1
|
Graham DRM, Mitsak MJ, Elliott ST, Chen D, Whelan SA, Hart GW, Van Eyk JE. Two-dimensional gel-based approaches for the assessment of N-Linked and O-GlcNAc glycosylation in human and simian immunodeficiency viruses. Proteomics 2009; 8:4919-30. [PMID: 19072736 DOI: 10.1002/pmic.200800608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The glycosylation state of envelope glycoproteins in human and simian immunodeficiency viruses (HIV/SIV) is critical to viral infectivity and tropism, viral protein processing, and in virus evasion of the immune system. Using a rapid fluorescent 2-D gel-based method coupled with enzymatic pre-treatment of virus with PNGase F (Peptide: N-Glycosidase F) and fluorescent 2-D gels or 2-D gel Western blotting, we show significant differences in the glycosylation patterns of two SIV strains widely used in animal models of HIV disease and vaccine studies. We also demonstrate the modification of a host protein important in HIV biology (HLA-DR) by O-GlcNAc. Further, this experimental pipeline allows for the identification of the modified protein and the site of N-linked glycosylation by fluorescent 2-DE coupled with MS and the qualitative and semi-quantitative assessment of viral glycosylation. The method is fully compatible with downstream glycomics analysis. This approach will permit correlation of virus glycosylation status with pathological severity and may serve as a rapid screen of viruses from physiological samples for further study by more advanced MS methodology.
Collapse
Affiliation(s)
- David R M Graham
- Department of Medicine, Division of Cardiology, The JHU Bayview Proteomics Center, The Johns Hopkins University, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
2
|
Zanetti G, Briggs JAG, Grünewald K, Sattentau QJ, Fuller SD. Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog 2006; 2:e83. [PMID: 16933990 PMCID: PMC1557830 DOI: 10.1371/journal.ppat.0020083] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/10/2006] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein (Env) complexes of the human and simian immunodeficiency viruses (HIV and SIV, respectively) mediate viral entry and are a target for neutralizing antibodies. The receptor binding surfaces of Env are in large part sterically occluded or conformationally masked prior to receptor binding. Knowledge of the unliganded, trimeric Env structure is key for an understanding of viral entry and immune escape, and for the design of vaccines to elicit neutralizing antibodies. We have used cryo-electron tomography and averaging to obtain the structure of the SIV Env complex prior to fusion. Our result reveals novel details of Env organisation, including tight interaction between monomers in the gp41 trimer, associated with a three-lobed, membrane-distal gp120 trimer. A cavity exists at the gp41–gp120 trimer interface. Our model for the spike structure agrees with previously predicted interactions between gp41 monomers, and furthers our understanding of gp120 interactions within an intact spike. HIV (human immunodeficiency virus) causes AIDS (acquired immunodeficiency syndrome) that is responsible for approximately 50 million infections since its first description in 1981. Antiviral therapies have made enormous progress, but a vaccine remains essential and yet elusive. The phenotypic variability of the virus (particle size varies by 3-fold) makes a structural approach difficult. Common virus surface components must be maintained to allow attachment to and penetration of host cells for infection. Reacting to these common viral components with neutralizing antibodies would allow the immune system to respond rapidly to infection and potentially serve as a basis for a vaccine. HIV (and its close relative simian immunodeficiency virus [SIV]) avoids antibody neutralization, in part by masking these essential components with flexible structural elements such as sugars and protein domains. The structural variability of the virus forced the authors to combine over a hundred electron micrographs to visualize the structure of the individual virus particles. The authors could then computationally extract the surface components and generate their average structure. This average sheds light on mechanisms of occlusion of common viral components from the immune system. This average structure could serve as a basis for effective vaccine design.
