1
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
2
|
Vij S, Thakur R, Rishi P. Reverse engineering approach: a step towards a new era of vaccinology with special reference to Salmonella. Expert Rev Vaccines 2022; 21:1763-1785. [PMID: 36408592 DOI: 10.1080/14760584.2022.2148661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Salmonella is responsible for causing enteric fever, septicemia, and gastroenteritis in humans. Due to high disease burden and emergence of multi- and extensively drug-resistant Salmonella strains, it is becoming difficult to treat the infection with existing battery of antibiotics as we are not able to discover newer antibiotics at the same pace at which the pathogens are acquiring resistance. Though vaccines against Salmonella are available commercially, they have limited efficacy. Advancements in genome sequencing technologies and immunoinformatics approaches have solved the problem significantly by giving rise to a new era of vaccine designing, i.e. 'Reverse engineering.' Reverse engineering/vaccinology has expedited the vaccine identification process. Using this approach, multiple potential proteins/epitopes can be identified and constructed as a single entity to tackle enteric fever. AREAS COVERED This review provides details of reverse engineering approach and discusses various protein and epitope-based vaccine candidates identified using this approach against typhoidal Salmonella. EXPERT OPINION Reverse engineering approach holds great promise for developing strategies to tackle the pathogen(s) by overcoming the limitations posed by existing vaccines. Progressive advancements in the arena of reverse vaccinology, structural biology, and systems biology combined with an improved understanding of host-pathogen interactions are essential components to design new-generation vaccines.
Collapse
Affiliation(s)
- Shania Vij
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Ascough S, Ingram RJ, Chu KKY, Moore SJ, Gallagher T, Dyson H, Doganay M, Metan G, Ozkul Y, Baillie L, Williamson ED, Robinson JH, Maillere B, Boyton RJ, Altmann DM. Impact of HLA Polymorphism on the Immune Response to Bacillus Anthracis Protective Antigen in Vaccination versus Natural Infection. Vaccines (Basel) 2022; 10:vaccines10101571. [PMID: 36298436 PMCID: PMC9610610 DOI: 10.3390/vaccines10101571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The causative agent of anthrax, Bacillus anthracis, evades the host immune response and establishes infection through the production of binary exotoxins composed of Protective Antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). The majority of vaccination strategies have focused upon the antibody response to the PA subunit. We have used a panel of humanised HLA class II transgenic mouse strains to define HLA-DR-restricted and HLA-DQ-restricted CD4+ T cell responses to the immunodominant epitopes of PA. This was correlated with the binding affinities of epitopes to HLA class II molecules, as well as the responses of two human cohorts: individuals vaccinated with the Anthrax Vaccine Precipitated (AVP) vaccine (which contains PA and trace amounts of LF), and patients recovering from cutaneous anthrax infections. The infected and vaccinated cohorts expressing different HLA types were found to make CD4+ T cell responses to multiple and diverse epitopes of PA. The effects of HLA polymorphism were explored using transgenic mouse lines, which demonstrated differential susceptibility, indicating that HLA-DR1 and HLA-DQ8 alleles conferred protective immunity relative to HLA-DR15, HLA-DR4 and HLA-DQ6. The HLA transgenics enabled a reductionist approach, allowing us to better define CD4+ T cell epitopes. Appreciating the effects of HLA polymorphism on the variability of responses to natural infection and vaccination is vital in planning protective strategies against anthrax.
Collapse
Affiliation(s)
- Stephanie Ascough
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Correspondence: (S.A.); (D.M.A.)
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK
| | | | | | - Theresa Gallagher
- BioMET, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hugh Dyson
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Mehmet Doganay
- Department of Medical Genetics, Erciyes University Hospital, Kayseri 38095, Turkey
| | - Gökhan Metan
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine Ankara, Ankara 06000, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University Hospital, Kayseri 38095, Turkey
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| | | | - John H. Robinson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Bernard Maillere
- CEA-Saclay, Département Médicaments et Technologies pour la Santé, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
| | - Rosemary J. Boyton
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel M. Altmann
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Correspondence: (S.A.); (D.M.A.)
| |
Collapse
|
4
|
Ali Dahhas M, Alsenaidy MA. Role of site-directed mutagenesis and adjuvants in the stability and potency of anthrax protective antigen. Saudi Pharm J 2022; 30:595-604. [PMID: 35693445 PMCID: PMC9177452 DOI: 10.1016/j.jsps.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022] Open
Abstract
Anthrax is a zoonotic infection caused by the gram-positive, aerobic, spore-forming bacterium Bacillus anthracis. Depending on the origin of the infection, serious health problems or mortality is possible. The virulence of B. anthracis is reliant on three pathogenic factors, which are secreted upon infection: protective antigen (PA), lethal factor (LF), and edema factor (EF). Systemic illness results from LF and EF entering cells through the formation of a complex with the heptameric form of PA, bound to the membrane of infected cells through its receptor. The currently available anthrax vaccines have multiple drawbacks, and recombinant PA is considered a promising second-generation vaccine candidate. However, the inherent chemical instability of PA through Asn deamidation at multiple sites prevents its use after long-term storage owing to loss of potency. Moreover, there is a distinct possibility of B. anthracis being used as a bioweapon; thus, the developed vaccine should remain efficacious and stable over the long-term. Second-generation anthrax vaccines with appropriate adjuvant formulations for enhanced immunogenicity and safety are desired. In this article, using protein engineering approaches, we have reviewed the stabilization of anthrax vaccine candidates that are currently licensed or under preclinical and clinical trials. We have also proposed a formulation to enhance recombinant PA vaccine potency via adjuvant formulation.
Collapse
|
5
|
Sumithra TG, Chaturvedi VK, Gupta PK, Bincy J, Siju SJ, Sunita SC, Reshma KJ, Patel CL, Rai AK. A novel bicistronic DNA vaccine with enhanced protective immune response against Bacillus anthracis through DNA prime-protein boost vaccination approach. Microb Pathog 2021; 158:105104. [PMID: 34298126 DOI: 10.1016/j.micpath.2021.105104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
Anthrax, by Bacillus anthracis, remains a dreadful fatal hazard worldwide. The currently used anthrax vaccines are plagued by numerous issues that limit their widespread use. As an immunization approach targeting both extracellular antigens and toxins of B. anthracis may achieve better sterile immunity, the present investigation designed a bicistronic secretory anti-anthrax DNA vaccine targeting immune response against toxin and cells. The efficacy of the vaccine was compared with monocistronic DNA vaccines and the currently used anthrax vaccine. For this, mice were immunized with the developed vaccine containing pag (encoding protective antigen to block toxin) and eag genes (encoding EA1 to target cells) of B. anthracis through DNA-prime/Protein-boost (D/P) and DNA prime/DNA-boost (D/D) approaches. There was a >2 and > 5 fold increase in specific antibody level by D/D and D/P approaches respectively, on 42nd days post-immunization (dpi). Serum cytokine profiling showed that both Th1 and Th2 immune responses were elicited, with more Th2 responses in D/P strategy. More importantly, challenge with 100 times LD50 of B. anthracis at 42nd dpi exhibited maximum cumulative survival (83.33 %) by bicistronic D/P approach. Remarkably, immunization with EA1 delayed mortality onset in infection. The study forms the first report on complement-dependent bactericidal activity of antiEA1 antibodies. In short, co-immunization of PA and EA1 through the developed bicistronic DNA vaccine would be an effective immunization approach in anthrax vaccination. Further, D/P strategy could enhance vaccine-induced immunity against B. anthracis. Altogether, the study generates certain critical insights having direct applications in next-generation vaccine development against anthrax.
