1
|
Tian H, Rajbhandari P, Tarolli J, Decker AM, Neelakantan TV, Angerer T, Zandkarimi F, Remotti H, Frache G, Winograd N, Stockwell BR. Multimodal mass spectrometry imaging identifies cell-type-specific metabolic and lipidomic variation in the mammalian liver. Dev Cell 2024; 59:869-881.e6. [PMID: 38359832 DOI: 10.1016/j.devcel.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/11/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Spatial single-cell omics provides a readout of biochemical processes. It is challenging to capture the transient lipidome/metabolome from cells in a native tissue environment. We employed water gas cluster ion beam secondary ion mass spectrometry imaging ([H2O]n>28K-GCIB-SIMS) at ≤3 μm resolution using a cryogenic imaging workflow. This allowed multiple biomolecular imaging modes on the near-native-state liver at single-cell resolution. Our workflow utilizes desorption electrospray ionization (DESI) to build a reference map of metabolic heterogeneity and zonation across liver functional units at tissue level. Cryogenic dual-SIMS integrated metabolomics, lipidomics, and proteomics in the same liver lobules at single-cell level, characterizing the cellular landscape and metabolic states in different cell types. Lipids and metabolites classified liver metabolic zones, cell types and subtypes, highlighting the power of spatial multi-omics at high spatial resolution for understanding celluar and biomolecular organizations in the mammalian liver.
Collapse
Affiliation(s)
- Hua Tian
- Environmental and Occupational Health, Pitt Public Health, Pittsburgh, PA 15261, USA; Children's Neuroscience Institute, School of Medicine, Pittsburgh, PA 15224, USA.
| | - Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Aubrianna M Decker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Tina Angerer
- The Luxembourg Institute of Science and Technology, 4362 Esch-sur-Alzette, Luxembourg; Department of Pharmaceutical Biosciences, Uppsala University, 751 05 Uppsala, Sweden
| | | | - Helen Remotti
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gilles Frache
- The Luxembourg Institute of Science and Technology, 4362 Esch-sur-Alzette, Luxembourg
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Oliveira MM, Monnet-Aimard A, Bosoi CR, Tremblay M, Rose CF. Sex is associated with differences in oxidative stress and susceptibility to severe hepatic encephalopathy in bile-duct ligated rats. J Neurochem 2022; 162:337-351. [PMID: 35771118 DOI: 10.1111/jnc.15661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Hepatic encephalopathy (HE) is a debilitating neurological complication of chronic liver disease (CLD). Hyperammonemia plays an important role in HE's pathogenesis, acting synergistically with systemic oxidative stress. During CLD, muscle plays a compensatory role in detoxifying ammonia, and therefore muscle loss leads to an increase in the risk of developing HE. With most animal studies involving males, sex's impact on the development of CLD and associated complications such as HE and muscle loss remains unknown. Therefore, we aimed to identify the impact of sex on CLD, HE, and muscle mass loss in a rodent model of CLD. Liver injury markers, hyperammonemia, oxidative stress, muscle mass and ammonia clearance were measured in female and male bile-duct ligated (BDL) rats. In addition, covert HE was assessed in females while ammonia-precipitated severe HE was assessed in female and male BDL rats, and male BDL rats treated with allopurinol (100mg/kg), an antioxidant (xanthine oxidase inhibitor). Female BDL developed CLD and HE (impaired motor-coordination and night activity) compared to respective SHAM. Hyperammonemia and muscle ammonia clearance were similar between female and male BDL. However, only female BDL rats did not develop muscle loss, brain edema, and short-term memory impairment (vs. female SHAM) and systemic oxidative stress and decreased albumin levels (vs. male BDL). Furthermore, both female BDL and allopurinol-treated male BDL rats were protected against ammonia-induced overt HE. In conclusion, female and male BDL rats develop distinct features of CLD and HE, with systemic oxidative stress playing a pivotal role in the susceptibility to ammonia precipitated overt HE.
