1
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2024:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Okamoto M, Yamamoto M. TCR Signals Controlling Adaptive Immunity against Toxoplasma and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:177-193. [PMID: 38467980 DOI: 10.1007/978-981-99-9781-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
T cells play a crucial role in adaptive immunity by recognizing and eliminating foreign pathogens and abnormal cells such as cancer cells. T cell receptor (TCR), which is expressed on the surface of T cells, recognizes and binds to specific antigens presented by major histocompatibility complex (MHC) molecules on antigen-presenting cells (APCs). This activation process leads to the proliferation and differentiation of T cells, allowing them to carry out their specific immune response functions. This chapter outlines the TCR signaling pathways that are common to different T cell subsets, as well as the recently elucidated TCR signaling pathway specific to CD8+ T cells and its role in controlling anti-Toxoplasma and anti-tumor immunity.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Zhu B, Wang Z, Lei L, Guo Y, Han J, Zhou B. Transcriptome reveals overview of Ca 2+ dose-dependent metabolism disorders in zebrafish larvae after Cd 2+ exposure. J Environ Sci (China) 2023; 125:480-491. [PMID: 36375931 DOI: 10.1016/j.jes.2021.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd), a ubiquitous environmental hazardous heavy metal, poses a significant threat to the health of aquatic organisms, including teleosts. Although the toxic profile of Cd is well recognized, little is known regarding the overall view of toxic responses to varying aquatic environmental parameters (e.g., water hardness) at an individual level. Herein, differences in water hardness were partially mimicked by adjusting Ca2+ levels in E3 medium. As an in vivo model, zebrafish embryos were exposed to variable Ca2+ levels (NV, normal Ca2+; LV, low Ca2+; HV, high Ca2+) alone or combined with 30.7 µg/L Cd2+ (NC, LC, and HC, respectively) until 144 hr post-fertilization. The genome-wide transcriptome revealed differentially expressed genes between groups. Functional enrichment analysis found that biological processes related to metabolism, particularly lipid metabolism, were significantly disrupted in NC and LC treatments, while a remission was observed in the HC group. Biochemical assays confirmed that the decrease in Ca2+ enhanced synthesis, inhibited mobilization and increased the storage of lipids in Cd2+ treatments. This study suggests that the toxic effect of Cd on biological pathways will be influenced by Ca2+, which will improve the toxicological understanding and facilitate accurate assessment of Cd.
Collapse
Affiliation(s)
- Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ziniu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Yu Y, Tian D, Ri S, Kim T, Ju K, Zhang J, Teng S, Zhang W, Shi W, Liu G. Gamma-aminobutyric acid (GABA) suppresses hemocyte phagocytosis by binding to GABA receptors and modulating corresponding downstream pathways in blood clam, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108608. [PMID: 36764632 DOI: 10.1016/j.fsi.2023.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Although accumulating data demonstrated that gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, plays an important regulatory role in immunity of vertebrates, its immunomodulatory function and mechanisms of action remain poorly understood in invertebrates such as bivalve mollusks. In this study, the effect of GABA on phagocytic activity of hemocytes was evaluated in a commercial bivalve species, Tegillarca granosa. Furthermore, the potential regulatory mechanism underpinning was investigated by assessing potential downstream targets. Data obtained demonstrated that in vitro GABA incubation significantly constrained the phagocytic activity of hemocytes. In addition, the GABA-induced suppression of phagocytosis was markedly relieved by blocking of GABAA and GABAB receptors using corresponding antagonists. Hemocytes incubated with lipopolysaccharides (LPS) and GABA had significant higher K+-Cl- cotransporter 2 (KCC2) content compared to the control. In addition, GABA treatment led to an elevation in intracellular Cl-, which was shown to be leveled down to normal by blocking the ionotropic GABAA receptor. Treatment with GABAA receptor antagonist also rescued the suppression of GABAA receptor-associated protein (GABARAP), KCC, TNF receptor associated factor 6 (TRAF6), inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα), and nuclear factor kappa B subunit 1 (NFκB) caused by GABA incubation. Furthermore, incubation of hemocytes with GABA resulted in a decrease in cAMP content, an increase in intracellular Ca2+, and downregulation of cAMP-dependent protein kinase (PKA), calmodulin kinase II (CAMK2), calmodulin (CaM), calcineurin (CaN), TRAF6, IKKα, and NFκB. All these above-mentioned changes were found to be evidently relieved by blocking the metabotropic G-protein-coupled GABAB receptor. Our results suggest GABA may play an inhibitory role on phagocytosis through binding to both GABAA and GABAB receptors, and subsequently regulating corresponding downstream pathways in bivalve invertebrates.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, North Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, North Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, North Korea