Collapse
Affiliation(s)
- T G Sumithra
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India.
| | - V K Chaturvedi
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India.
| | - P K Gupta
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - J Bincy
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - S J Siju
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - S C Sunita
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - K J Reshma
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - C L Patel
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - A K Rai
- ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| |
Collapse
|
6
|
Abdous M, Hasannia S, Salmanian AH, Arab SS. Efficacy assessment of a triple anthrax chimeric antigen as a vaccine candidate in guinea pigs: challenge test with Bacillus anthracis 17 JB strain spores. Immunopharmacol Immunotoxicol 2021; 43:495-502. [PMID: 34259590 DOI: 10.1080/08923973.2021.1945087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Bacillus anthracis secretes a tripartite toxin comprising protective antigen (PA), edema factor (EF), and lethal factor (LF). The human anthrax vaccine is mainly composed of the anthrax protective antigen (PA). Considerable efforts are being directed towards improving the efficacy of vaccines because the use of commercial anthrax vaccines (human/veterinary) is associated with several limitations. OBJECTIVE In this study, a triple chimeric antigen referred to as ELP (gene accession no: MT590758) comprising highly immunogenic domains of PA, LF, and EF was designed, constructed, and assessed for the immunization capacity against anthrax in a guinea pig model. MATERIALS AND METHODS Immunization was carried out considering antigen titration and immunization protocol. The immunoprotective efficacy of the ELP was evaluated in guinea pigs and compared with the potency of veterinary anthrax vaccine using a challenge test with B. anthracis 17JB strain spores. RESULTS The results demonstrated that the ELP antigen induced strong humoral responses. The T-cell response of the ELP was found to be similar to PA, and showed that the ELP could protect 100%, 100%, 100%, 80% and 60% of the animals from 50, 70, 90, 100 and 120 times the minimum lethal dose (MLD, equal 5 × 105 spore/ml), respectively, which killed control animals within 48 h. DISCUSSION AND CONCLUSIONS It is concluded that the ELP antigen has the necessary requirement for proper immunization against anthrax and it can be used to develop an effective recombinant vaccine candidate against anthrax.
Collapse
Affiliation(s)
- Masoud Abdous
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sadegh Hasannia
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | - Ali Hatef Salmanian
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed-Shahryar Arab
- Faculty of Biological Sciences, Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Zaide G, Elia U, Cohen-Gihon I, Israeli M, Rotem S, Israeli O, Ehrlich S, Cohen H, Lazar S, Beth-Din A, Shafferman A, Zvi A, Cohen O, Chitlaru T. Comparative Analysis of the Global Transcriptomic Response to Oxidative Stress of Bacillus anthracis htrA-Disrupted and Parental Wild Type Strains. Microorganisms 2020; 8:microorganisms8121896. [PMID: 33265965 PMCID: PMC7760947 DOI: 10.3390/microorganisms8121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracishtrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.
Collapse
|
8
|
Aloni-Grinstein R, Shifman O, Gur D, Aftalion M, Rotem S. MAPt: A Rapid Antibiotic Susceptibility Testing for Bacteria in Environmental Samples as a Means for Bioterror Preparedness. Front Microbiol 2020; 11:592194. [PMID: 33224128 PMCID: PMC7674193 DOI: 10.3389/fmicb.2020.592194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance of bio-threat agents holds major concerns especially in light of advances in methods for engineering pathogens with antibiotic resistance. Preparedness means for rapid identification and prompt proper medical treatment are of need to contain the event and prevent morbidity and spreading of the disease by properly treating exposed individuals before symptoms appearance. Herein, we describe a novel, rapid, simple, specific, and sensitive method named Micro-Agar-PCR-test (MAPt), which determines antibiotic susceptibility of bio-terror pathogens, directly from environmental samples, with no need for any prior isolation, quantification, or enrichment steps. As proof of concept, we have used this approach to obtain correct therapeutic antibiotic minimal inhibitory concentration (MIC) values for the Tier-1 select agents, Bacillus anthracis, Yersinia pestis, and Francisella tularensis, spiked in various environmental samples recapitulating potential bioterror scenarios. The method demonstrated efficiency for a broad dynamic range of bacterial concentrations, both for fast-growing as well as slow-growing bacteria and most importantly significantly shortening the time for accurate results from days to a few hours. The MAPt allows us to address bioterror agents-contaminated environmental samples, offering rational targeted prophylactic treatment, before the onset of morbidity in exposed individuals. Hence, MAPt is expected to provide data for decision-making personal for treatment regimens before the onset of symptoms in infected individuals.
Collapse
Affiliation(s)
- Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Shifman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
9
|
Transcriptome Sequencing Data of Bacillus anthracis Vollum Δ htrA and Its Parental Strain, Isolated under Oxidative Stress. Microbiol Resour Announc 2020; 9:9/35/e00618-20. [PMID: 32855245 PMCID: PMC7453281 DOI: 10.1128/mra.00618-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-temperature requirement chaperone/protease (HtrA) is involved in the stress response of the anthrax-causing pathogen Bacillus anthracis. Resilience to oxidative stress is essential for the manifestation of B. anthracis pathogenicity. Here, we announce transcriptome data sets detailing global gene expression in B. anthracis wild-type and htrA-disrupted strains following H2O2-induced oxidative stress. The high-temperature requirement chaperone/protease (HtrA) is involved in the stress response of the anthrax-causing pathogen Bacillus anthracis. Resilience to oxidative stress is essential for the manifestation of B. anthracis pathogenicity. Here, we announce transcriptome data sets detailing global gene expression in B. anthracis wild-type and htrA-disrupted strains following H2O2-induced oxidative stress.
Collapse
|
10
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Kumar M, Puranik N, Varshney A, Tripathi N, Pal V, Goel AK. BA3338, a surface layer homology domain possessing protein augments immune response and protection efficacy of protective antigen against Bacillus anthracis in mouse model. J Appl Microbiol 2020; 129:443-452. [PMID: 32118336 DOI: 10.1111/jam.14624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
AIM Category A classified Bacillus anthracis is highly fatal pathogen that causes anthrax and creates challenges for global security and public health. In this study, development of a safe and ideal next-generation subunit anthrax vaccine has been evaluated in mouse model. METHOD AND RESULTS Protective antigen (PA) and BA3338, a surface layer homology (SLH) domain possessing protein were cloned, expressed in heterologous system and purified by IMAC. Recombinant PA and BA3338 with alum were administered in mouse alone or in combination. The humoral and cell-mediated immune response was measured by ELISA and vaccinated animals were challenged with B. anthracis spores via intraperitoneal route. The circulating IgG antibody titre of anti-PA and anti-BA3338 was found significantly high in the first and second booster sera. A significant enhanced level of IL-4, IFN-γ and IL-12 was observed in antigens stimulated supernatant of splenocytes of PA + BA3338 vaccinated animals. A combination of PA and BA3338 provided 80% protection against 20 LD50 lethal dose of B. anthracis spores. CONCLUSION Both antigens induced admirable humoral and cellular immune response as well as protective efficacy against B. anthracis spores. SIGNIFICANCE AND IMPACT OF THE STUDY This study has been evaluated for the first time using BA3338 as a vaccine candidate alone or in combination with well-known anthrax vaccine candidate PA. The findings of this study demonstrated that BA3338 could be a co-vaccine candidate for development of dual subunit vaccine against anthrax.