Collapse
Affiliation(s)
- Mariana M Oliveira
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Alexis Monnet-Aimard
- Institut de Neurosciences de la Timone, Équipe inVibe, Université Aix-Marseille, France
| | - Cristina R Bosoi
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Mélanie Tremblay
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| |
Collapse
|
3
|
Miles ED, McBride BW, Jia Y, Liao SF, Boling JA, Bridges PJ, Matthews JC. Glutamine synthetase and alanine transaminase expression are decreased in livers of aged vs. young beef cows and GS can be upregulated by 17β-estradiol implants. J Anim Sci 2016; 93:4500-9. [PMID: 26440349 DOI: 10.2527/jas.2015-9294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aged beef cows (≥ 8 yr of age) produce calves with lower birth and weaning weights. In mammals, aging is associated with reduced hepatic expression of glutamine synthetase (GS) and alanine transaminase (ALT), thus impaired hepatic Gln-Glu cycle function. To determine if the relative protein content of GS, ALT, aspartate transaminase (AST), glutamate transporters (EAAC1, GLT-1), and their regulating protein (GTRAP3-18) differed in biopsied liver tissue of (a) aged vs. young (3 to 4 yr old) nonlactating, nongestating Angus cows (Exp. 1 and 2) and (b) aged mixed-breed cows with and without COMPUDOSE (17β-estradiol) ear implants (Exp. 3), Western blot analyses were performed. In Exp. 1, 12 young (3.62 ± 0.01 yr) and 13 aged (10.08 ± 0.42 yr) cows grazed the same mixed forage for 42 d (August-October). In Exp. 2, 12 young (3.36 ± 0.01 yr) and 12 aged (10.38 ± 0.47 yr) cows were individually fed (1.03% of BW) a corn-silage-based diet to maintain BW for 20 d. For both Exp. 1 and 2, the effect of cow age was assessed by ANOVA using the MIXED procedure of SAS. Cow BW did not change ( ≥ 0.17). Hepatic ALT (78% and 61%) and GS (52% and 71%) protein content (Exp. 1 and 2, respectively) was decreased ( ≤ 0.01), whereas GTRAP3-18 (an inhibitor of EAAC1 activity) increased ( ≤ 0.01; 170% and 136%) and AST, GLT-1, and EAAC1 contents did not differ ( ≥ 0.17) in aged vs. young cows. In Exp. 2, free concentrations (nmol/g) of Glu, Ala, Gln, Arg, and Orn in liver homogenates were determined. Aged cows tended to have less ( = 0.10) free Gln (15.0%) than young cows, whereas other AA concentrations did not differ ( 0.26). In Exp. 3, 14 aged (> 10 yr) cows were randomly allotted ( = 7) to sham or COMPUDOSE (25.7 mg of 17β-estradiol) implant treatment (TRT), and had ad libitum access to alfalfa hay for 28 d. Blood and liver biopsies were collected 14 and 28 d after implant treatment. Treatment, time after implant (DAY), and TRT × DAY effects were assessed by ANOVA using the MIXED procedure of SAS. Cow BW was not affected ( ≥ 0.96). Implant increased ( ≤ 0.02) total plasma estradiol by 220% (5.07 vs. 1.58 pg/mL) and GS protein by 300%, whereas the relative content of other proteins was not altered ( ≥ 0.16). We conclude that hepatic expression of ALT and GS are reduced in aged vs. young cows, and administration of 17β-estradiol to aged cows increases plasma estradiol and hepatic GS, but not that of other proteins that support hepatic Glu metabolism.
