogenicity and mutational analysis linked the pronounced inhibition of c-Abl to cytopathogenic cell alterations upon avian IAV infections. Taken together, NS1 proteins of avian IAV interfere with the kinase activity of c-Abl, a major cellular signalling integrator that controls multiple signalling processes and cell fate regulations apparently including IAV infections.
Collapse
Affiliation(s)
- Eike R Hrincius
- Institute of Molecular Virology (IMV), Center of Molecular Biology of Inflammation (ZMBE), University of Muenster, Von Esmarch-Str. 56, D-48149, Muenster, Germany; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | | | | | | | | | | |
Collapse
|
28
|
Mongini PKA, Kramer JM, Ishikawa TO, Herschman H, Esposito D. Candidate chromosome 1 disease susceptibility genes for Sjogren's syndrome xerostomia are narrowed by novel NOD.B10 congenic mice. Clin Immunol 2014; 153:79-90. [PMID: 24685748 DOI: 10.1016/j.clim.2014.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2022]
Abstract
Sjogren's syndrome (SS) is characterized by salivary gland leukocytic infiltrates and impaired salivation (xerostomia). Cox-2 (Ptgs2) is located on chromosome 1 within the span of the Aec2 region. In an attempt to demonstrate that COX-2 drives antibody-dependent hyposalivation, NOD.B10 congenic mice bearing a Cox-2flox gene were generated. A congenic line with non-NOD alleles in Cox-2-flanking genes failed manifest xerostomia. Further backcrossing yielded disease-susceptible NOD.B10 Cox-2flox lines; fine genetic mapping determined that critical Aec2 genes lie within a 1.56 to 2.17Mb span of DNA downstream of Cox-2. Bioinformatics analysis revealed that susceptible and non-susceptible lines exhibit non-synonymous coding SNPs in 8 protein-encoding genes of this region, thereby better delineating candidate Aec2 alleles needed for SS xerostomia.
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA.
| | - Jill M Kramer
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA.
| | - Tomo-O Ishikawa
- David Geffen School of Medicine at UCLA, 341 Boyer Hall (MBI), 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Harvey Herschman
- David Geffen School of Medicine at UCLA, 341 Boyer Hall (MBI), 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Donna Esposito
- Charles River Laboratories, Genetic Testing Services, 185 Jordan Road, Troy, NY 12180, USA.
| |
Collapse
|
29
|
Abstract
The mammalian ABL1 gene encodes the ubiquitously expressed nonreceptor tyrosine kinase ABL. In response to growth factors, cytokines, cell adhesion, DNA damage, oxidative stress, and other signals, ABL is activated to stimulate cell proliferation or differentiation, survival or death, retraction, or migration. ABL also regulates specialized functions such as antigen receptor signaling in lymphocytes, synapse formation in neurons, and bacterial adhesion to intestinal epithelial cells. Although discovered as the proto-oncogene from which the Abelson leukemia virus derived its Gag-v-Abl oncogene, recent results have linked ABL kinase activation to neuronal degeneration. This body of knowledge on ABL seems confusing because it does not fit the one-gene-one-function paradigm. Without question, ABL capabilities are encoded by its gene sequence and that molecular blueprint designs this kinase to be regulated by subcellular location-dependent interactions with inhibitors and substrate activators. Furthermore, ABL shuttles between the nucleus and the cytoplasm where it binds DNA and actin--two biopolymers with fundamental roles in almost all biological processes. Taken together, the cumulated results from analyses of ABL structure-function, ABL mutant mouse phenotypes, and ABL substrates suggest that this tyrosine kinase does not have its own agenda but that, instead, it has evolved to serve a variety of tissue-specific and context-dependent biological functions.