Collapse
Affiliation(s)
- M Kumar
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - N Puranik
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - A Varshney
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - N Tripathi
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - V Pal
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| | - A K Goel
- Bioprocess Technology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
12
|
Mettu R, Chen CY, Wu CY. Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci 2020; 27:9. [PMID: 31900143 PMCID: PMC6941340 DOI: 10.1186/s12929-019-0591-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.
| |
Collapse
|
13
|
Ntushelo K, Ledwaba LK, Rauwane ME, Adebo OA, Njobeh PB. The Mode of Action of Bacillus Species against Fusarium graminearum, Tools for Investigation, and Future Prospects. Toxins (Basel) 2019; 11:toxins11100606. [PMID: 31635255 PMCID: PMC6832908 DOI: 10.3390/toxins11100606] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Fusarium graminearum is a pervasive plant pathogenic fungal species. Biological control agents employ various strategies to weaken their targets, as shown by Bacillus species, which adopt various mechanisms, including the production of bioactive compounds, to inhibit the growth of F. graminearum. Various efforts to uncover the antagonistic mechanisms of Bacillus against F. graminearum have been undertaken and have yielded a plethora of data available in the current literature. This perspective article attempts to provide a unified record of these interesting findings. The authors provide background knowledge on the use of Bacillus as a biocontrol agent as well as details on techniques and tools for studying the antagonistic mechanism of Bacillus against F. graminearum. Emphasizing its potential as a future biological control agent with extensive use, the authors encourage future studies on Bacillus as a useful antagonist of F. graminearum and other plant pathogens. It is also recommended to take advantage of the newly invented analytical platforms for studying biochemical processes to understand the mechanism of action of Bacillus against plant pathogens in general.
Collapse
Affiliation(s)
- Khayalethu Ntushelo
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Corner Christiaan De Wet and Pioneer Avenue, Private Bag X6, Florida 1709, Guateng, South Africa.
| | - Lesiba Klaas Ledwaba
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Corner Christiaan De Wet and Pioneer Avenue, Private Bag X6, Florida 1709, Guateng, South Africa.
- Agricultural Research Council-Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, Tshwane, South Africa.
| | - Molemi Evelyn Rauwane
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Corner Christiaan De Wet and Pioneer Avenue, Private Bag X6, Florida 1709, Guateng, South Africa.
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, University of Johannesburg, Corner Siemert and Louisa Street, Doornfontein 2028, Gauteng, South Africa.
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Corner Siemert and Louisa Street, Doornfontein 2028, Gauteng, South Africa.
| |
Collapse
|
14
|
Kondakova OA, Nikitin NA, Evtushenko EA, Ryabchevskaya EM, Atabekov JG, Karpova OV. Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Rev Vaccines 2019; 18:813-828. [PMID: 31298973 DOI: 10.1080/14760584.2019.1643242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Anthrax is a dangerous bio-terror agent because Bacillus anthracis spores are highly resilient and can be easily aerosolized and disseminated. There is a threat of deliberate use of anthrax spores aerosol that could lead to serious fatal diseases outbreaks. Existing control measures against inhalation form of the disease are limited. All of this has provided an impetus to the development of new generation vaccines. Areas сovered: This review is devoted to challenges and achievements in the design of vaccines based on the anthrax recombinant protective antigen (rPA). Scientific databases have been searched, focusing on causes of PA instability and solutions to this problem, including new approaches of rPA expression, novel rPA-based vaccines formulations as well as the simultaneous usage of PA with other anthrax antigens. Expert opinion: PA is a central anthrax toxin component, playing a key role in the defense against encapsulated and unencapsulated strains. Subunit rPA-based vaccines have a good safety and protective profile. However, there are problems of PA instability that are greatly enhanced when using aluminum adjuvants. New adjuvant compositions, dry formulations and resistant to proteolysis and deamidation mutant PA forms can help to handle this issue. Devising a modern anthrax vaccine requires huge efforts.
Collapse
Affiliation(s)
- Olga A Kondakova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Nikolai A Nikitin
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina A Evtushenko
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina M Ryabchevskaya
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Joseph G Atabekov
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Olga V Karpova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
15
|
Israeli M, Elia U, Rotem S, Cohen H, Tidhar A, Bercovich-Kinori A, Cohen O, Chitlaru T. Distinct Contribution of the HtrA Protease and PDZ Domains to Its Function in Stress Resilience and Virulence of Bacillus anthracis. Front Microbiol 2019; 10:255. [PMID: 30833938 PMCID: PMC6387919 DOI: 10.3389/fmicb.2019.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
16
|
Green MS, LeDuc J, Cohen D, Franz DR. Confronting the threat of bioterrorism: realities, challenges, and defensive strategies. THE LANCET. INFECTIOUS DISEASES 2018; 19:e2-e13. [PMID: 30340981 PMCID: PMC7106434 DOI: 10.1016/s1473-3099(18)30298-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/30/2023]
Abstract
Global terrorism is a rapidly growing threat to world security, and increases the risk of bioterrorism. In this Review, we discuss the potential threat of bioterrorism, agents that could be exploited, and recent developments in technologies and policy for detecting and controlling epidemics that have been initiated intentionally. The local and international response to infectious disease epidemics, such as the severe acute respiratory syndrome and west African Ebola virus epidemic, revealed serious shortcomings which bioterrorists might exploit when intentionally initiating an epidemic. Development of new vaccines and antimicrobial therapies remains a priority, including the need to expedite clinical trials using new methodologies. Better means to protect health-care workers operating in dangerous environments are also needed, particularly in areas with poor infrastructure. New and improved approaches should be developed for surveillance, early detection, response, effective isolation of patients, control of the movement of potentially infected people, and risk communication. Access to dangerous pathogens should be appropriately regulated, without reducing progress in the development of countermeasures. We conclude that preparedness for intentional outbreaks has the important added value of strengthening preparedness for natural epidemics, and vice versa.
Collapse
Affiliation(s)
- Manfred S Green
- School of Public Health, University of Haifa, Haifa, Israel.
| | - James LeDuc
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel Cohen
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - David R Franz
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
17
|
Karimi F, Alizadeh S, Alizadeh H. Immunogenicity of multi-walled carbon nanotubes functionalized with recombinant protective antigen domain 4 toward development of a nanovaccine against anthrax. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Single vector platform vaccine protects against lethal respiratory challenge with Tier 1 select agents of anthrax, plague, and tularemia. Sci Rep 2018; 8:7009. [PMID: 29725025 PMCID: PMC5934503 DOI: 10.1038/s41598-018-24581-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/04/2018] [Indexed: 01/26/2023] Open
Abstract
Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.