| | - Jiongming Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | | | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
5
|
Van den Eynde C, Held K, Ciprietti M, De Clercq K, Kerselaers S, Marchand A, Chaltin P, Voets T, Vriens J. Loratadine, an antihistaminic drug, suppresses the proliferation of endometrial stromal cells by inhibition of TRPV2. Eur J Pharmacol 2022; 928:175086. [PMID: 35714693 DOI: 10.1016/j.ejphar.2022.175086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
The transient receptor potential (TRP) channel TRPV2 is widely expressed in a variety of different cell types and tissues. However, elucidating the exact biological functions of TRPV2 is significantly hampered by the lack of selective pharmacological tools to modulate channel activity in vitro and in vivo. This study aimed to identify new compounds that modify TRPV2 activity via the use of a plate-based calcium imaging approach to screen a drug repurposing library. Three antihistaminic drugs, loratadine, astemizole and clemizole were identified to reduce calcium-influx evoked by the TRPV2 agonist tetrahydrocannabivarin in HEK293 cells expressing murine TRPV2. Using single-cell calcium-microfluorimetry and whole-cell patch clamp recordings, we further confirmed that all three compounds induced a concentration-dependent block of TRPV2-mediated Ca2+ influx and whole-cell currents, with loratadine being the most potent antagonist of TRPV2. Moreover, this study demonstrated that loratadine was able to block both the human and mouse TRPV2 orthologs, without inhibiting the activity of other closely related members of the TRPV superfamily. Finally, loratadine inhibited TRPV2-dependent responses in a primary culture of mouse endometrial stromal cells and attenuated cell proliferation and migration in in vitro cell proliferation and wound healing assays. Taken together, our study revealed that the antihistaminic drugs loratadine, astemizole and clemizole target TRPV2 in a concentration-dependent manner. The identification of these antihistaminic drugs as blockers of TRPV2 may form a new starting point for the synthesis of more potent and selective TRPV2 antagonists, which could further lead to the unravelling of the physiological role of the channel.
Collapse
Affiliation(s)
- Charlotte Van den Eynde
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martina Ciprietti
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Saito T, Shukla NM, Sato-Kaneko F, Sako Y, Hosoya T, Yao S, Lao FS, Messer K, Pu M, Chan M, Chu PJ, Cottam HB, Hayashi T, Carson DA, Corr M. Small Molecule Calcium Channel Activator Potentiates Adjuvant Activity. ACS Chem Biol 2022; 17:217-229. [PMID: 34985883 PMCID: PMC8788586 DOI: 10.1021/acschembio.1c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/21/2021] [Indexed: 01/07/2023]
Abstract
There remains an unmet need for reliable fully synthetic adjuvants that increase lasting protective immune responses from vaccines. We previously reported a high-throughput screening for small molecules that extended nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) activation after a Toll-like receptor 4 (TLR4) ligand, lipopolysaccharide (LPS), stimulation using a human myeloid reporter cell line. We identified compounds with a conserved aminothiazole scaffold including 2D216 [N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-(piperidin-1-ylsulfonyl)benzamide], which increased murine antigen-specific antibody responses when used as a co-adjuvant with LPS. Here, we examined the mechanism of action in human cells. Although 2D216 activated the major mitogen-activated protein kinases, it did not interact with common kinases and phosphatases and did not stimulate many of the pattern recognition receptors (PRRs). Instead, the mechanism of action was linked to intracellular Ca2+ elevation via Ca2+ channel(s) at the plasma membrane and nuclear translocation of the nuclear factor of activated T-cells (NFAT) as supported by RNA-seq data, analysis by reporter cells, Ca2+ flux assays, and immunoblots. Interestingly, 2D216 had minimal, if any, activity on Jurkat T cells but induced cytokine production and surface expression of costimulatory molecules on cells with antigen-presenting functions. A small series of analogs of 2D216 were tested for the ability to enhance a TLR4 ligand-stimulated autologous mixed lymphocyte reaction (MLR). In the MLR, 2E151, N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-((4-propylpiperidin-1-yl)sulfonyl)benzamide, was more potent than 2D216. These results indicate that a small molecule that is not a direct PRR agonist can act as a co-adjuvant to an approved adjuvant to enhance human immune responses via a complementary mechanism of action.