Collapse
|
30
|
Intra-cellular tyrosine kinase. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Nguyen TM, Arthur A, Hayball JD, Gronthos S. EphB and Ephrin-B interactions mediate human mesenchymal stem cell suppression of activated T-cells. Stem Cells Dev 2013; 22:2751-64. [PMID: 23711177 PMCID: PMC3787464 DOI: 10.1089/scd.2012.0676] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 05/27/2013] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSC) express the contact-dependent erythropoietin-producing hepatocellular (Eph) receptor tyrosine kinase family and their cognate ephrin ligands, which are known to regulate thymocyte maturation and selection, T-cell transendothelial migration, activation, co-stimulation, and proliferation. However, the contribution of Eph/ephrin molecules in mediating human MSC suppression of activated T-cells remains to be determined. In the present study, we showed that EphB2 and ephrin-B2 are expressed by ex vivo expanded MSC, while the corresponding ligands, ephrin-B1 and EphB4, respectively, are highly expressed by T-cells. Initial studies demonstrated that EphB2-Fc and ephrin-B2-Fc molecules suppressed T-cell proliferation in allogeneic mixed lymphocyte reaction (MLR) assays compared with human IgG-treated controls. While the addition of a third-party MSC population demonstrated dramatic suppression of T-cell proliferation responses in the MLR, blocking the function of EphB2 or EphB4 receptors using inhibitor binding peptides significantly increased T-cell proliferation. Consistent with these observations, shRNA EphB2 or ephrin-B2 knockdown expression in MSC reduced their ability to inhibit T-cell proliferation. Importantly, the expression of immunosuppressive factors, indoleamine 2, 3-dioxygenase, transforming growth factor-β1, and inducible nitric oxide synthase expressed by MSC, was up-regulated after stimulation with EphB4 and ephrin-B1 in the presence of interferon (IFN)-γ, compared with untreated controls. Conversely, key factors involved in T-cell activation and proliferation, such as interleukin (IL)-2, IFN-γ, tumor necrosis factor-α, and IL-17, were down-regulated by T-cells treated with EphB2 or ephrin-B2 compared with untreated controls. Studies utilizing signaling inhibitors revealed that inhibition of T-cell proliferation is partly mediated through EphB2-induced ephrin-B1 reverse signaling or ephrin-B2-mediated EphB4 forward signaling by activating Src, PI3Kinase, Abl, and JNK kinase pathways, activated by tyrosine phosphorylation. Taken together, these observations suggest that EphB/ephrin-B interactions play an important role in mediating human MSC inhibition of activated T cells.
Collapse
MESH Headings
- Cell Proliferation
- Coculture Techniques
- Ephrin-B2/antagonists & inhibitors
- Ephrin-B2/genetics
- Ephrin-B2/metabolism
- Gene Expression Regulation
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Lymphocyte Activation
- Lymphocyte Culture Test, Mixed
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Phosphorylation
- Primary Cell Culture
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, EphB2/antagonists & inhibitors
- Receptor, EphB2/genetics
- Receptor, EphB2/metabolism
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
- Signal Transduction
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Thao M. Nguyen
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Pharmacy and Medical Sciences and Sansom Institute, University of South Australia, Adelaide, SA, Australia
| | - Agnes Arthur
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - John D. Hayball
- School of Pharmacy and Medical Sciences and Sansom Institute, University of South Australia, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Stem Cell Research and Robinson Institute, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
32
|
Bleijerveld OB, van Holten TC, Preisinger C, van der Smagt JJ, Farndale RW, Kleefstra T, Willemsen MH, Urbanus RT, de Groot PG, Heck AJ, Roest M, Scholten A. Targeted Phosphotyrosine Profiling of Glycoprotein VI Signaling Implicates Oligophrenin-1 in Platelet Filopodia Formation. Arterioscler Thromb Vasc Biol 2013; 33:1538-43. [DOI: 10.1161/atvbaha.112.300916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective—
Platelet adhesion to subendothelial collagen is dependent on the integrin α
2
β
1
and glycoprotein VI (GPVI) receptors. The major signaling routes in collagen-dependent platelet activation are outlined; however, crucial detailed knowledge of the actual phosphorylation events mediating them is still limited. Here, we explore phosphotyrosine signaling events downstream of GPVI with site-specific detail.
Approach and Results—
Immunoprecipitations of phosphotyrosine-modified peptides from protein digests of GPVI-activated and resting human platelets were compared by stable isotope-based quantitative mass spectrometry. We surveyed 214 unique phosphotyrosine sites over 2 time points, of which 28 showed a significant increase in phosphorylation on GPVI activation. Among these was Tyr370 of oligophrenin-1 (OPHN1), a Rho GTPase–activating protein. To elucidate the function of OPHN1 in platelets, we performed an array of functional platelet analyses within a small cohort of patients with rare oligophrenia. Because of germline mutations in the
OPHN1
gene locus, these patients lack OPHN1 expression entirely and are in essence a human knockout model. Our studies revealed that among other unaltered properties, patients with oligophrenia show normal P-selectin exposure and α
IIb
β
3
activation in response to GPVI, as well as normal aggregate formation on collagen under shear conditions. Finally, the major difference in OPHN1-deficient platelets turned out to be a significantly reduced collagen-induced filopodia formation.