Collapse
|
19
|
Shornikov A, Tran H, Macias J, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RfbC). Acta Crystallogr F Struct Biol Commun 2017; 73:664-671. [PMID: 29199987 PMCID: PMC5713671 DOI: 10.1107/s2053230x17015849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
The exosporium layer of Bacillus anthracis spores is rich in L-rhamnose, a common bacterial cell-wall component, which often contributes to the virulence of pathogens by increasing their adherence and immune evasion. The biosynthetic pathway used to form the activated L-rhamnose donor dTDP-L-rhamnose consists of four enzymes (RfbA, RfbB, RfbC and RfbD) and is an attractive drug target because there are no homologs in mammals. It was found that co-purifying and screening RfbC (dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase) from B. anthracis in the presence of the other three B. anthracis enzymes of the biosynthetic pathway yielded crystals that were suitable for data collection. RfbC crystallized as a dimer and its structure was determined at 1.63 Å resolution. Two different ligands were bound in the protein structure: pyrophosphate in the active site of one monomer and dTDP in the other monomer. A structural comparison with RfbC homologs showed that the key active-site residues are conserved across kingdoms.
Collapse
Affiliation(s)
| | - Ha Tran
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Jennifer Macias
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| |
Collapse
|
20
|
Chitlaru T, Israeli M, Rotem S, Elia U, Bar-Haim E, Ehrlich S, Cohen O, Shafferman A. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes. Vaccine 2017; 35:6030-6040. [DOI: 10.1016/j.vaccine.2017.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
|
21
|
Dumas EK, Garman L, Cuthbertson H, Charlton S, Hallis B, Engler RJM, Choudhari S, Picking WD, James JA, Farris AD. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated. Vaccine 2017; 35:3416-3422. [PMID: 28504191 DOI: 10.1016/j.vaccine.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n=39) and AVA recipients (n=78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED50 values (AVP: 1464.0±214.7, AVA: 544.9±83.2, p<0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines.
Collapse
Affiliation(s)
- Eric K Dumas
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Hannah Cuthbertson
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Sue Charlton
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Bassam Hallis
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Renata J M Engler
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA
| | - Shyamal Choudhari
- Department of Pharmaceutical Chemistry, University of Kansas, 320B Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 320B Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; Departments of Medicine and Pathology, OUHSC, 1000 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
22
|
Head BM, Rubinstein E, Meyers AFA. Alternative pre-approved and novel therapies for the treatment of anthrax. BMC Infect Dis 2016; 16:621. [PMID: 27809794 PMCID: PMC5094018 DOI: 10.1186/s12879-016-1951-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the causative agent of anthrax, is a spore forming and toxin producing rod-shaped bacterium that is classified as a category A bioterror agent. This pathogenic microbe can be transmitted to both animals and humans. Clinical presentation depends on the route of entry (direct contact, ingestion, injection or aerosolization) with symptoms ranging from isolated skin infections to more severe manifestations such as cardiac or pulmonary shock, meningitis, and death. To date, anthrax is treatable if antibiotics are administered promptly and continued for 60 days. However, if treatment is delayed or administered improperly, the patient's chances of survival are decreased drastically. In addition, antibiotics are ineffective against the harmful anthrax toxins and spores. Therefore, alternative therapeutics are essential. In this review article, we explore and discuss advances that have been made in anthrax therapy with a primary focus on alternative pre-approved and novel antibiotics as well as anti-toxin therapies. METHODS A literature search was conducted using the University of Manitoba search engine. Using this search engine allowed access to a greater variety of journals/articles that would have otherwise been restricted for general use. In order to be considered for discussion for this review, all articles must have been published later than 2009. RESULTS The alternative pre-approved antibiotics demonstrated high efficacy against B. anthracis both in vitro and in vivo. In addition, the safety profile and clinical pharmacology of these drugs were already known. Compounds that targeted underexploited bacterial processes (DNA replication, RNA synthesis, and cell division) were also very effective in combatting B. anthracis. In addition, these novel compounds prevented bacterial resistance. Targeting B. anthracis virulence, more specifically the anthrax toxins, increased the length of which treatment could be administered. CONCLUSIONS Several novel and pre-existing antibiotics, as well as toxin inhibitors, have shown increasing promise. A combination treatment that targets both bacterial growth and toxin production would be ideal and probably necessary for effectively combatting this armed bacterium.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Ethan Rubinstein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| | - Adrienne F. A. Meyers
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
- National Laboratory for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
23
|
Israeli M, Rotem S, Elia U, Bar-Haim E, Cohen O, Chitlaru T. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity. Toxins (Basel) 2016; 8:E243. [PMID: 27548219 PMCID: PMC4999859 DOI: 10.3390/toxins8080243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 01/27/2023] Open
Abstract
Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel.
| |
Collapse
|
24
|
Kim SK, Jung KH, Yoon SN, Kim YK, Chai YG. Late-Exponential Gene Expression in codY-Deficient Bacillus anthracis in a Host-Like Environment. Curr Microbiol 2016; 73:714-720. [PMID: 27515669 DOI: 10.1007/s00284-016-1120-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
Abstract
CodY is a pleiotropic regulator commonly found in Gram-positive bacteria and regulates various biological processes during the stringent response in a nutrient-limiting environment. CodY also participates in virulence factor expression in many low G+C Gram-positive pathogens, as observed in Bacillus anthracis. However, the mechanism by which B. anthracis CodY regulates metabolism and virulence factors in response to environmental changes is unclear. Here, we attempted to identify the link between CodY and B. anthracis regulation with codY-deficient and codY-overexpressing mutants using high-throughput transcriptional analysis. Growth pattern analyses of codY mutants in both rich and minimal media showed defects in early cell proliferation, with opposite patterns in the early stationary phase: CodY overexpression prolonged bacterial growth, whereas deletion inhibited growth. RNA sequencing of codY-deficient B. anthracis showed both positive and negative changes in the gene expression of proteases and virulence factors as well as genes related to stringent response-related metabolism and biosynthetic processing. We also found that changes in codY expression could alter virulence gene expression of B. anthracis, suggesting modes of regulation in its virulence in a CodY concentration-dependent manner. Collectively, we conclude from these results that CodY can both positively and negatively regulate its regulon via direct and/or indirect approaches, and that its mode of regulation may be concentration dependent.
Collapse
Affiliation(s)
- Se Kye Kim
- Department of Molecular and Life Science, Hanyang University, 1271, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 1271, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | | | - Yun Ki Kim
- Samyang Chemical Co., Ltd, Seoul, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 1271, Ansan, Gyeonggi-do, 15588, Republic of Korea.
- Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Unique Inflammatory Mediators and Specific IgE Levels Distinguish Local from Systemic Reactions after Anthrax Vaccine Adsorbed Vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:664-71. [PMID: 27280620 DOI: 10.1128/cvi.00092-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
Abstract
Although the U.S. National Academy of Sciences concluded that anthrax vaccine adsorbed (AVA) has an adverse event (AE) profile similar to those of other adult vaccines, 30 to 70% of queried AVA vaccinees report AEs. AEs appear to be correlated with certain demographic factors, but the underlying immunologic pathways are poorly understood. We evaluated a cohort of 2,421 AVA vaccinees and found 153 (6.3%) reported an AE. Females were more likely to experience AEs (odds ratio [OR] = 6.0 [95% confidence interval {CI} = 4.2 to 8.7]; P < 0.0001). Individuals 18 to 29 years of age were less likely to report an AE than individuals aged 30 years or older (OR = 0.31 [95% CI = 0.22 to 0.43]; P < 0.0001). No significant effects were observed for African, European, Hispanic, American Indian, or Asian ancestry after correcting for age and sex. Additionally, 103 AEs were large local reactions (LLRs), whereas 53 AEs were systemic reactions (SRs). In a subset of our cohort vaccinated 2 to 12 months prior to plasma sample collection (n = 75), individuals with LLRs (n = 33) had higher protective-antigen (PA)-specific IgE levels than matched, unaffected vaccinated individuals (n = 50; P < 0.01). Anti-PA IgE was not associated with total plasma IgE, hepatitis B-specific IgE, or anti-PA IgG in individuals who reported an AE or in matched, unaffected AVA-vaccinated individuals. IP-10 was also elevated in sera of individuals who developed LLRs (P < 0.05). Individuals reporting SRs had higher levels of systemic inflammation as measured from C-reactive protein (P < 0.01). Thus, LLRs and SRs are mediated by distinct pathways. LLRs are associated with a vaccine-specific IgE response and IP-10, whereas SRs demonstrate increased systemic inflammation without a skewed cytokine profile.
Collapse
|
26
|
Huang E, Pillai SK, Bower WA, Hendricks KA, Guarnizo JT, Hoyle JD, Gorman SE, Boyer AE, Quinn CP, Meaney-Delman D. Antitoxin Treatment of Inhalation Anthrax: A Systematic Review. Health Secur 2016; 13:365-77. [PMID: 26690378 DOI: 10.1089/hs.2015.0032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Concern about use of anthrax as a bioweapon prompted development of novel anthrax antitoxins for treatment. Clinical guidelines for the treatment of anthrax recommend antitoxin therapy in combination with intravenous antimicrobials; however, a large-scale or mass anthrax incident may exceed antitoxin availability and create a need for judicious antitoxin use. We conducted a systematic review of antitoxin treatment of inhalation anthrax in humans and experimental animals to inform antitoxin recommendations during a large-scale or mass anthrax incident. A comprehensive search of 11 databases and the FDA website was conducted to identify relevant animal studies and human reports: 28 animal studies and 3 human cases were identified. Antitoxin monotherapy at or shortly after symptom onset demonstrates increased survival compared to no treatment in animals. With early treatment, survival did not differ between antimicrobial monotherapy and antimicrobial-antitoxin therapy in nonhuman primates and rabbits. With delayed treatment, antitoxin-antimicrobial treatment increased rabbit survival. Among human cases, addition of antitoxin to combination antimicrobial treatment was associated with survival in 2 of the 3 cases treated. Despite the paucity of human data, limited animal data suggest that adjunctive antitoxin therapy may improve survival. Delayed treatment studies suggest improved survival with combined antitoxin-antimicrobial therapy, although a survival difference compared with antimicrobial therapy alone was not demonstrated statistically. In a mass anthrax incident with limited antitoxin supplies, antitoxin treatment of individuals who have not demonstrated a clinical benefit from antimicrobials, or those who present with more severe illness, may be warranted. Additional pathophysiology studies are needed, and a point-of-care assay correlating toxin levels with clinical status may provide important information to guide antitoxin use during a large-scale anthrax incident.
Collapse
|
27
|
Amador-Molina JC, Valerdi-Madrigal ED, Domínguez-Castillo RI, Sirota LA, Arciniega JL. Temperature-mediated recombinant anthrax protective antigen aggregate development: Implications for toxin formation and immunogenicity. Vaccine 2016; 34:4188-4195. [PMID: 27364097 DOI: 10.1016/j.vaccine.2016.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022]
Abstract
Anthrax vaccines containing recombinant PA (rPA) as the only antigen face a stability issue: rPA forms aggregates in solution after exposure to temperatures ⩾40°C, thus losing its ability to form lethal toxin (LeTx) with Lethal Factor. To study rPA aggregation's impact on immune response, we subjected rPA to several time and temperature combinations. rPA treated at 50°C for 30min formed high mass aggregates when analyzed by gel electrophoresis and failed to form LeTx as measured by a macrophage lysis assay (MLA). Aggregated rPA-formed LeTx was about 30 times less active than LeTx containing native rPA. Mice immunized with heat-treated rPA combined with Al(OH)3 developed antibody titers about 49 times lower than mice immunized with native rPA, as measured by a Toxicity Neutralization Assay (TNA). Enzyme Linked Immunosorbent Assay (ELISA) of the same immune sera showed anti-rPA titers only 2-7 times lower than titers elicited by native rPA. Thus, rPA's ability to form LeTx correlates with its production of neutralizing antibodies, and aggregation significantly impairs the protein's antibody response. However, while these findings suggest MLA has some value as an in-process quality test for rPA in new anthrax vaccines, they also confirm the superiority of TNA for use in vaccine potency.
Collapse
Affiliation(s)
- Juan C Amador-Molina
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States.
| | - Esther D Valerdi-Madrigal
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Rocío I Domínguez-Castillo
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Lev A Sirota
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Juan L Arciniega
- Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
28
|
Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA(-) (High Temperature Requirement A) Sterne Strain. Sci Rep 2016; 6:18908. [PMID: 26732659 PMCID: PMC4702213 DOI: 10.1038/srep18908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022] Open
Abstract
Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10–104-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization.
Collapse
|
29
|
Tsai CW, Morris S. Approval of Raxibacumab for the Treatment of Inhalation Anthrax Under the US Food and Drug Administration "Animal Rule". Front Microbiol 2015; 6:1320. [PMID: 26648915 PMCID: PMC4664625 DOI: 10.3389/fmicb.2015.01320] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
On December 14, 2012, the FDA approved Raxibacumab, the first monoclonal antibody product developed under Project BioShield to achieve this milestone, and the first biologic product to be approved through the FDA animal efficacy rule (or “Animal Rule”). Raxibacumab is approved for the treatment of adult and pediatric patients with inhalational anthrax due to Bacillus anthracis in combination with appropriate antibiotic drugs and for prophylaxis of inhalational anthrax when alternative therapies are not available or not appropriate. The developmental process required for approval of Raxibacumab illustrates many of the challenges that product developers may encounter when pursuing approval under the Animal Rule and highlights a number of important regulatory and policy issues.