Collapse
Affiliation(s)
- Tetsuya Saito
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
- Department
of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Nikunj M. Shukla
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Fumi Sato-Kaneko
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Yukiya Sako
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Tadashi Hosoya
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
- Department
of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Shiyin Yao
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Fitzgerald S. Lao
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Karen Messer
- Herbert
Wertheim School of Public Health and Longevity, University of California San Diego, La Jolla, California 92093-0901, United States
| | - Minya Pu
- Herbert
Wertheim School of Public Health and Longevity, University of California San Diego, La Jolla, California 92093-0901, United States
| | - Michael Chan
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Paul J. Chu
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Howard B. Cottam
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Tomoko Hayashi
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Dennis A. Carson
- Moores
Cancer Center, University of California
San Diego, La Jolla, California 92093-0809, United States
| | - Maripat Corr
- Department
of Medicine, University of California San
Diego, La Jolla, California 92093-0656, United States
| |
Collapse
|
7
|
Yao T, Lu J, Bai C, Xie Z, Ye L. The Enhanced Immune Protection in Small Abalone Haliotis diversicolor Against a Secondary Infection With Vibrio harveyi. Front Immunol 2021; 12:685896. [PMID: 34295333 PMCID: PMC8290317 DOI: 10.3389/fimmu.2021.685896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, more and more studies have shown that early pathogenic bacterial infection in invertebrates can enhance immunity and significantly reduce mortality when reinfected with the same pathogen. There are mechanisms to explain this phenomenon, but they are relatively few. In addition, dose-dependent primary infection is also associated with increased immunity. In the present study, the initial infection dose and mortality of abalone Haliotis diversicolor after reinfection with Vibrio harveyi were recorded, and the mechanism of immune enhancement was investigated by the transcriptomic response of abalone after two successive stimuli with V. harveyi. Priming with different concentrations of pathogen can enhance immunity; however, higher concentration is not always better. Compared with the first exposure, more genes were up-regulated after the second exposure. Among the commonly expressed genes, the immune related genes were significantly or persistently highly expressed after two infections and included pattern recognition receptors as well as immune effectors, such as toll-like receptors, perlucin 4, scavenger receptor class B-like protein, cytochrome P450 1B1-like, glutathione S-transferase 6, lysozyme and so on; in addition, these immune-related genes were mainly distributed in the pathways related to phagocytosis and calcium signaling. Among the specifically expressed genes, compared with the first infection, more genes were involved in the immune, metabolic and digestive pathways after the second infection, which would be more conducive to preventing the invasion of pathogens. This study outlined the mechanism of immune enhancement in abalone after secondary infection at the global molecular level, which is helpful for a comprehensive understanding of the mechanism of immune priming in invertebrates.
Collapse
Affiliation(s)
- Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhilv Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
8
|
Sasai M, Ma JS, Okamoto M, Nishino K, Nagaoka H, Takashima E, Pradipta A, Lee Y, Kosako H, Suh PG, Yamamoto M. Uncovering a novel role of PLCβ4 in selectively mediating TCR signaling in CD8+ but not CD4+ T cells. J Exp Med 2021; 218:212085. [PMID: 33970189 PMCID: PMC8111461 DOI: 10.1084/jem.20201763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C β4 (PLCβ4). TCR-mediated responses were severely impaired in PLCβ4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact. PLCβ4-deficient CD8+ T cells showed perturbed activation of peripheral TCR signaling pathways downstream of IP3 generation. Binding of PLCβ4 to the cytoplasmic tail of CD8α was important for CD8+ T cell activation. Furthermore, GNAQ interacted with PLCβ4, mediated double phosphorylation on threonine 886 and serine 890 positions of PLCβ4, and activated CD8+ T cells in a PLCβ4-dependent fashion. PLCβ4-deficient mice exhibited defective antiparasitic host defense and antitumor immune responses. Altogether, PLCβ4 differentiates TCR signaling in CD4+ and CD8+ T cells and selectively promotes CD8+ T cell–dependent adaptive immunity.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Youngae Lee
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.,Korea Brain Research Institute, Daegu, South Korea
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
9
|
Alharbi AF, Parrington J. Deciphering the Role of Endolysosomal Ca 2+ Channels in Immunity. Front Immunol 2021; 12:656965. [PMID: 33986747 PMCID: PMC8111081 DOI: 10.3389/fimmu.2021.656965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
The role of endolysosomal Ca2+ signalling in immunity has been a subject of increasing interest in recent years. Here, we discuss evolving knowledge relating to the contribution of endolysosomal Ca2+ channels that include TPCs, TRPMLs, and P2X4R in physiological processes related to innate and adaptive immunity-including phagocytosis, inflammation, cytokine/chemokine release, dendritic, natural killer, and T cell activation and migration-and we underscore the paucity of clinical studies in this field. Emerging biomedical and translational data have led to important new insights into the critical roles of these channels in immune cell function and the regulation of innate and adaptive immune responses. The evolving immunological significance of endolysosomal Ca2+ signalling warrants further investigations to better characterize the roles of these channels in immunity in order to expand our knowledge about the pathology of inflammatory and autoimmune diseases and develop endolysosomal Ca2+ channels as viable biomarkers and therapeutic and preventive targets for remodelling the immune response.