Conclusions—
In-depth phosphotyrosine screening revealed many novel signaling recipients downstream of GPVI activation uncovering a new level of detail within this important pathway. To illustrate the strength of such data, functional follow-up of OPHN1 in human platelets deficient in this protein showed reduced filopodia formation on collagen, an important parameter of platelet hemostatic function.
Collapse
Affiliation(s)
- Onno B. Bleijerveld
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs C. van Holten
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian Preisinger
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jasper J. van der Smagt
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Richard W. Farndale
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tjitske Kleefstra
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein H. Willemsen
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolf T. Urbanus
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip G. de Groot
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert J.R. Heck
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Roest
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arjen Scholten
- From the Biomolecular Mass Spectrometry and Proteomics and Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Netherlands Proteomics Centre, Utrecht, The Netherlands (O.B.B., C.P., A.J.R.H., A.S.); Departments of Clinical Chemistry and Haematology (T.C.v.H., R.T.U., P.G.d.G., M.R.) and Medical Genetics (J.J.v.d.S.), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Hannula-Jouppi K, Massinen S, Siljander T, Mäkelä S, Kivinen K, Leinonen R, Jiao H, Aitos P, Karppelin M, Vuopio J, Syrjänen J, Kere J. Genetic susceptibility to non-necrotizing erysipelas/cellulitis. PLoS One 2013; 8:e56225. [PMID: 23437094 PMCID: PMC3577772 DOI: 10.1371/journal.pone.0056225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/07/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bacterial non-necrotizing erysipelas and cellulitis are often recurring, diffusely spreading infections of the skin and subcutaneous tissues caused most commonly by streptococci. Host genetic factors influence infection susceptibility but no extensive studies on the genetic determinants of human erysipelas exist. METHODS We performed genome-wide linkage with the 10,000 variant Human Mapping Array (HMA10K) array on 52 Finnish families with multiple erysipelas cases followed by microsatellite fine mapping of suggestive linkage peaks. A scan with the HMA250K array was subsequently performed with a subset of cases and controls. RESULTS Significant linkage was found at 9q34 (nonparametric multipoint linkage score (NPL(all)) 3.84, p=0.026), which is syntenic to a quantitative trait locus for susceptibility to group A streptococci infections on chromosome 2 in mouse. Sequencing of candidate genes in the 9q34 region did not conclusively associate any to erysipelas/cellulitis susceptibility. Suggestive linkage (NPL(all)>3.0) was found at three loci: 3q22-24, 21q22, and 22q13. A subsequent denser genome scan with the HMA250K array supported the 3q22 locus, in which several SNPs in the promoter of AGTR1 (Angiotensin II receptor type I) suggestively associated with erysipelas/cellulitis susceptibility. CONCLUSIONS Specific host genetic factors may cause erysipelas/cellulitis susceptibility in humans.
Collapse
Affiliation(s)
- Katariina Hannula-Jouppi
- Department of Medical Genetics, University of Helsinki, and Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hossain S, Dubielecka PM, Sikorski AF, Birge RB, Kotula L. Crk and ABI1: binary molecular switches that regulate abl tyrosine kinase and signaling to the cytoskeleton. Genes Cancer 2012; 3:402-13. [PMID: 23226578 DOI: 10.1177/1947601912460051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonreceptor tyrosine kinases Abl and Arg are among the most well-characterized tyrosine kinases in the human genome. The activation of Abl by N-terminal fusions with Bcr (Bcr-Abl) or Gag (v-Abl) is responsible for chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia and mouse leukemia virus, respectively. In addition, aberrant Abl and Arg activation downstream of several oncogenic growth factor receptors contributes to the development and progression of a variety of human cancers, often associated with poor clinical outcome, drug resistance, and tumor invasion and metastasis. Abl activation can occur by a variety of mechanisms that include domain interactions involving structural remodeling of autoinhibited conformations as well as direct phosphorylation by upstream kinases and phosphatases. Constitutive activation of Abl plays a significant role in regulating the actin cytoskeleton by modulating cell adhesion, motility, and invadopodia. This review addresses the role of Abl and Arg in tumor progression with particular emphasis on the roles of Crk and Abi1 adapter proteins as distinct molecular switches for Abl transactivation. These insights, combined with new insights into the structure of these kinases, provide the rationale to envision that Crk and Abi1 fine-tune Abl regulation to control signaling to the cytoskeleton.