Collapse
Affiliation(s)
- Chia-Wei Tsai
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, U.S. Department of Health and Human Services Washington, DC, USA
| | - Stephen Morris
- BioProtection Systems/NewLink Genetics Corp. Devens, MA, USA
| |
Collapse
|
30
|
Efficacy of Single and Combined Antibiotic Treatments of Anthrax in Rabbits. Antimicrob Agents Chemother 2015; 59:7497-503. [PMID: 26392505 DOI: 10.1128/aac.01376-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Respiratory anthrax is a fatal disease in the absence of early treatment with antibiotics. Rabbits are highly susceptible to infection with Bacillus anthracis spores by intranasal instillation, succumbing within 2 to 4 days postinfection. This study aims to test the efficiency of antibiotic therapy to treat systemic anthrax in this relevant animal model. Delaying the initiation of antibiotic administration to more than 24 h postinfection resulted in animals with systemic anthrax in various degrees of bacteremia and toxemia. As the onset of symptoms in humans was reported to start on days 1 to 7 postexposure, delaying the initiation of treatment by 24 to 48 h (time frame for mass distribution of antibiotics) may result in sick populations. We evaluated the efficacy of antibiotic administration as a function of bacteremia levels at the time of treatment initiation. Here we compare the efficacy of treatment with clarithromycin, amoxicillin-clavulanic acid (Augmentin), imipenem, vancomycin, rifampin, and linezolid to the previously reported efficacy of doxycycline and ciprofloxacin. We demonstrate that treatment with amoxicillin-clavulanic acid, imipenem, vancomycin, and linezolid were as effective as doxycycline and ciprofloxacin, curing rabbits exhibiting bacteremia levels of up to 10(5) CFU/ml. Clarithromycin and rifampin were shown to be effective only as a postexposure prophylactic treatment but failed to treat the systemic (bacteremic) phase of anthrax. Furthermore, we evaluate the contribution of combined treatment of clindamycin and ciprofloxacin, which demonstrated improvement in efficacy compared to ciprofloxacin alone.
Collapse
|
31
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
32
|
Hoehn RS, Abbott DE. Beyond the bedside: A review of translational medicine in global health. World J Transl Med 2015; 4:1-10. [DOI: 10.5528/wjtm.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/14/2014] [Accepted: 01/19/2015] [Indexed: 02/05/2023] Open
Abstract
Translational research is a broad field of medicine with several key phases moving from scientific discovery to bench research and the hospital bedside, followed by evidence-based practice and population-level policy and programming. Understanding these phases is crucial when it comes to preventing and treating illness, especially in global health. Communities around the world struggle with a variety of health problems that are at some times similar and at others quite different. Three major world health issues help to outline the phases of translational research: vaccines, human immunodeficiency virus and acquired immunodeficiency syndrome, and non-communicable diseases. Laboratory research has excelled in many of these areas and is struggling in a few. Where successful therapies have been discovered there are often problems with appropriate use or dissemination to groups in need. Also, many diseases would be better prevented from a population health approach. This review highlights successes and struggles in the arena of global health, from smallpox eradication to the impending epidemic of cardiovascular disease, in an attempt to illustrate of the various phases of translational research.
Collapse
|
33
|
Wang HC, An HJ, Yu YZ, Xu Q. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors. Immunol Lett 2015; 163:206-13. [DOI: 10.1016/j.imlet.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/18/2014] [Accepted: 07/27/2014] [Indexed: 11/17/2022]
|
34
|
Production and cell surface display of recombinant anthrax protective antigen on the surface layer of attenuated Bacillus anthracis. World J Microbiol Biotechnol 2014; 31:345-52. [PMID: 25504373 DOI: 10.1007/s11274-014-1786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
To investigate the surface display of the anthrax protective antigen (PA) on attenuated Bacillus anthracis, a recombinant B. anthracis strain, named AP429 was constructed by integrating into the chromosome a translational fusion harboring the DNA fragments encoding the cell wall-targeting domain of the S-layer protein EA1 and the anthrax PA. Crerecombinase action at the loxP sites excised the antibiotic marker. Western blot analysis, fluorescence-activated cell sorting and immunofluorescence analysis confirmed that PA was successfully expressed on the S-layer of the recombinant antibiotic marker-free strain. Notwithstanding extensive proteolytic degradation of the hybrid protein SLHs-PA, quantitative ELISA revealed that approximately 8.1 × 10(6) molecules of SLHs-PA were gained from each Bacillus cell. Moreover, electron microscopy assay indicated that the typical S-layer structures could be clearly observed from the recombinant strain micrographs.
Collapse
|
35
|
Altmann DM. Host immunity to Bacillus anthracis lethal factor and other immunogens: implications for vaccine design. Expert Rev Vaccines 2014; 14:429-34. [PMID: 25400140 DOI: 10.1586/14760584.2015.981533] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Infections of humans with Bacillus anthracis are an issue with respect to the biothreat both to civilians and military personnel, infections of individuals by infected livestock in endemic regions and, recently, infections of intravenous drug users injecting anthrax-contaminated heroin. Existing vaccination regimens are reliant on protective antigen neutralization induced by repeated boosts with the AVA or AVP vaccines. However, there is ongoing interest in updated approaches in light of the intensive booster regime and extent of reactogenicity inherent in the current protocols. Several other immunogens from the B. anthracis proteome have been characterized in recent years, including lethal factor. Lethal factor induces strong CD4 T-cell immunity and encompasses immunodominant epitopes of relevance across diverse HLA polymorphisms. Taken together, recent studies emphasize the potential benefits of vaccines able to confer synergistic immunity to protective antigen and to other immunogens, targeting both B-cell and T-cell repertoires.
Collapse
Affiliation(s)
- Daniel M Altmann
- Department of Medicine, Hammersmith Hospital, Imperial College, Du Cane Road, London, UK
| |
Collapse
|
36
|
Abstract
Many bacterial and viral pathogens block or subvert host cellular processes to promote successful infection. One host protein that is targeted by invading pathogens is the small GTPase RAB11, which functions in vesicular trafficking. RAB11 functions in conjunction with a protein complex known as the exocyst to mediate terminal steps in cargo transport via the recycling endosome to cell-cell junctions, phagosomes and cellular protrusions. These processes contribute to host innate immunity by promoting epithelial and endothelial barrier integrity, sensing and immobilizing pathogens and repairing pathogen-induced cellular damage. In this Review, we discuss the various mechanisms that pathogens have evolved to disrupt or subvert RAB11-dependent pathways as part of their infection strategy.
Collapse
|
37
|
Mullangi V, Mamillapalli S, Anderson DJ, Bann JG, Miyagi M. Long-range stabilization of anthrax protective antigen upon binding to CMG2. Biochemistry 2014; 53:6084-91. [PMID: 25186975 PMCID: PMC4179592 DOI: 10.1021/bi500718g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Protective antigen (PA) mediates
entry of edema factor (EF) and
lethal factor (LF) into the cytoplasmic space of the cells through
the formation of a membrane-spanning pore. To do this, PA must initially
bind to a host cellular receptor. Recent mass spectrometry analysis
of PA using histidine hydrogen–deuterium exchange (His-HDX)
has shown that binding of the von Willebrand factor A (vWA) domain
of the receptor capillary morphogenesis protein-2 (CMG2) lowers the
exchange rates of the imidazole C2 hydrogen of several
histidines, suggesting that receptor binding decreases the structural
flexibility of PA. Here, using His-HDX and fluorescence as a function
of denaturant, and protease susceptibility, we show that binding of
the vWA domain of CMG2 largely increases the stability of PA and the
effect reaches up to 70 Å from the receptor binding interface.