Collapse
Affiliation(s)
- Abeer F. Alharbi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Han Y, Tang Y, Sun S, Kim T, Ju K, Ri S, Du X, Zhou W, Shi W, Li S, Liu G. Modulatory function of calmodulin on phagocytosis and potential regulation mechanisms in the blood clam Tegillarca granosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103910. [PMID: 33129883 DOI: 10.1016/j.dci.2020.103910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Unlike vertebrate species, invertebrates lack antigen-antibody mediated immune response and mainly rely on haemocyte phagocytosis to fight against pathogen infection. Recently, studies conducted in model vertebrates demonstrated that the multifunctional protein calmodulin (CaM) plays an important role in regulating immune responses. However, the intrinsic relation between CaM and phagocytosis process remains poorly understood in invertebrate species such as bivalve mollusks. Therefore, in the present study, the immunomodulatory function of CaM on haemocyte phagocytosis was verified in the blood clam, Tegillarca granosa, using the CaM-specific inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7). Results obtained show that CaM inhibition significantly suppressed the phagocytic activity of haemocytes. In addition, CaM inhibition constrained intracellular Ca2+ elevation, hampered actin cytoskeleton assembly, suppressed calcineurin (CaN) activity, and disrupted NF-κB activation in haemocytes upon LPS induction. Furthermore, expression of seven selected genes from the actin cytoskeleton regulation- and immune-related pathways were significantly downregulated whereas those of CaM and CaN from the Ca2+-signaling pathway were significantly upregulated by in vitro incubation of haemocytes with W-7. For the first time, the present study demonstrated that CaM play an important role in phagocytosis modulation in bivalve species. In addition, the intracellular Ca2+ and downstream Ca2+-signaling-, actin cytoskeleton regulation-, and immune-related pathways offer candidate routes through which CaM modulates phagocytosis.
Collapse
Affiliation(s)
- Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, Republic of Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, Republic of Korea
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, Republic of Korea
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shiguo Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
11
|
Cao Q, Yin S. The influence of environmental calcium on the branchial morphology in a catadromous fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8945-8952. [PMID: 33405148 DOI: 10.1007/s11356-020-11922-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Eels are exposed to Ca2+ changes during migration between seawater and freshwater. The gill is the main organ of active calcium transport and has a large surface area to be particularly sensitive to environmental changes in the aquatic environment. In this research, we focused on the morphological changes of gill tissues when eels are faced with the environmental calcium challenges. Based on the results of hematoxylin and eosin (HE) staining and immunohistochemistry, compared with the control group (normal Ca2+ environment), the filament and lamella lengths and lamellar frequency (LF) appeared higher in high calcium environment and lower in deficient calcium environment, while the lamella width and filamental lamellar surface area (SAFL) decreased in high calcium environment and increased in deficient calcium environment. And there was no difference in the number filaments in first right gill arch in the three Ca2+ water environment. Transmission electron microscopy was employed to examine the ultrastructural changes in gills in different Ca2+ water environment. The nucleus and endoplasmic reticulum had a tendency to expand in calcium-deficient water, but had a tendency to shrink in high-calcium water comparing with the control group. This study provides the support that branchial surface areas are regulated in different Ca2+ waters through a list of calcium transporters including CACNB2.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Jiangsu, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
12
|
Viridicatol Isolated from Deep-Sea Penicillium Griseofulvum Alleviates Anaphylaxis and Repairs the Intestinal Barrier in Mice by Suppressing Mast Cell Activation. Mar Drugs 2020; 18:md18100517. [PMID: 33081290 PMCID: PMC7590054 DOI: 10.3390/md18100517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Viridicatol is a quinoline alkaloid isolated from the deep-sea-derived fungus Penicillium griseofulvum. The structure of viridicatol was unambiguously established by X-ray diffraction analysis. In this study, a mouse model of ovalbumin-induced food allergy and the rat basophil leukemia (RBL)-2H3 cell model were established to explore the anti-allergic properties of viridicatol. On the basis of the mouse model, we found viridicatol to alleviate the allergy symptoms; decrease the levels of specific immunoglobulin E, mast cell protease-1, histamine, and tumor necrosis factor-α; and promote the production of interleukin-10 in the serum. The treatment of viridicatol also downregulated the population of B cells and mast cells (MCs), as well as upregulated the population of regulatory T cells in the spleen. Moreover, viridicatol alleviated intestinal villi injury and inhibited the degranulation of intestinal MCs to promote intestinal barrier repair in mice. Furthermore, the accumulation of Ca2+ in RBL-2H3 cells was significantly suppressed by viridicatol, which could block the activation of MCs. Taken together, these data indicated that deep-sea viridicatol may represent a novel therapeutic for allergic diseases.