Collapse
Affiliation(s)
- Sajjad Hossain
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA ; Current address: Stony Brook University, Stony Brook, NY, USA
| | | | | | | | | |
Collapse
|
35
|
Greuber EK, Pendergast AM. Abl family kinases regulate FcγR-mediated phagocytosis in murine macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 189:5382-92. [PMID: 23100514 DOI: 10.4049/jimmunol.1200974] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis of Ab-coated pathogens is mediated through FcγRs, which activate intracellular signaling pathways to drive actin cytoskeletal rearrangements. Abl and Arg define a family of nonreceptor tyrosine kinases that regulate actin-dependent processes in a variety of cell types, including those important in the adaptive immune response. Using pharmacological inhibition as well as dominant negative and knockout approaches, we demonstrate a role for the Abl family kinases in phagocytosis by macrophages and define a mechanism whereby Abl kinases regulate this process. Bone marrow-derived macrophages from mice lacking Abl and Arg kinases exhibit inefficient phagocytosis of sheep erythrocytes and zymosan particles. Treatment with the Abl kinase inhibitors imatinib and GNF-2 or overexpression of kinase-inactive forms of the Abl family kinases also impairs particle internalization in murine macrophages, indicating Abl kinase activity is required for efficient phagocytosis. Further, Arg kinase is present at the phagocytic cup, and Abl family kinases are activated by FcγR engagement. The regulation of phagocytosis by Abl family kinases is mediated in part by the spleen tyrosine kinase (Syk). Loss of Abl and Arg expression or treatment with Abl inhibitors reduced Syk phosphorylation in response to FcγR ligation. The link between Abl family kinases and Syk may be direct, as purified Arg kinase phosphorylates Syk in vitro. Further, overexpression of membrane-targeted Syk in cells treated with Abl kinase inhibitors partially rescues the impairment in phagocytosis. Together, these findings reveal that Abl family kinases control the efficiency of phagocytosis in part through the regulation of Syk function.
Collapse
Affiliation(s)
- Emileigh K Greuber
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
36
|
Katsumata R, Ishigaki S, Katsuno M, Kawai K, Sone J, Huang Z, Adachi H, Tanaka F, Urano F, Sobue G. c-Abl inhibition delays motor neuron degeneration in the G93A mouse, an animal model of amyotrophic lateral sclerosis. PLoS One 2012; 7:e46185. [PMID: 23049975 PMCID: PMC3458026 DOI: 10.1371/journal.pone.0046185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive death of motor neurons. Although the pathogenesis of ALS remains unclear, several cellular processes are known to be involved, including apoptosis. A previous study revealed the apoptosis-related gene c-Abl to be upregulated in sporadic ALS motor neurons. METHODOLOGY/FINDINGS We investigated the possibility that c-Abl activation is involved in the progression of ALS and that c-Abl inhibition is potentially a therapeutic strategy for ALS. Using a mouse motor neuron cell line, we found that mutation of Cu/Zn-superoxide dismutase-1 (SOD1), which is one of the causative genes of familial ALS, induced the upregulation of c-Abl and decreased cell viability, and that the c-Abl inhibitor dasatinib inhibited cytotoxicity. Activation of c-Abl with a concomitant increase in activated caspase-3 was observed in the lumbar spine of G93A-SOD1 transgenic mice (G93A mice), a widely used model of ALS. The survival of G93A mice was improved by oral administration of dasatinib, which also decreased c-Abl phosphorylation, inactivated caspase-3, and improved the innervation status of neuromuscular junctions. In addition, c-Abl expression in postmortem spinal cord tissues from sporadic ALS patients was increased by 3-fold compared with non-ALS patients. CONCLUSIONS/SIGNIFICANCE The present results suggest that c-Abl is a potential therapeutic target for ALS and that the c-Abl inhibitor dasatinib has neuroprotective properties in vitro and in vivo.