We also show that the pKa values and HDX
rates of histidines located in separate domains change upon receptor
binding. These results indicate that when one end of the protein is
anchored, the structure of PA is tightened, noncovalent interactions
are strengthened, and the global stability of the protein increases.
These findings suggest that CMG2 may be used to stabilize PA in future
anthrax vaccines.
Collapse
Affiliation(s)
- Vennela Mullangi
- Case Center for Proteomics and Bioinformatics, ‡Department of Pharmacology, and §Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | |
Collapse
|
38
|
Kim YH, Kim KA, Kim YR, Choi MK, Kim HK, Choi KJ, Chun JH, Cha K, Hong KJ, Lee NG, Yoo CK, Oh HB, Kim TS, Rhie GE. Immunoproteomically identified GBAA_0345, alkyl hydroperoxide reductase subunit C is a potential target for multivalent anthrax vaccine. Proteomics 2014; 14:93-104. [PMID: 24273028 DOI: 10.1002/pmic.201200495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
Anthrax is caused by the spore-forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA-acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent-spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells.
Collapse
Affiliation(s)
- Yeon Hee Kim
- Division of High-risk Pathogen Research, Korea National Institute of Health, Chungbuk, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Anthrax is a highly contagious and potentially fatal human disease caused by Bacillus anthracis, an aerobic, Gram-positive, spore-forming rod-shaped bacterium with worldwide distribution as a zoonotic infection in herbivore animals. Bioterrorist attacks with inhalational anthrax have prompted the development of more effective treatments. Antibodies against anthrax toxin have been shown to decrease mortality in animal studies. Raxibacumab is a recombinant human monoclonal antibody developed against inhalational anthrax. The drug received approval after human studies showed its safety and animal studies demonstrated its efficacy for treatment as well as prophylaxis against inhalational anthrax. It works by preventing binding of the protective antigen component of the anthrax toxin to its receptors in host cells, thereby blocking the toxin's deleterious effects. Recently updated therapy guidelines for Bacillus anthracis recommend the use of antitoxin treatment. Raxibacumab is the first monoclonal antitoxin antibody made available that can be used with the antibiotics recommended for treatment of the disease. When exposure is suspected, raxibacumab should be given with anthrax vaccination to augment immunity. Raxibacumab provides additional protection against inhalational anthrax via a mechanism different from that of either antibiotics or active immunization. In combination with currently available and recommended therapies, raxibacumab should reduce the morbidity and mortality of inhalational anthrax.
Collapse
Affiliation(s)
- Carlos E Kummerfeldt
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
40
|
Kaur M, Singh S, Bhatnagar R. Anthrax vaccines: present status and future prospects. Expert Rev Vaccines 2014; 12:955-70. [PMID: 23984963 DOI: 10.1586/14760584.2013.814860] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of anthrax remains a top priority among the biowarfare/bioterror agents. It was the Bacillus anthracis spore attack through the US mail system after the September 11, 2001, terrorist attacks in the USA that highlighted the potential of B. anthracis as a bioterrorism agent and the threat posed by its deliberate dissemination. These attacks invigorated the efforts toward understanding the anthrax pathogenesis and development of more comprehensive medical intervention strategies for its containment in case of both natural disease and manmade, accidental or deliberate infection of a non-suspecting population. Currently, efforts are directed toward the development of safe and efficacious vaccines as well as intervention tools for controlling the disease in the advanced fulminant stage when toxemia has already developed. This work presents an overview of the current understanding of anthrax pathogenesis and recent advances made, particularly after 2001, for the successful management of anthrax and outlines future perspectives.
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | |
Collapse
|
41
|
Whole-Genome Sequencing of the Nonproteolytic Bacillus anthracis V770-NP1-R Strain Reveals Multiple Mutations in Peptidase Loci. GENOME ANNOUNCEMENTS 2014; 2:2/1/e00075-14. [PMID: 24526646 PMCID: PMC3924378 DOI: 10.1128/genomea.00075-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report the draft whole-genome sequence of the nonproteolytic Bacillus anthracis V770-NP1-R strain. Compared to those of other B. anthracis strains, the genome exhibits unique mutations in multiple targets potentially affecting proteolytic functions. One of these mutations is a deletion that disrupts the NprR quorum-sensing regulator of the NprA protease.
Collapse
|
42
|
Dhanda SK, Vir P, Raghava GPS. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 2013; 8:30. [PMID: 24304645 PMCID: PMC4235049 DOI: 10.1186/1745-6150-8-30] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/25/2013] [Indexed: 02/03/2023] Open
Abstract
Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/raghava/ifnepitope/). Reviewers This article was reviewed by Prof Kurt Blaser, Prof Laurence Eisenlohr and Dr Manabu Sugai.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.
| | | | | |
Collapse
|
43
|
Owen JL, Sahay B, Mohamadzadeh M. New generation of oral mucosal vaccines targeting dendritic cells. Curr Opin Chem Biol 2013; 17:918-24. [PMID: 23835515 DOI: 10.1016/j.cbpa.2013.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/13/2013] [Indexed: 01/08/2023]
Abstract
As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease.
Collapse
Affiliation(s)
- Jennifer L Owen
- Department of Infectious Diseases and Pathology, University of Florida, 2015 SW16th Avenue, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, P.O. Box 100214, Gainesville, FL 32610-0214, USA
| | | | | |
Collapse
|
44
|
Merkel TJ, Perera PY, Lee GM, Verma A, Hiroi T, Yokote H, Waldmann TA, Perera LP. Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection. Hum Vaccin Immunother 2013; 9:1841-8. [PMID: 23787486 DOI: 10.4161/hv.25337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An intense effort has been launched to develop improved anthrax vaccines that confer rapid, long lasting protection preferably with an extended stability profile amenable for stockpiling. Protective antigen (PA)-based vaccines are most favored as immune responses directed against PA are singularly protective, although the actual protective mechanism remains to be unraveled. Herein we show that contrary to the prevailing view, an efficacious PA-based vaccine confers protection against inhalation anthrax by preventing the establishment of a toxin-releasing systemic infection. Equally importantly, antibodies measured by the in vitro lethal toxin neutralization activity assay (TNA) that is considered as a reliable correlate of protection, especially for PA protein-based vaccines adjuvanted with aluminum salts appear to be not absolutely essential for this protective immune response.
Collapse
Affiliation(s)
- Tod J Merkel
- Center for Biologics Evaluation and Research; Food and Drug Administration; Bethesda, MD USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Small-molecule inhibitors of lethal factor protease activity protect against anthrax infection. Antimicrob Agents Chemother 2013; 57:4139-45. [PMID: 23774434 DOI: 10.1128/aac.00941-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, manifests its pathogenesis through the action of two secreted toxins. The bipartite lethal and edema toxins, a combination of lethal factor or edema factor with the protein protective antigen, are important virulence factors for this bacterium. We previously developed small-molecule inhibitors of lethal factor proteolytic activity (LFIs) and demonstrated their in vivo efficacy in a rat lethal toxin challenge model. In this work, we show that these LFIs protect against lethality caused by anthrax infection in mice when combined with subprotective doses of either antibiotics or neutralizing monoclonal antibodies that target edema factor. Significantly, these inhibitors provided protection against lethal infection when administered as a monotherapy. As little as two doses (10 mg/kg) administered at 2 h and 8 h after spore infection was sufficient to provide a significant survival benefit in infected mice. Administration of LFIs early in the infection was found to inhibit dissemination of vegetative bacteria to the organs in the first 32 h following infection. In addition, neutralizing antibodies against edema factor also inhibited bacterial dissemination with similar efficacy. Together, our findings confirm the important roles that both anthrax toxins play in establishing anthrax infection and demonstrate the potential for small-molecule therapeutics targeting these proteins.