Collapse
|
4
|
Marcos R, Lopes C, Malhão F, Correia-Gomes C, Fonseca S, Lima M, Gebhardt R, Rocha E. Stereological assessment of sexual dimorphism in the rat liver reveals differences in hepatocytes and Kupffer cells but not hepatic stellate cells. J Anat 2016; 228:996-1005. [PMID: 26892301 DOI: 10.1111/joa.12448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
There is long-standing evidence that male and female rat livers differ in enzyme activity. More recently, differences in gene expression profiling have also been found to exist; however, it is still unclear whether there is morphological expression of male/female differences in the normal liver. Such differences could help to explain features seen at the pathological level, such as the greater regenerative potential generally attributed to the female liver. In this paper, hepatocytes (HEP), Kupffer cells (KC) and hepatic stellate cells (HSC) of male and female rats were examined to investigate hypothesised differences in number, volume and spatial co-localisation of these cell types. Immunohistochemistry and design-based stereology were used to estimate total numbers, numbers per gram and mean cell volumes. The position of HSC within lobules (periportal vs. centrilobular) and their spatial proximity to KC was also assessed. In addition, flow cytometry was used to investigate the liver ploidy. In the case of HEP and KC, differences in the measured cell parameters were observed between male and female specimens; however, no such differences were detected for HSC. Female samples contained a higher number of HEP per gram, with more binucleate cells. The HEP nuclei were smaller in females, which was coincident with more abundant diploid particles in these animals. The female liver also had a greater number of KC per gram, with a lower percentage of KC in the vicinity of HSC compared with males. In this study, we document hitherto unknown morphological sexual dimorphism in the rat liver, namely in HEP and KC. These differences may account for the higher regenerative potential of the female liver and lend weight to the argument for considering the rat liver as a sexually dimorphic organ.
Collapse
Affiliation(s)
- Ricardo Marcos
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Porto, Portugal.,Histomorphology, Physiopathology and Applied Toxicology Group, CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Porto, Portugal
| | - Célia Lopes
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Porto, Portugal.,Histomorphology, Physiopathology and Applied Toxicology Group, CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Porto, Portugal
| | - Fernanda Malhão
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Porto, Portugal.,Histomorphology, Physiopathology and Applied Toxicology Group, CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Porto, Portugal
| | - Carla Correia-Gomes
- Scotland's Rural College, Epidemiology Research Unit - Future Farming Systems Group, Inverness, UK
| | - Sónia Fonseca
- Laboratory of Cytometry, Department of Hematology, UMIB - Unit for Multidisciplinary Research in Biomedicine, CHP - Centro Hospitalar do Porto, ICBAS - Institute of Biomedical Sciences Abel Salazar, HSA - Hospital de Santo António, U.Porto - University of Porto, Porto, Portugal
| | - Margarida Lima
- Laboratory of Cytometry, Department of Hematology, UMIB - Unit for Multidisciplinary Research in Biomedicine, CHP - Centro Hospitalar do Porto, ICBAS - Institute of Biomedical Sciences Abel Salazar, HSA - Hospital de Santo António, U.Porto - University of Porto, Porto, Portugal
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Porto, Portugal.,Histomorphology, Physiopathology and Applied Toxicology Group, CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, U.Porto - University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Gebhardt R, Hovhannisyan A. Organ patterning in the adult stage: the role of Wnt/beta-catenin signaling in liver zonation and beyond. Dev Dyn 2010; 239:45-55. [PMID: 19705440 DOI: 10.1002/dvdy.22041] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Wnt/beta-catenin signaling has been found to play key roles in metabolic zonation of adult liver, regeneration, and hepatocellular carcinogenesis. In this review, recent progress in this field is summarized, in particular the rapidly growing knowledge about the various interactions of beta-catenin with many transcription factors involved in controlling metabolism. These interactions may provide the basis for understanding how the wide range of activities of Wnt/beta-catenin signaling is differentially interpreted. Based on these results, a three-level mode for the molecular interpretation of beta-catenin activity gradients in liver is proposed favoring cell differentiation, metabolic zonation, and proliferation. While derangement of the combinatorial interplay of the various transcription factors with beta-catenin at the intermediary activity level may contribute to the development of metabolic diseases, extremely high activation of beta-catenin may eventually lead to initiation and progression of hepatocellular tumors.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
6
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
7
|
Werth M, Gebhardt R, Gaunitz F. Hepatic expression of glutamine synthetase in rats is controlled by STAT5 and TCF transcription factors. Hepatology 2006; 44:967-75. [PMID: 17006929 DOI: 10.1002/hep.21322] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
In mammalian liver, high glutamine synthetase (GS) expression is restricted to hepatocytes surrounding the terminal venules. The most important enhancer of the GS gene is located approximately 2520 base pairs (bp) upstream from the transcriptional start point. The nature of the transcription factors that bind to the enhancers has remained enigmatic. In this study, we purified nuclear proteins binding to the element. Supershift assays and footprint experiments with purified protein identified activated STAT5 as a transcription factor binding to a site within the enhancer. In addition, a second binding site close to the STAT5 site was observed that also binds a protein present in nuclear extracts. Sequence analysis indicated that the second site may bind a member of the LEF/TCF transcription factor family. Reporter gene assays demonstrate that the STAT5 binding site mediates enhancement of expression whereas the LEF/TCF site functions as a silencer of growth hormone-mediated enhancement in normal hepatocytes. LEF/TCF-sites are known to function as silencers in the absence and as enhancers in the presence of activated beta-catenin. In conclusion, the GS 5' enhancer contains elements important for GS expression in cells carrying an activated form of beta-catenin as previously shown in experimentally induced hepatocellular carcinomas.