Collapse
Affiliation(s)
- Ryu Katsumata
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Kaori Kawai
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Jun Sone
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Zhe Huang
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Fumiaki Tanaka
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Fumihiko Urano
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
37
|
Bruns H, Stegelmann F, Fabri M, Döhner K, van Zandbergen G, Wagner M, Skinner M, Modlin RL, Stenger S. Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 189:4069-78. [PMID: 22988030 DOI: 10.4049/jimmunol.1201538] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms that regulate the acidification of intracellular compartments are key to host defense against pathogens. In this paper, we demonstrate that Abl tyrosine kinase, a master switch for cell growth and trafficking of intracellular organelles, controls the acidification of lysosomes in human macrophages. Pharmacological inhibition by imatinib and gene silencing of Abelson (Abl) tyrosine kinase reduced the lysosomal pH in human macrophages by increasing the transcription and expression of the proton pumping enzyme vacuolar-type H(+)-adenosine triphosphatase. Because lysosomal acidification is required for antimicrobial activity against intracellular bacteria, we determined the effect of imatinib on the growth of the major human pathogen Mycobacterium tuberculosis. Imatinib limited the multiplication of M. tuberculosis, and growth restriction was dependent on acidification of the mycobacterial compartment. The effects of imatinib were also active in vivo because circulating monocytes from imatinib-treated leukemia patients were more acidic than monocytes from control donors. Importantly, sera from imatinib-treated patients triggered acidification and growth restriction of M. tuberculosis in macrophages. In summary, our results identify the control of phagosomal acidification as a novel function of Abl tyrosine kinase and provide evidence that the regulation occurs on the level of the vacuolar-type H(+)-adenosine triphosphatase. Given the efficacy of imatinib in a mouse model of tuberculosis and our finding that orally administered imatinib increased the ability of human serum to trigger growth reduction of intracellular M. tuberculosis, clinical evaluation of imatinib as a complementary therapy of tuberculosis, in particular multidrug or extremely drug-resistant disease, is warranted.
Collapse
Affiliation(s)
- Heiko Bruns
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Malherbe LP, Wang D. Tyrosine kinases EnAbling adaptor molecules for chemokine-induced Rap1 activation in T cells. Sci Signal 2012; 5:pe33. [PMID: 22855504 DOI: 10.1126/scisignal.2003383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines regulate T cell trafficking into secondary lymphoid organs and migration across endothelial cells in response to inflammatory signals. The small guanosine triphosphatase Rap1 is a critical regulator of chemokine signaling in T cells, but how chemokines activate Rap1 has been unclear. A study showed that Abl family tyrosine kinases were essential for chemokine-induced Rap1 activation, T cell polarization, and migration. Abl family kinases promoted Rap1 activation by phosphorylating the adaptor protein human enhancer of filamentation 1 (HEF1), thus establishing a critical Abl-HEF1-Rap1 signaling axis for chemokine-induced T cell migration.
Collapse
Affiliation(s)
- Laurent P Malherbe
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
39
|
Gu JJ, Lavau CP, Pugacheva E, Soderblom EJ, Moseley MA, Pendergast AM. Abl family kinases modulate T cell-mediated inflammation and chemokine-induced migration through the adaptor HEF1 and the GTPase Rap1. Sci Signal 2012; 5:ra51. [PMID: 22810897 DOI: 10.1126/scisignal.2002632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemokine signaling is critical for T cell function during homeostasis and inflammation and directs T cell polarity and migration through the activation of specific intracellular pathways. Here, we uncovered a previously uncharacterized role for the Abl family tyrosine kinases Abl and Arg in the regulation of T cell-dependent inflammatory responses and showed that the Abl family kinases were required for chemokine-induced T cell polarization and migration. Our data demonstrated that Abl and Arg were activated downstream of chemokine receptors and mediated the chemokine-induced tyrosine phosphorylation of human enhancer of filamentation 1 (HEF1), an adaptor protein that is required for the activity of the guanosine triphosphatase Rap1, which mediates cell adhesion and migration. Phosphorylation of HEF1 by Abl family kinases and activation of Rap1 were required for chemokine-induced T cell migration. Mouse T cells that lacked Abl and Arg exhibited defective homing to lymph nodes and impaired migration to sites of inflammation. These findings suggest that Abl family kinases are potential therapeutic targets for the treatment of T cell-dependent immune disorders that are characterized by chemokine-mediated inflammation.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
40
|
DNA damage response: The emerging role of c-Abl as a regulatory switch? Biochem Pharmacol 2011; 82:1269-76. [DOI: 10.1016/j.bcp.2011.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 12/20/2022]
|
41
|