Collapse
Affiliation(s)
- Giulia Zanetti
- University of Oxford, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, Headington, United Kingdom
| | - John A. G Briggs
- Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kay Grünewald
- Department of Molecular Structural Biology, Max Planck Institut für Biochemie, Martinsried, Germany
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
- * To whom correspondence should be addressed. E-mail: (QJS); (SDF)
| | - Stephen D Fuller
- University of Oxford, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, Headington, United Kingdom
- * To whom correspondence should be addressed. E-mail: (QJS); (SDF)
| |
Collapse
|
3
|
Ambrose Z, Boltz V, Palmer S, Coffin JM, Hughes SH, Kewalramani VN. In vitro characterization of a simian immunodeficiency virus-human immunodeficiency virus (HIV) chimera expressing HIV type 1 reverse transcriptase to study antiviral resistance in pigtail macaques. J Virol 2004; 78:13553-61. [PMID: 15564466 PMCID: PMC533891 DOI: 10.1128/jvi.78.24.13553-13561.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antiviral resistance is a significant obstacle in the treatment of human immunodeficiency virus type 1 (HIV-1)-infected individuals. Because nonnucleoside reverse transcriptase inhibitors (NNRTIs) specifically target HIV-1 reverse transcriptase (RT) and do not effectively inhibit simian immunodeficiency virus (SIV) RT, the development of animal models to study the evolution of antiviral resistance has been problematic. To facilitate in vivo studies of NNRTI resistance, we examined whether a SIV that causes immunopathogenesis in pigtail macaques could be made sensitive to NNRTIs. Two simian-human immunodeficiency viruses (SHIVs) were derived from the genetic background of SIV(mne): SIV-RT-YY contains RT substitutions intended to confer NNRTI susceptibility (V181Y and L188Y), and RT-SHIV(mne) contains the entire HIV-1 RT coding region. Both mutant viruses grew to high titers in vitro but had reduced fitness relative to wild-type SIV(mne). Although the HIV-1 RT was properly processed into p66 and p51 subunits in RT-SHIV(mne) particles, the RT-SHIV(mne) virions had lower levels of RT per viral genomic RNA than HIV-1. Correspondingly, there was decreased RT activity in RT-SHIV(mne) and SIV-RT-YY particles. HIV-1 and RT-SHIV(mne) were similarly susceptible to the NNRTIs efavirenz, nevirapine, and UC781. However, SIV-RT-YY was less sensitive to NNRTIs than HIV-1 or RT-SHIV(mne). Classical NNRTI resistance mutations were selected in RT-SHIV(mne) after in vitro drug treatment and were monitored in a sensitive allele-specific real-time RT-PCR assay. Collectively, these results indicate that RT-SHIV(mne) may be a useful model in macaques for the preclinical evaluation of NNRTIs and for studies of the development of drug resistance in vivo.
Collapse
Affiliation(s)
- Zandrea Ambrose
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
4
|
Hirsch VM, Lifson JD. Simian immunodeficiency virus infection of monkeys as a model system for the study of AIDS pathogenesis, treatment, and prevention. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:437-77. [PMID: 11013771 DOI: 10.1016/s1054-3589(00)49034-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As presented in this review, there are a number of different models of both natural and experimental infection of monkeys with primate lentiviruses. There are numerous different viruses and multiple different monkey species, making for a potentially large number of different combinations. The fact that each different combination of virus isolate and host macaque species may show different behavior underscores the need to understand the different models and their key features. On the one hand, this diversity of systems underscores the need to provide some standardization of the systems used for certain kinds of studies, such as vaccine evaluations, in order to facilitate the comparison of results obtained in different experiments, but in essentially the same experimental system. On the other hand, the rich diversity of different systems, with different features and behaviors, represents a tremendous resource, among other things allowing the investigator to select the system that best recapitulates particular aspects of human HIV infection for study in a relevant nonhuman primate model. Such studies have provided, and may be expected to continue to provide, important insights to guide HIV treatment and vaccine development in the future.
Collapse
Affiliation(s)
- V M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, Maryland 20852, USA
| | | |
Collapse
|
5
|
Gorelick RJ, Benveniste RE, Lifson JD, Yovandich JL, Morton WR, Kuller L, Flynn BM, Fisher BA, Rossio JL, Piatak M, Bess JW, Henderson LE, Arthur LO. Protection of Macaca nemestrina from disease following pathogenic simian immunodeficiency virus (SIV) challenge: utilization of SIV nucleocapsid mutant DNA vaccines with and without an SIV protein boost. J Virol 2000; 74:11935-49. [PMID: 11090194 PMCID: PMC112477 DOI: 10.1128/jvi.74.24.11935-11949.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular clones were constructed that express nucleocapsid (NC) deletion mutant simian immunodeficiency viruses (SIVs) that are replication defective but capable of completing virtually all of the steps of a single viral infection cycle. These steps include production of particles that are viral RNA deficient yet contain a full complement of processed viral proteins. The mutant particles are ultrastructurally indistinguishable from wild-type virus. Similar to a live attenuated vaccine, this approach should allow immunological presentation of a full range of viral epitopes, without the safety risks of replicating virus. A total of 11 Macaca nemestrina macaques were inoculated with NC mutant SIV expressing DNA, intramuscularly (i.m.) in one study and i.m. and subcutaneously in another study. Six control animals received vector DNA lacking SIV sequences. Only modest and inconsistent humoral responses and no cellular immune responses were observed prior to challenge. Following intravenous challenge with 20 animal infectious doses of the pathogenic SIV(Mne) in a long-term study, all control animals became infected and three of four animals developed progressive SIV disease leading to death. All 11 NC mutant SIV DNA-immunized animals became infected following challenge but typically showed decreased initial peak plasma SIV RNA levels compared to those of control animals (P = 0.0007). In the long-term study, most of the immunized animals had low or undetectable postacute levels of plasma SIV RNA, and no CD4(+) T-cell depletion or clinical evidence of progressive disease, over more than 2 years of observation. Although a subset of immunized and control animals were boosted with SIV(Mne) proteins, no apparent protective benefit was observed. Immunization of macaques with DNA that codes for replication-defective but structurally complete virions appears to protect from or at least delay the onset of AIDS after infection with a pathogenic immunodeficiency virus. With further optimization, this may be a promising approach for vaccine development.