Collapse
Affiliation(s)
- Max Werth
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
8
|
van Straaten HWM, He Y, van Duist MM, Labruyère WT, Vermeulen JLM, van Dijk PJ, Ruijter JM, Lamers WH, Hakvoort TBM. Cellular concentrations of glutamine synthetase in murine organs. Biochem Cell Biol 2006; 84:215-31. [PMID: 16609703 DOI: 10.1139/o05-170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glutamine synthetase (GS) is the only enzyme that can synthesize glutamine, but it also functions to detoxify glutamate and ammonia. Organs with high cellular concentrations of GS appear to function primarily to remove glutamate or ammonia, whereas those with a low cellular concentration appear to primarily produce glutamine. To validate this apparent dichotomy and to clarify its regulation, we determined the GS concentrations in 18 organs of the mouse. There was a >100-fold difference in GS mRNA, protein, and enzyme-activity levels among organs, whereas there was only a 20-fold difference in the GS protein:mRNA ratio, suggesting extensive transcriptional and posttranscriptional regulation. In contrast, only small differences in the GS enzyme activity : protein ratio were found, indicating that posttranslational regulation is of minor importance. The cellular concentration of GS was determined by relating the relative differences in cellular GS concentration, detected using image analysis of immunohistochemically stained tissue sections, to the biochemical data. There was a >1000-fold difference in cellular concentrations of GS between GS-positive cells in different organs, and cellular concentrations were up to 20x higher in subpopulations of cells within organs than in whole organs. GS activity was highest in pericentral hepatocytes (approximately 485 micromol.g(-1).min-(1), followed in descending order by epithelial cells in the epididymal head, Leydig cells in the testicular interstitium, epithelial cells of the uterine tube, acid-producing parietal cells in the stomach, epithelial cells of the S3 segment of the proximal convoluted tubule of the kidney, astrocytes of the central nervous tissue, and adipose tissue. GS activity in muscle amounted to only 0.4 micromol.g(-1).min(-1). Our findings confirmed the postulated dichotomy between cellular concentration and GS function.