Collapse
|
46
|
Garman L, Dumas EK, Kurella S, Hunt JJ, Crowe SR, Nguyen ML, Cox PM, James JA, Farris AD. MHC class II and non-MHC class II genes differentially influence humoral immunity to Bacillus anthracis lethal factor and protective antigen. Toxins (Basel) 2013; 4:1451-67. [PMID: 23342680 PMCID: PMC3528256 DOI: 10.3390/toxins4121451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Anthrax Lethal Toxin consists of Protective Antigen (PA) and Lethal Factor (LF), and current vaccination strategies focus on eliciting antibodies to PA. In human vaccination, the response to PA can vary greatly, and the response is often directed toward non-neutralizing epitopes. Variable vaccine responses have been shown to be due in part to genetic differences in individuals, with both MHC class II and other genes playing roles. Here, we investigated the relative contribution of MHC class II versus non-MHC class II genes in the humoral response to PA and LF immunization using three immunized strains of inbred mice: A/J (H-2k at the MHC class II locus), B6 (H-2b), and B6.H2k (H-2k). IgG antibody titers to LF were controlled primarily by the MHC class II locus, whereas IgG titers to PA were strongly influenced by the non-MHC class II genetic background. Conversely, the humoral fine specificity of reactivity to LF appeared to be controlled primarily through non-MHC class II genes, while the specificity of reactivity to PA was more dependent on MHC class II. Common epitopes, reactive in all strains, occurred in both LF and PA responses. These results demonstrate that MHC class II differentially influences humoral immune responses to LF and PA.
Collapse
Affiliation(s)
- Lori Garman
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; E-Mails: (L.G.); (E.K.D.); (S.K.); (S.R.C.); (M.L.N.); (P.M.C.); (J.A.J.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; E-Mail:
| | - Eric K. Dumas
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; E-Mails: (L.G.); (E.K.D.); (S.K.); (S.R.C.); (M.L.N.); (P.M.C.); (J.A.J.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; E-Mail:
| | - Sridevi Kurella
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; E-Mails: (L.G.); (E.K.D.); (S.K.); (S.R.C.); (M.L.N.); (P.M.C.); (J.A.J.)
| | - Jonathan J. Hunt
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; E-Mail:
| | - Sherry R. Crowe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; E-Mails: (L.G.); (E.K.D.); (S.K.); (S.R.C.); (M.L.N.); (P.M.C.); (J.A.J.)
| | - Melissa L. Nguyen
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; E-Mails: (L.G.); (E.K.D.); (S.K.); (S.R.C.); (M.L.N.); (P.M.C.); (J.A.J.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; E-Mail:
| | - Philip M. Cox
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; E-Mails: (L.G.); (E.K.D.); (S.K.); (S.R.C.); (M.L.N.); (P.M.C.); (J.A.J.)
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; E-Mails: (L.G.); (E.K.D.); (S.K.); (S.R.C.); (M.L.N.); (P.M.C.); (J.A.J.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; E-Mail:
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, 1000 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; E-Mails: (L.G.); (E.K.D.); (S.K.); (S.R.C.); (M.L.N.); (P.M.C.); (J.A.J.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-405-271-7389; Fax: +1-405-271-4110
| |
Collapse
|
47
|
Wang HYL, Guo H, O'Doherty GA. De novo asymmetric synthesis of oligo-rhamno di- and tri-saccharides related to the anthrax tetrasaccharide. Tetrahedron 2013; 69:3432-3436. [PMID: 23794755 DOI: 10.1016/j.tet.2013.02.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An asymmetric synthesis of the di- and trisaccharide portion of the naturally occurring anthrax tetrasaccharide from acetylfuran has been developed. The construction of the di- and trisaccharide subunits is based upon our previously disclosed route to anthrax tetrasaccharide. The approach uses iterative diastereoselective palladium-catalyzed glycosylations, Luche reductions, diastereoselective dihydroxylations, and regioselective protections for the assembly of the rhamno- di- and tri-saccharide. The route was also modified for the preparation of the mixed D-/L-disaccharide analogue.
Collapse
Affiliation(s)
- Hua-Yu Leo Wang
- College of Nuclear Technology, Chemistry and Biology, Hubei University of Science and Technology, Xianning, Hubei 437100, China ; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Combinations of monoclonal antibodies to anthrax toxin manifest new properties in neutralization assays. Infect Immun 2013; 81:1880-8. [PMID: 23509144 DOI: 10.1128/iai.01328-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Monoclonal antibodies (MAbs) are potential therapeutic agents against Bacillus anthracis toxins, since there is no current treatment to counteract the detrimental effects of toxemia. In hopes of isolating new protective MAbs to the toxin component lethal factor (LF), we used a strain of mice (C57BL/6) that had not been used in previous studies, generating MAbs to LF. Six LF-binding MAbs were obtained, representing 3 IgG isotypes and one IgM. One MAb (20C1) provided protection from lethal toxin (LeTx) in an in vitro mouse macrophage system but did not provide significant protection in vivo. However, the combination of two MAbs to LF (17F1 and 20C1) provided synergistic increases in protection both in vitro and in vivo. In addition, when these MAbs were mixed with MAbs to protective antigen (PA) previously generated in our laboratory, these MAb combinations produced synergistic toxin neutralization in vitro. But when 17F1 was combined with another MAb to LF, 19C9, the combination resulted in enhanced lethal toxicity. While no single MAb to LF provided significant toxin neutralization, LF-immunized mice were completely protected from infection with B. anthracis strain Sterne, which suggested that a polyclonal response is required for effective toxin neutralization. In total, these studies show that while a single MAb against LeTx may not be effective, combinations of multiple MAbs may provide the most effective form of passive immunotherapy, with the caveat that these may demonstrate emergent properties with regard to protective efficacy.
Collapse
|
49
|
Abstract
Vaccination is the most successful application of immunological principles to human health. Vaccine efficacy needs to be reviewed from time to time and its safety is an overriding consideration. DNA vaccines offer simple yet effective means of inducing broad-based immunity. These vaccines work by allowing the expression of the microbial antigen inside host cells that take up the plasmid. These vaccines function by generating the desired antigen inside the cells, with the advantage that this may facilitate presentation through the major histocompatibility complex. This review article is based on a literature survey and it describes the working and designing strategies of DNA vaccines. Advantages and disadvantages for this type of vaccines have also been explained, together with applications of DNA vaccines. DNA vaccines against cancer, tuberculosis, Edwardsiella tarda, HIV, anthrax, influenza, malaria, dengue, typhoid and other diseases were explored.
Collapse
|
50
|
Friedlander AM, Grabenstein JD, Brachman PS. Anthrax vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|