De Braekeleer E, Douet-Guilbert N, Rowe D, Bown N, Morel F, Berthou C, Férec C, De Braekeleer M. ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 2011; 86:361-71. [PMID: 21435002 DOI: 10.1111/j.1600-0609.2011.01586.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromosomal rearrangements involving the ABL1 gene, leading to a BCR-ABL1 fusion gene, have been mainly associated with chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (ALL). At present, six other genes have been shown to fuse to ABL1. The kinase domain of ABL1 is retained in all chimeric proteins that are also composed of the N-terminal part of the partner protein that often includes a coiled-coil or a helix-loop-helix domain. These latter domains allow oligomerization of the protein that is required for tyrosine kinase activation, cytoskeletal localization, and neoplastic transformation. Fusion genes that have a break in intron 1 or 2 (BCR-ABL1, ETV6-ABL1, ZMIZ1-ABL1, EML1-ABL1, and NUP214-ABL1) have transforming activity, although NUP214-ABL1 requires amplification to be efficient. The NUP214-ABL1 gene is the second most prevalent fusion gene involving ABL1 in malignant hemopathies, with a frequency of 5% in T-cell ALL. Both fusion genes (SFPQ-ABL1 and RCSD1-ABL1) characterized by a break in intron 4 of ABL1 are associated with B-cell ALL, as the chimeric proteins lacked the SH2 domain of ABL1. Screening for ABL1 chimeric genes could be performed in patients with ALL, more particularly in those with T-cell ALL because ABL1 modulates T-cell development and plays a role in cytoskeletal remodeling processes in T cells.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Université de Brest, Faculté de Médecine et des Sciences de la Santé, Brest Institut National de la Santé et de la Recherche Médicale (INSERM), Brest CHRU Brest, Hôpital Morvan, Service de Cytogénétique, Cytologie et Biologie de la Reproduction, Brest, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are integral components in the treatment protocols of acute lymphoblastic leukemia, multiple myeloma, and non-Hodgkin lymphoma owing to their ability to induce apoptosis of these malignant cells. Resistance to GC therapy is associated with poor prognosis. Although they have been used in clinics for decades, the signal transduction pathways involved in GC-induced apoptosis have only partly been resolved. Accumulating evidence shows that this cell death process is mediated by a communication between nuclear GR affecting gene transcription of pro-apoptotic genes such as Bim, mitochondrial GR affecting the physiology of the mitochondria, and the protein kinase glycogen synthase kinase-3 (GSK3), which interacts with Bim following exposure to GCs. Prevention of Bim up-regulation, mitochondrial GR translocation, and/or GSK3 activation are common causes leading to GC therapy failure. Various protein kinases positively regulating the pro-survival Src-PI3K-Akt-mTOR and Raf-Ras-MEK-ERK signal cascades have been shown to be activated in malignant leukemic cells and antagonize GC-induced apoptosis by inhibiting GSK3 activation and Bim expression. Targeting these protein kinases has proven effective in sensitizing GR-positive malignant lymphoid cells to GC-induced apoptosis. Thus, intervening with the pro-survival kinase network in GC-resistant cells should be a good means of improving GC therapy of hematopoietic malignancies.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- The Lautenberg Center of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
43
|
Abstract
ABL-family proteins comprise one of the best conserved branches of the tyrosine kinases. Each ABL protein contains an SH3-SH2-TK (Src homology 3-Src homology 2-tyrosine kinase) domain cassette, which confers autoregulated kinase activity and is common among nonreceptor tyrosine kinases. This cassette is coupled to an actin-binding and -bundling domain, which makes ABL proteins capable of connecting phosphoregulation with actin-filament reorganization. Two vertebrate paralogs, ABL1 and ABL2, have evolved to perform specialized functions. ABL1 includes nuclear localization signals and a DNA binding domain through which it mediates DNA damage-repair functions, whereas ABL2 has additional binding capacity for actin and for microtubules to enhance its cytoskeletal remodeling functions. Several types of posttranslational modifications control ABL catalytic activity, subcellular localization, and stability, with consequences for both cytoplasmic and nuclear ABL functions. Binding partners provide additional regulation of ABL catalytic activity, substrate specificity, and downstream signaling. Information on ABL regulatory mechanisms is being mined to provide new therapeutic strategies against hematopoietic malignancies caused by BCR-ABL1 and related leukemogenic proteins.
Collapse
Affiliation(s)
- John Colicelli
- Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
44
|
Suzuki T, Moriya K, Nagatoshi K, Ota Y, Ezure T, Ando E, Tsunasawa S, Utsumi T. Strategy for comprehensive identification of human N-myristoylated proteins using an insect cell-free protein synthesis system. Proteomics 2010; 10:1780-93. [PMID: 20213681 DOI: 10.1002/pmic.200900783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To establish a strategy for the comprehensive identification of human N-myristoylated proteins, the susceptibility of human cDNA clones to protein N-myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell-free protein synthesis system. One-hundred-and-forty-one cDNA clones with N-terminal Met-Gly motifs were selected as potential candidates from approximately 2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N-myristoylation was evaluated using fusion proteins, in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N-myristoylated. The metabolic labeling experiments both in an insect cell-free protein synthesis system and in the transfected COS-1 cells using full-length cDNA revealed that 27 out of 29 proteins were in fact N-myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N-myristoylated proteins that have not been reported previously to be N-myristoylated, indicating that this strategy is useful for the comprehensive identification of human N-myristoylated proteins from human cDNA resources.