Collapse
|
9
|
Williams GM, Iatropoulos MJ. Alteration of liver cell function and proliferation: differentiation between adaptation and toxicity. Toxicol Pathol 2002; 30:41-53. [PMID: 11890475 DOI: 10.1080/01926230252824699] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exposure of experimental animals to biologically effective levels of chemicals, either endogenous or exogenous, the latter of either synthetic or natural origin, elicits a response(s) that reflects the diverse ways in which the various units of organization of an organism deal with chemical perturbation. For some chemicals, an initial response constitutes an adaptive effect that maintains homeostasis. Disruption of this equilibrium at any level of organization leads to an adverse effect, or toxicity. The livers of laboratory animals and humans, like other organs, undergo programmed phases of growth and development, characterized by proliferation followed by differentiation. With organ maturity, the process of differentiation leads to the commitment of differentiated cells to constitutive functions that maintain homeostasis and to specialized functions that serve organismal needs. In the mature livers of all species, proliferation of all cell types subsides to a low level, Thus, the mature liver consists of 2 types of cells: intermediate cells, the hepatocytes, which replicate infrequently, but can respond to signals for replication, and replicating cells, the stem cells, endothelial, Kupffer, and stellate cells (Ito or pericytes), bile duct epithelium, and granular lymphocytes (pit cells). Quantifiable alterations or effects at the molecular level underlie alterations at the organelle level, which in turn lead to alterations at the cellular level, which can ultimately be manifested as a change in the whole organism. Alterations can be quantal (binary), either all or none, as with cell replication, cell necrosis or apoptosis, and cell differentiation, which take place at the cellular level. They can also be graded or continuous (nonbinary), as with enzyme induction, organelle hypertrophy, and extracellular matrix elaboration, occurring either at the intra- or extra (supra) cellular level. Any quantifiable change induced in the function or structure of a cell or tissue constitutes a response or effect. Each of the several types of cell in the liver responds to a given stimulus according to its localization and function. Generally, renewing cells are more vulnerable to chemical injury than intermediate cells, which are largely quiescent. Hepatic adaptive responses usually involve actions of the chemical on cellular regulatory pathways, often receptor mediated, leading to changes in gene expression and ultimately alteration of the metabolome. The response is directed toward maintaining homeostasis through modulation of various cellular and extracellular functions. At all levels of organization, adaptive responses are beneficial in that they enhance the capacity of all units to respond to chemical induced stress, are reversible and preserve viability. Such adaptation at subtoxic exposures is also referred to as hormesis. In contrast, adverse or toxic effects in the liver often involve chemical reaction with cellular macromolecules and produce disruption of homeostasis. Such effects diminish the capacity for response, can be nonreversible at all levels of organization, and can compromise viability. An exposure that elicits an adaptive response can produce toxicity with longer or higher exposures (ie, above a threshold) and the mechanism of action changes with the effective dose. A variety of hepatic adaptive and toxic effects has been identified. Examples of adaptive effects are provided by phenobarbital and ciprofibrate, whereas p-dichlorobenzene and 2-acetylaminofluorene illustrate different toxic effects. The effects of chemicals in the liver are, in general, similar between experimental animals and humans, although exceptions exist. Thus, identification and monitoring of both types of effect are integral in the safety assessment of chemical exposures.
Collapse
Affiliation(s)
- Gary M Williams
- New York Medical College, Department of Pathology, Valhalla, New York 10595, USA
| | | |
Collapse
|
10
|
|
11
|
Lie-Venema H, Hakvoort TB, van Hemert FJ, Moorman AF, Lamers WH. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:243-308. [PMID: 9752723 DOI: 10.1016/s0079-6603(08)60829-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutamine synthetase, the enzyme that catalyzes the ATP-dependent conversion of glutamate and ammonia into glutamine, is expressed in a tissue-specific and developmentally controlled manner. The first part of this review focuses on its spatiotemporal pattern of expression, the factors that regulate its levels under (patho)physiological conditions, and its role in glutamine, glutamate, and ammonia metabolism in mammals. Glutamine synthetase protein stability is more than 10-fold reduced by its product glutamine and by covalent modifications. During late fetal development, translational efficiency increases more than 10-fold. Glutamine