Collapse
|
13
|
Du X, Tang Y, Han Y, Ri S, Kim T, Ju K, Shi W, Sun S, Zhou W, Liu G. Acetylcholine suppresses phagocytosis via binding to muscarinic- and nicotinic-acetylcholine receptors and subsequently interfering Ca 2+- and NFκB-signaling pathways in blood clam. FISH & SHELLFISH IMMUNOLOGY 2020; 102:152-160. [PMID: 32320762 DOI: 10.1016/j.fsi.2020.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Though immunomodulation via cholinergic neurotransmitter acetylcholine (ACh), an important part of neuroendocrine-immune (NEI) regulatory network, has been well established in vertebrate species, the mechanisms remain poorly understood in invertebrates. In the present study, the immunomodulatory effect of ACh on haemocyte phagocytosis was investigated in an invertebrate bivalve species, Tegillarca granosa. Data obtained showed that in vitro ACh incubation suppressed phagocytic activity of haemocytes along with a significant elevation in intracellular Ca2+. In addition, the expressions of genes from Ca2+ signaling pathway were significantly induced whereas those from NF-κB signaling pathway were significantly down-regulated by ACh incubation. Furthermore, these adverse impacts of ACh were significantly relieved by the blocking of muscarinic acetylcholine receptors (mAChRs) or nicotinic acetylcholine receptors (nAChRs) using corresponding antagonists. Our study suggests that ACh suppresses phagocytosis via binding to both mAChRs and nAChRs, which disrupts intracellular Ca2+ homeostasis and subsequently interferes with downstream Ca2+ and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, PR Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, PR Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, PR Korea
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
14
|
Xu C, Wan Z, Shaheen S, Wang J, Yang Z, Liu W. A PI(4,5)P2-derived "gasoline engine model" for the sustained B cell receptor activation. Immunol Rev 2020; 291:75-90. [PMID: 31402506 DOI: 10.1111/imr.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.
Collapse
Affiliation(s)
- Chenguang Xu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Samina Shaheen
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Wanli Liu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Guan X, Tang Y, Zha S, Han Y, Shi W, Ren P, Yan M, Pan Q, Hu Y, Fang J, Zhang J, Liu G. Exogenous Ca 2+ mitigates the toxic effects of TiO 2 nanoparticles on phagocytosis, cell viability, and apoptosis in haemocytes of a marine bivalve mollusk, Tegillarca granosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1764-1771. [PMID: 31295695 DOI: 10.1016/j.envpol.2019.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Phagocytosis suppression induced by nanoparticles (NPs) exposure is increasingly reported in marine species. However, the mechanisms underlying this impact remain poorly understood. In order to improve our present understanding of the immunotoxicity of NPs, acute (96 h) TiO2 NP exposure and rescue trials via exogenous supply of Ca2+ were performed in the blood clam, Tegillarca granosa. The results show that the phagocytosis rate, cell viability, and intracellular Ca2+ concentration of haemocytes were significantly suppressed, whereas the intracellular ROS concentration of haemocytes significantly increased upon nTiO2 exposure. Exposure to nTiO2 also led to the significant downregulation of Caspase-3, Caspase-6, apoptosis regulator Bcl-2, Bcl-2-associated X, calmodulin kinase II, and calmodulin kinase kinase II. Furthermore, the toxic impacts of nTiO2 were partially mitigated by the addition of exogenous Ca2+, as indicated by the recovery tendency in almost all the measured parameters. The present study indicates that Ca2+ signaling could be one of the key pathways through which nTiO2 attacks phagocytosis.
Collapse
Affiliation(s)
- Xiaofan Guan
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Shanjie Zha
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Shi
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Peng Ren
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Maocang Yan
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Qicun Pan
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Yuan Hu
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Jun Fang
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Jiongming Zhang
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Guangxu Liu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Chauhan A, Sun Y, Sukumaran P, Quenum Zangbede FO, Jondle CN, Sharma A, Evans DL, Chauhan P, Szlabick RE, Aaland MO, Birnbaumer L, Sharma J, Singh BB, Mishra BB. M1 Macrophage Polarization Is Dependent on TRPC1-Mediated Calcium Entry. iScience 2018; 8:85-102. [PMID: 30293012 PMCID: PMC6174824 DOI: 10.1016/j.isci.2018.09.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/26/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022] Open
Abstract
Macrophage plasticity is essential for innate immunity, but in-depth signaling mechanism(s) regulating their functional phenotypes are ill-defined. Here we report that interferon (IFN) γ priming of naive macrophages induces store-mediated Ca2+ entry and inhibition of Ca2+ entry impairs polarization to M1 inflammatory phenotype. In vitro and in vivo functional analyses revealed ORAI1 to be a primary contributor to basal Ca2+ influx in macrophages, whereas IFNγ-induced Ca2+ influx was mediated by TRPC1. Deficiency of TRPC1 displayed abrogated IFNγ-induced M1 inflammatory mediators in macrophages. In a preclinical model of peritonitis by Klebsiella pneumoniae infection, macrophages showed increased Ca2+ influx, which was TRPC1 dependent. Macrophages from infected TRPC1−/− mice showed inhibited expression of M1-associated signature molecules. Furthermore, in human patients with systemic inflammatory response syndrome, the level of TRPC1 expression in circulating macrophages directly correlated with M1 inflammatory mediators. Overall, TRPC1-mediated Ca2+ influx is essential for the induction/shaping of macrophage polarization to M1 inflammatory phenotype. TRPC1 mediates sterile or infection-induced Ca2+ influx and M1 phenotype in macrophages ORAI1 mediates the basal Ca2+ influx in macrophages In patients with SIRS, the TRPC1 level correlates with M1 inflammatory mediators in macrophages