Collapse
Affiliation(s)
- Takashi Suzuki
- Clinical and Biotechnology Business Unit, Shimadzu Corporation, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
DNA damage stress response in germ cells: role of c-Abl and clinical implications. Oncogene 2010; 29:6193-202. [PMID: 20818431 DOI: 10.1038/onc.2010.410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells experiencing DNA damage undergo a complex response entailing cell-cycle arrest, DNA repair and apoptosis, the relative importance of the three being modulated by the extent of the lesion. The observation that Abl interacts in the nucleus with several proteins involved in different aspects of DNA repair has led to the hypothesis that this kinase is part of the damage-sensing mechanism. However, the mechanistic details underlying the role of Abl in DNA repair remain unclear. Here, I will review the evidence supporting our current understanding of Abl activation following DNA insults, while focusing on the relevance of these mechanisms in protecting DNA-injured germ cells. Early studies have shown that Abl transcripts are highly expressed in the germ line. Abl-deficient mice exhibit multiple abnormalities, increased perinatal mortality and reduced fertility. Recent findings have implicated Abl in a cisplatin-induced signaling pathway eliciting death of immature oocytes. A p53-related protein, TAp63, is an important immediate downstream effector of this pathway. Of note, pharmacological inhibition of Abl protects the ovarian reserve from the toxic effects of cisplatin. This suggests that the extent of Abl catalytic outputs may shift the balance between survival (likely through DNA repair) and activation of a death response. Taken together, these observations are consistent with the evolutionary conserved relationship between DNA damage and activation of the p53 family of transcription factors, while shedding light on the key role of Abl in dictating the fate of germ cells upon genotoxic insults.
Collapse
|
46
|
Boettcher JP, Kirchner M, Churin Y, Kaushansky A, Pompaiah M, Thorn H, Brinkmann V, MacBeath G, Meyer TF. Tyrosine-phosphorylated caveolin-1 blocks bacterial uptake by inducing Vav2-RhoA-mediated cytoskeletal rearrangements. PLoS Biol 2010; 8. [PMID: 20808760 PMCID: PMC2927421 DOI: 10.1371/journal.pbio.1000457] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 07/07/2010] [Indexed: 12/11/2022] Open
Abstract
During the early stages of infection, Neisseria gonorrhoeae triggers a phosphotyrosine-dependent Cav1-Vav2-RhoA signaling cascade that promotes the pathogen's extracellular state. Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P+GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function. Like many bacterial pathogens, successful attachment of Neisseria gonorrhoeae—the causative agent of the sexually transmitted disease gonorrhoea—to its host cells depends on specialized structures on the bacterial surface called type IV pili (Tfp). Pathogen attachment induces changes within host cells that may facilitate and promote infection. In this study, we identify some of the earliest cellular signals elicited by N. gonorrhoeae during infection, which, in this case, prevent the organism from entering the cell precociously. After attachment to host cells the bacteria form microcolonies on the cell surface. Underneath these microcolonies, so-called cortical plaques form within the host cell—these contain the cytoskeleton protein actin and a range of signaling proteins. We show that N. gonorrhoeae recruits a host cell protein called caveolin-1 to the cell membrane where the bacteria are attached; here, caveloin-1 effectively impedes uptake of the bacteria by activating a signaling cascade that involves its phosphorylation on a tyrosine residue and subsequent interactions with proteins that regulate the cytoskeleton. Thus, these proteins play a pivotal role in maintaining N. gonorrhoeae in the extracellular milieu. By extrapolating our findings to another Tfp-producing bacterium, the enteropathogenic Escherichia coli, we argue that the establishment and maintenance of this extracellular state benefits certain pathogens by giving them time to express proteins required for subsequent steps of infection.