synthetase mRNA stability is negatively affected by cAMP, whereas glucocorticoids, growth hormone, insulin (all positive), and cAMP (negative) regulate its rate of transcription. The signal transduction pathways by which these factors may regulate the expression of glutamine synthetase are briefly discussed. The second part of the review focuses on the evolution, structure, and transcriptional regulation of the glutamine synthetase gene in rat and chicken. Two enhancers (at -6.5 and -2.5 kb) were identified in the upstream region and two enhancers (between +156 and +857 bp) in the first intron of the rat glutamine synthetase gene. In addition, sequence analysis suggests a regulatory role for regions in the 3' untranslated region of the gene. The immediate-upstream region of the chicken glutamine synthetase gene is responsible for its cell-specific expression, whereas the glucocorticoid-induced developmental appearance in the neural retina is governed by its far-upstream region.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Gebhardt R, Schuler M, Schörner D. The spontaneous induction of glutamine synthetase in pig hepatocytes cocultured with RL-ET-14 cells is completely inhibited by trijodothyronine and okadaic acid. Biochem Biophys Res Commun 1998; 246:895-8. [PMID: 9618308 DOI: 10.1006/bbrc.1998.8720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cocultivation of primary pig hepatocytes with RL-ET-14 cells, an endothelial-like cell line resulted in spontaneous induction of glutamine synthetase (GS)-activity in the hepatocytes by more than 10-fold within 120 h to 144 h. Hepatocyte-specific induction was confirmed by immunocytochemistry. Addition of trijodothyronine (T3) to the culture medium inhibited the induction in a concentration dependent manner. No comparable influence of T3 was seen with pure cultures of either cell type suggesting that only the spontaneous induction was affected. Other hormones such as glucagon, insulin, growth hormone, epinephrine and testosterone did not interfere with the induction. Addition of several protein kinase-inhibitors such as staurosporine and genistein were without influence. However, a strong inhibition was found after addition of okadaic acid in nanomolar concentrations indicating an involvement of protein-phosphatase 2A in the induction process.
Collapse
Affiliation(s)
- R Gebhardt
- Physiologisch-chemisches, Institut der Universität, Tübingen, Germany
| | | | | |
Collapse
|
13
|
Häussinger D. Hepatic glutamine transport and metabolism. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:43-86. [PMID: 9559051 DOI: 10.1002/9780470123188.ch3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the liver was long known to play a major role in the uptake, synthesis, and disposition of glutamine, metabolite balance studies across the whole liver yielded apparently contradictory findings suggesting that little or no net turnover of glutamine occurred in this organ. Efforts to understand the unique regulatory properties of hepatic glutaminase culminated in the conceptual reformulation of the pathway for glutamine synthesis and turnover, especially as regards the role of sub-acinar distribution of glutamine synthetase and glutaminase. This chapter describes these processes as well as the role of glutamine in hepatocellular hydration, a process that is the consequence of cumulative, osmotically active uptake of glutamine into cells. This topic is also examined in terms of the effects of cell swelling on the selective stimulation or inhibition of other far-ranging cellular processes. The pathophysiology of the intercellular glutamine cycle in cirrhosis is also considered.
Collapse
Affiliation(s)
- D Häussinger
- Medizinische Universitätsklinik, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
14
|
Abstract
The CYP genes encode enzymes of the cytochrome P-450 superfamily. Cytochrome P-450 (CYP) enzymes are expressed mainly in the liver and are active in mono-oxygenation and hydroxylation of various xenobiotics, including drugs and alcohols, as well as that of endogenous compounds such as steroids, bile acids, prostaglandins, leukotrienes and biogenic amines. In the liver the CYP enzymes are constitutively expressed and commonly also induced by chemicals in a characteristic zonated pattern with high expression prevailing in the downstream perivenous region. In the present review we summarize recent studies, mainly based on rat liver, on the factors regulating this position-dependent expression and induction. Pituitary-dependent signals mediated by growth hormone and thyroid hormone seem to selectively down-regulate the upstream periportal expression of certain CYP forms. It is at present unknown to what extent other hormones that also affect total hepatic CYP activities, i.e. insulin, glucagon, glucocorticoids and gonadal hormones, act zone-specifically. The expression and induction of CYP enzymes in the perivenous region probably have important toxicological implications, since many CYP-activated chemicals cause cell injury primarily in this region of the liver.