Collapse
Affiliation(s)
- Arun Chauhan
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Yuyang Sun
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Pramod Sukumaran
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Fredice O Quenum Zangbede
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Christopher N Jondle
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Atul Sharma
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Dustin L Evans
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Pooja Chauhan
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Randolph E Szlabick
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Mary O Aaland
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, NIHES, NIH, 111 TW Alexander Dr., Research Triangle Park, Durham, NC 27709, USA; School of Medical Sciences, Catholic University of Argentina, Institute of Biomedical Research (BIOMED UCA-CONICET), Av. Alicia Moreau de Justo 1300, Edificio San Jose Piso 3, Buenos Aires C1107AAZ, Argentina
| | - Jyotika Sharma
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Brij B Singh
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Bibhuti B Mishra
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA.
| |
Collapse
|
17
|
Nguyen NT, Han W, Cao W, Wang Y, Wen S, Huang Y, Li M, Du L, Zhou Y. Store‐Operated Calcium Entry Mediated by ORAI and STIM. Compr Physiol 2018; 8:981-1002. [DOI: 10.1002/cphy.c170031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Shi W, Guan X, Han Y, Guo C, Rong J, Su W, Zha S, Wang Y, Liu G. Waterborne Cd 2+ weakens the immune responses of blood clam through impacting Ca 2+ signaling and Ca 2+ related apoptosis pathways. FISH & SHELLFISH IMMUNOLOGY 2018; 77:208-213. [PMID: 29609026 DOI: 10.1016/j.fsi.2018.03.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Exposure to heavy metals such as Cadmium (Cd) may exert detrimental impacts on the immune responses of marine bivalve species. However, the immunotoxicity of Cd on blood clams remains unknown to date. Furthermore, though Cd2+ is known to compete with calcium (Ca2+) ions for their binding sites in cells and inhibit Ca2+ influx, whether Cd2+ weakens the immune responses of marine bivalves through inducing intracellular Ca2+ disorders still remains unclear. Therefore, the immunotoxicity of Cd2+ at different waterborne Ca2+ concentrations on blood clam, Tegillarca granosa, were investigated in the present study. Results obtained demonstrated that the total number, phagocytic activity, and red granulocytes ratio of the haemocytes were all significantly reduced after 10 days exposure of individuals to 25 μg/L Cd2+. However, when the waterborne Ca2+ concentrations were elevated by 10% and 20% (approximately 370 and 410 mg/L, respectively), mitigation effects on the immune responses of individuals were detected. In addition, though the expressions of genes from the Ca2+ signaling and Ca2+-related apoptosis pathways were significantly altered by Cd2+ exposure, the expression patterns of these genes were similar to that of the control when the waterborne Ca2+ concentrations were elevated, suggesting a relieving effect of waterborne Ca2+ on Cd2+ induced toxicity to haemocytes. The results obtained in the present study revealed that waterborne Cd2+ may hamper the immune responses of T. granosa through influencing Ca2+ signaling and Ca2+-related apoptosis pathways, which can be partially mitigated by elevating the waterborne Ca2+ concentrations.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaofan Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Cheng Guo
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jiahuan Rong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wenhao Su
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yichen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
19
|
Tespa1 regulates T cell receptor-induced calcium signals by recruiting inositol 1,4,5-trisphosphate receptors. Nat Commun 2017; 8:15732. [PMID: 28598420 PMCID: PMC5472764 DOI: 10.1038/ncomms15732] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Thymocyte-expressed, positive selection-associated 1 (Tespa1) is important in T cell receptor (TCR)-driven thymocyte development. Downstream of the TCR, Tespa1 is a crucial component of the linker for activation of T cells (LAT) signalosome, facilitating calcium signalling and subsequent MAPK activation. However, it is unknown how Tespa1 elicits calcium signalling. Here, we show that inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) is crucial for Tespa1-optimized, TCR-induced Ca2+ flux and thymocyte development. Upon TCR stimulation, Tespa1 directly interacts with IP3R1 and recruits it to the TCR complex, where IP3R1 is phosphorylated at Y353 by Fyn. This Tespa1-IP3R1 interaction is mediated by the F187 and F188 residues of Tespa1 and the amino-terminus of IP3R1. Tespa1-F187A/F188A mutant mice phenocopy Tespa1-deficient mice with impaired late thymocyte development due to reduced IP3R1 translocation to the TCR-proximal region. Our work elucidates the function of Tespa1 in T cell development and the regulation of TCR-induced Ca2+ signalling through IP3R1. The thymocyte development protein Tespa1 is known to translate T cell receptor signals by affecting the calcium signalling cascade, but it is not clear how. Here the authors show that Tespa1 recruits IP3R1 to the TCR signalling complex.