Collapse
Affiliation(s)
- Jan Peter Boettcher
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marieluise Kirchner
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yuri Churin
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alexis Kaushansky
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Malvika Pompaiah
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hans Thorn
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Gavin MacBeath
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
47
|
Gallazzini M, Yu MJ, Gunaratne R, Burg MB, Ferraris JD. c-Abl mediates high NaCl-induced phosphorylation and activation of the transcription factor TonEBP/OREBP. FASEB J 2010; 24:4325-35. [PMID: 20585028 DOI: 10.1096/fj.10-157362] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor TonEBP/OREBP promotes cell survival during osmotic stress. High NaCl-induced phosphorylation of TonEBP/OREBP at tyrosine-143 was known to be an important factor in increasing its activity in cell culture. We now find that TonEBP/OREBP also is phosphorylated at tyrosine-143 in rat renal inner medulla, dependent on the interstitial osmolality. c-Abl seemed likely to be the kinase that phosphorylates TonEBP/OREBP because Y143 is in a consensus c-Abl phosphorylation site. We now confirm that, as follows. High NaCl increases c-Abl activity. Specific inhibition of c-Abl by imatinib, siRNA, or c-Abl kinase dead drastically reduces high NaCl-induced TonEBP/OREBP activity by reducing its nuclear location and transactivating activity. c-Abl associates with TonEBP/OREBP (coimmunoprecipitation) and phosphorylates TonEBP/OREBP-Y143 both in cell and in vitro. High NaCl-induced activation of ataxia telangiectasia mutated, previously known to contribute to activation of TonEBP/OREBP, depends on c-Abl activity. Thus, c-Abl is the kinase responsible for high NaCl-induced phosphorylation of TonEBP/OREBP-Y143, which contributes to its increased activity.
Collapse
Affiliation(s)
- Morgan Gallazzini
- Laboratory of Kidney and Electrolyte Metabolism, National Heart Lung and Blood Institute, Bethesda, MD 20892-1603,
| | | | | | | | | |
Collapse
|
48
|
Liu G, Huang YJ, Xiao R, Wang D, Acton TB, Montelione GT. NMR structure of F-actin-binding domain of Arg/Abl2 from Homo sapiens. Proteins 2010; 78:1326-30. [PMID: 20077570 DOI: 10.1002/prot.22656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaohua Liu
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (NESG), Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Gorska MM, Goplen N, Liang Q, Alam R. Uncoordinated 119 preferentially induces Th2 differentiation and promotes the development of asthma. THE JOURNAL OF IMMUNOLOGY 2010; 184:4488-96. [PMID: 20220094 DOI: 10.4049/jimmunol.0903115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Th2 bias is a hallmark of allergic diseases. In this study, we show that the Th1 versus Th2 balance and the development of allergic asthma are strongly affected by the signaling protein uncoordinated 119 (Unc119). The expression of this adaptor protein is significantly increased in Th2 cells. Unc119 activates the Src family and inhibits the Abl family of tyrosine kinases. The activated Src family kinase Lck stimulates the activity of Itk and the expression of the transcription factor JunB. As a result, Unc119 promotes IL-4 production. Through inhibition of Abl kinases, Unc119 dampens IFN-gamma production. Using adoptive transfer of Unc119-knockdown CD4 T cells, we show a critical role for Unc119 in the development of eosinophilic inflammation of airways, mucus production, and bronchial hyperreactivity in a mouse model. Intriguingly, the expression of the Unc119 protein is enhanced in CD4 T cells from patients with asthma. We speculate that the heightened expression of Unc119 promotes Th2, inhibits Th1 differentiation, and contributes to the pathogenesis of asthma in humans.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
50
|
Kasahara M. Genome duplication and T cell immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:7-36. [PMID: 20800811 DOI: 10.1016/s1877-1173(10)92002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adaptive immune system (AIS) mediated by T cells and B cells arose ~450 million years ago in a common ancestor of jawed vertebrates. This system was so successful that, once established, it has been maintained in all classes of jawed vertebrates with only minor modifications. One event thought to have contributed to the emergence of this form of AIS is two rounds of whole-genome duplication. This event enabled jawed vertebrate ancestors to acquire many paralogous genes, known as ohnologs, with essential roles in T cell and B cell immunity. Ohnologs encode the key components of the antigen presentation machinery and signal transduction pathway for lymphocyte activation as well as numerous transcription factors important for lymphocyte development. Recently, it has been discovered that jawless vertebrates have developed an AIS employing antigen receptors unrelated to T/B cell receptors, but with marked overall similarities to the AIS of jawed vertebrates. Emerging evidence suggests that a common ancestor of all vertebrates was equipped with T-lymphoid and B-lymphoid lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido, University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|