Collapse
Affiliation(s)
- T Oinonen
- National Public Health Institute, Alcohol Research Center, PB 719, 00101 Helsinki, Finland
| | | |
Collapse
|
15
|
Lie-Venema H, de Boer PA, Moorman AF, Lamers WH. Organ-specific activity of the 5' regulatory region of the glutamine synthetase gene in developing mice. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:644-59. [PMID: 9342214 DOI: 10.1111/j.1432-1033.1997.00644.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glutamine synthetase (GS) converts ammonia and glutamate into glutamine. We assessed the activity of the 5' regulatory region of the GS gene in developing transgenic mice carrying the chloramphenicol acetyltransferase (CAT) gene under the control of 3150 bp of the upstream sequence of the rat GS gene to obtain insight into the spatiotemporal regulation of its pattern of expression. To determine the organ-specific activity of the 5' regulatory region CAT and GS mRNA expression were compared by ribonuclease-protection and semi-quantitative in situ hybridization analyses. Three patterns were observed: the 5' region is active and involved in the regulation of GS expression throughout development (pericentral hepatocytes, intestines and epididymis); the 5' region shows no activity at any of the ages investigated (periportal hepatocytes and white adipose tissue); and the activity of the 5' region becomes repressed during development (stomach, muscle, brown adipose tissue, kidney, lung and testis). In the second group, an additional element must be responsible for the activation of GS expression. The last group included organs in which the 5' regulatory region is active, but not in the cells that express GS. In these organs, the activity of the 5' regulatory region must be repressed by other regulatory regions of the GS gene that are missing from the transgenic construct. These findings indicate that in addition to the 5' regulatory region, at least two unidentified elements are involved in the spatiotemporal pattern of expression of GS.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, Academic Medical Center, The Netherlands
| | | | | | | |
Collapse
|
16
|
Williams GM. Chemicals with carcinogenic activity in the rodent liver; mechanistic evaluation of human risk. Cancer Lett 1997; 117:175-88. [PMID: 9377545 DOI: 10.1016/s0304-3835(97)00229-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A wide variety of chemicals, both naturally occurring and synthetic, have exhibited carcinogenic activity in rodent liver. Some are clearly DNA reactive whereas others produce only epigenetic effects. Hepatocarcinogens are categorized according to these properties and the characteristics of examples of both types are reviewed. DNA-reactive rodent hepatocarcinogens represent human cancer risk even at non-toxic exposures, whereas epigenetic agents pose either no risk because their effects are specific to rodents, or a risk only at high exposures at which they produce the same cellular effects in humans that are the basis for their carcinogenic activity in rodents.
Collapse
Affiliation(s)
- G M Williams
- American Health Foundation, Valhalla, NY 10595, USA
| |
Collapse
|
17
|
Lie-Venema H, de Boer PA, Moorman AF, Lamers WH. Role of the 5' enhancer of the glutamine synthetase gene in its organ-specific expression. Biochem J 1997; 323 ( Pt 3):611-9. [PMID: 9169592 PMCID: PMC1218362 DOI: 10.1042/bj3230611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In mammals, glutamine synthetase (GS) is expressed in a large number of organs, but the precise regulation of its expression is still obscure. Therefore a detailed analysis of the activity of the upstream regulatory element of the GS gene in the transcriptional regulation of its expression was carried out in transgenic mice carrying the chloramphenicol acetyltransferase (CAT) gene under the control of the upstream regulatory region of the GS gene. CAT and GS mRNA expression were compared in liver, epididymis, lung, adipocytes, testis, kidney, skeletal muscle and gastrointestinal tract, both quantitatively by ribonuclease-protection analysis and topographically by in situ hybridization. It was found that the upstream regulatory region is active with respect both to the level and to the topography of GS gene expression in liver, epididymis, gastrointestinal tract (stomach, small intestine and colon) and skeletal muscle. On the other hand, in the kidney, brain, adipocytes, spleen, lung and testis, GS gene expression is not or only partly regulated by the 5' enhancer. A second enhancer, identified within the first intron, may regulate GS expression in the latter organs. Furthermore, CAT expression in the brain did not co-localize with that of GS, showing that the 5' regulatory region of the GS gene does not direct its expression to the astrocytes.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, Academic Medical Centre, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|