Collapse
|
20
|
Li B, Lv J, Wang W, Zhang D. Dietary magnesium and calcium intake and risk of depression in the general population: A meta-analysis. Aust N Z J Psychiatry 2017; 51:219-229. [PMID: 27807012 DOI: 10.1177/0004867416676895] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Several epidemiological studies have evaluated the associations between dietary magnesium (Mg) and calcium (Ca) intake and the risk of depression. However, the results of these studies remain controversial. Thus, we performed a meta-analysis to explore these associations and to investigate the possible dose-response relationship between dietary Mg intake and risk of depression. METHODS MEDLINE, Web of Science, Embase, Cochrane CENTRAL, CINAHL database, Chinese National Knowledge Infrastructure, Wan fang databases and Databases of Chinese Scientific and Technical Periodicals were searched for eligible publications up to September 2016. Pooled relative risks with 95% confidence intervals were calculated using random-effects model. Publication bias was estimated using Egger's test and the funnel plot. Dose-response relationship was assessed by restricted cubic spline functions. RESULTS A total of 17 epidemiological studies from 12 articles were included in the present meta-analysis. Among these studies, 11 studies evaluated the association between dietary Mg intake and risk of depression and 6 studies evaluated the association between dietary Ca intake and risk of depression. When comparing the highest with the lowest intake, the pooled relative risks of depression were 0.81 (95% confidence interval = [0.70, 0.92]) for Mg and 0.66 (95% confidence interval = [0.42, 1.02]) for Ca. Dietary Mg intake was significantly associated with a reduced risk of depression among studies conducted in Asia (relative risk = 0.57; 95% confidence interval = [0.44, 0.74]) and in studies adjusting for energy intake (relative risk = 0.73; 95% confidence interval = [0.58, 0.92]). For dose-response analysis, evidence of a nonlinear relationship was found between dietary Mg intake and risk of depression, and the largest risk reductions were observed for 320 mg/day. CONCLUSION This meta-analysis indicated that moderate Mg intake may be inversely associated with the risk of depression, which still needs to be confirmed by larger prospective cohort studies.
Collapse
Affiliation(s)
- Bingrong Li
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Jing Lv
- 2 Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weijing Wang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Dongfeng Zhang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
21
|
Pathway-based association analysis of two genome-wide screening data identifies rheumatoid arthritis-related pathways. Genes Immun 2014; 15:487-94. [DOI: 10.1038/gene.2014.48] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/06/2014] [Accepted: 06/23/2014] [Indexed: 12/26/2022]
|
22
|
Cox JH, Hussell S, Søndergaard H, Roepstorff K, Bui JV, Deer JR, Zhang J, Li ZG, Lamberth K, Kvist PH, Padkjær S, Haase C, Zahn S, Odegard VH. Antibody-mediated targeting of the Orai1 calcium channel inhibits T cell function. PLoS One 2013; 8:e82944. [PMID: 24376610 PMCID: PMC3871607 DOI: 10.1371/journal.pone.0082944] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/08/2013] [Indexed: 01/03/2023] Open
Abstract
Despite the attractiveness of ion channels as therapeutic targets, there are no examples of monoclonal antibodies directed against ion channels in clinical development. Antibody-mediated inhibition of ion channels could offer a directed, specific therapeutic approach. To investigate the potential of inhibiting ion channel function with an antibody, we focused on Orai1, the pore subunit of the calcium channel responsible for store-operated calcium entry (SOCE) in T cells. Effector T cells are key drivers of autoimmune disease pathogenesis and calcium signaling is essential for T cell activation, proliferation, and cytokine production. We show here the generation of a specific anti-human Orai1 monoclonal antibody (mAb) against an extracellular loop of the plasma membrane-spanning protein. The anti-Orai1 mAb binds native Orai1 on lymphocytes and leads to cellular internalization of the channel. As a result, T cell proliferation, and cytokine production is inhibited in vitro. In vivo, anti-Orai1 mAb is efficacious in a human T cell-mediated graft-versus host disease (GvHD) mouse model. This study demonstrates the feasibility of antibody-mediated inhibition of Orai1 function and, more broadly, reveals the possibility of targeting ion channels with biologics for the treatment of autoimmunity and other diseases.
Collapse
Affiliation(s)
- Jennifer H. Cox
- Department of Cellular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
| | - Scott Hussell
- Department of Cellular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
| | | | | | - John-Vu Bui
- Department of Cellular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
| | - Jen Running Deer
- Department of Molecular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
| | - Jun Zhang
- Department of Cell Biology, Beijing Novo Nordisk Pharmaceuticals Science & Technology Co., Beijing, China
| | - Zhan-Guo Li
- Department of Rheumatology & Immunology, Beijing University People’s Hospital, Beijing, China
| | - Kasper Lamberth
- Department of Screening and Cell Technology, Novo Nordisk A/S, Maløv, Denmark
| | | | - Søren Padkjær
- Department of Protein Structure and Biophysics, Novo Nordisk A/S, Maløv, Denmark
| | - Claus Haase
- Department of Immunopharmacology, Novo Nordisk A/S, Maløv, Denmark
| | - Stefan Zahn
- Department of Antibody Technology, Novo Nordisk A/S, Maløv, Denmark
| | - Valerie H. Odegard
- Department of Cellular Immunology, Novo Nordisk Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Joseph N, Reicher B, Barda-Saad M. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:557-68. [PMID: 23860253 DOI: 10.1016/j.bbamem.2013.07.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
24
|
Wong NK, Lai JC, Maeshima N, Johnson P. CD44-mediated elongated T cell spreading requires Pyk2 activation by Src family kinases, extracellular calcium, phospholipase C and phosphatidylinositol-3 kinase. Cell Signal 2011; 23:812-9. [DOI: 10.1016/j.cellsig.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/16/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
25
|
Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 2010; 28:491-533. [PMID: 20307213 DOI: 10.1146/annurev.immunol.021908.132550] [Citation(s) in RCA: 601] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ca(2+) entry into cells of the peripheral immune system occurs through highly Ca(2+)-selective channels known as CRAC (calcium release-activated calcium) channels. CRAC channels are a very well-characterized example of store-operated Ca(2+) channels, so designated because they open when the endoplasmic reticulum (ER) Ca(2+) store becomes depleted. Physiologically, Ca(2+) is released from the ER lumen into the cytoplasm when activated receptors couple to phospholipase C and trigger production of the second messenger inositol 1,4,5-trisphosphate (IP(3)). IP(3) binds to IP(3) receptors in the ER membrane and activates Ca(2+) release. The proteins STIM and ORAI were discovered through limited and genome-wide RNAi screens, respectively, performed in Drosophila cells and focused on identifying modulators of store-operated Ca(2+) entry. STIM1 and STIM2 sense the depletion of ER Ca(2+) stores, whereas ORAI1 is a pore subunit of the CRAC channel. In this review, we discuss selected aspects of Ca(2+) signaling in cells of the immune system, focusing on the roles of STIM and ORAI proteins in store-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Patrick G Hogan
- Department of Pathology, Harvard Medical School, Immune Disease Institute, Children's Hospital Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
26
|
Abstract
Store-operated Ca2+ entry (SOCE) is an important Ca2+ influx pathway in many non-excitable and some excitable cells. It is regulated by the filling state of intracellular Ca2+ stores, notably the endoplasmic reticulum (ER). Reduction in [Ca2+]ER results in activation of plasma membrane Ca2+ channels that mediate sustained Ca2+ influx which is required for many cell functions as well as refilling of Ca2+ stores. The Ca2+ release activated Ca2+ (CRAC) channel is the best characterized SOC channel with well-defined electrophysiological properties. In recent years, the molecular components of the CRAC channel, long mysterious, have been defined. ORAI1 (or CRACM1) acts as the pore-forming subunit of the CRAC channel in the plasma membrane. Stromal interaction molecule (STIM) 1 is localized in the ER, senses [Ca2+]ER, and activates the CRAC channel upon store depletion by binding to ORAI1. Both proteins are widely expressed in many tissues in both human and mouse consistent with the widespread prevalence of SOCE and CRAC channel currents in many cells types. CRAC channelopathies in human patients with mutations in STIM1 and ORAI1 are characterized by abolished CRAC channel currents, lack of SOCE and-clinically-immunodeficiency, congenital myopathy, and anhydrotic ectodermal dysplasia. This article reviews the role of ORAI and STIM proteins for SOCE and CRAC channel function in a variety of cell types and tissues and compares the phenotypes of ORAI1 and STIM1-deficient human patients and mice with targeted deletion of Orai and Stim genes.
Collapse
Affiliation(s)
- Stefan Feske
- Department of Pathology, New York University, Langone Medical Center, SRB314, New York, NY 10016, USA.
| |
Collapse
|