Collapse
Affiliation(s)
- R J Gorelick
- AIDS Vaccine Program, SAIC-Frederick, Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lifson JD, Rossio JL, Arnaout R, Li L, Parks TL, Schneider DK, Kiser RF, Coalter VJ, Walsh G, Imming RJ, Fisher B, Flynn BM, Bischofberger N, Piatak M, Hirsch VM, Nowak MA, Wodarz D. Containment of simian immunodeficiency virus infection: cellular immune responses and protection from rechallenge following transient postinoculation antiretroviral treatment. J Virol 2000; 74:2584-93. [PMID: 10684272 PMCID: PMC111746 DOI: 10.1128/jvi.74.6.2584-2593.2000] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1999] [Accepted: 12/23/1999] [Indexed: 12/21/2022] Open
Abstract
To better understand the viral and host factors involved in the establishment of persistent productive infection by primate lentiviruses, we varied the time of initiation and duration of postinoculation antiretroviral treatment with tenofovir (9-[2-(R)-(phosphonomethoxy)propyl]adenine) while performing intensive virologic and immunologic monitoring in rhesus macaques, inoculated intravenously with simian immunodeficiency virus SIVsmE660. Postinoculation treatment did not block the initial infection, but we identified treatment regimens that prevented the establishment of persistent productive infection, as judged by the absence of measurable plasma viremia following drug discontinuation. While immune responses were heterogeneous, animals in which treatment resulted in prevention of persistent productive infection showed a higher frequency and higher levels of SIV-specific lymphocyte proliferative responses during the treatment period compared to control animals, despite the absence of either detectable plasma viremia or seroconversion. Animals protected from the initial establishment of persistent productive infection were also relatively or completely protected from subsequent homologous rechallenge. Even postinoculation treatment regimens that did not prevent establishment of persistent infection resulted in downmodulation of the level of plasma viremia following treatment cessation, compared to the viremia seen in untreated control animals, animals treated with regimens known to be ineffective, or the cumulative experience with the natural history of plasma viremia following infection with SIVsmE660. The results suggest that the host may be able to effectively control SIV infection if the initial exposure occurs under favorable conditions of low viral burden and in the absence of ongoing high level cytopathic infection of responding cells. These findings may be particularly important in relation to prospects for control of primate lentiviruses in the settings of both prophylactic and therapeutic vaccination for prevention of AIDS.
Collapse
Affiliation(s)
- J D Lifson
- AIDS Vaccine Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lewis MG, Yalley-Ogunro J, Greenhouse JJ, Brennan TP, Jiang JB, VanCott TC, Lu Y, Eddy GA, Birx DL. Limited protection from a pathogenic chimeric simian-human immunodeficiency virus challenge following immunization with attenuated simian immunodeficiency virus. J Virol 1999; 73:1262-70. [PMID: 9882330 PMCID: PMC103949 DOI: 10.1128/jvi.73.2.1262-1270.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two live attenuated single-deletion mutant simian immunodeficiency virus (SIV) constructs, SIV239Deltanef and SIVPBj6.6Deltanef, were tested for their abilities to stimulate protective immunity in macaques. During the immunization period the animals were examined for specific immune responses and virus growth. Each construct generated high levels of specific immunity in all of the immunized animals. The SIV239Deltanef construct was found to grow to high levels in all immunized animals, with some animals remaining positive for virus isolation and plasma RNA throughout the immunization period. The SIVPBj6.6Deltanef was effectively controlled by all of the immunized animals, with virus mostly isolated only during the first few months following immunization and plasma RNA never detected. Following an extended period of immunization of over 80 weeks, the animals were challenged with a pathogenic simian-human immunodeficiency virus (SHIV) isolate, SIV89. 6PD, by intravenous injection. All of the SIV239Deltanef-immunized animals became infected with the SHIV isolate; two of five animals eventually controlled the challenge and three of five animals, which failed to check the immunizing virus, progressed to disease state before the unvaccinated controls. One of five animals immunized with SIVPBj6.6Deltanef totally resisted infection by the challenge virus, while three others limited its growth and the remaining animal became persistently infected and eventually died of a pulmonary thrombus. These data indicate that vaccination with attenuated SIV can protect macaques from disease and in some cases from infection by a divergent SHIV. However, if animals are unable to control the immunizing virus, potential damage that can accelerate the disease course of a pathogenic challenge virus may occur.
Collapse
Affiliation(s)
- M G Lewis
- Henry M. Jackson Foundation, Walter Reed Army Institute of Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Heidecker G, Muñoz H, Lloyd P, Hodge D, Ruscetti FW, Morton WR, Hu S, Benveniste RE. Macaques infected with cloned simian immunodeficiency virus show recurring nef gene alterations. Virology 1998; 249:260-74. [PMID: 9791018 DOI: 10.1006/viro.1998.9325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared nef gene sequences isolated by polymerase chain reaction from peripheral blood lymphocyte DNA of macaques that had been inoculated with either biologically (E11S) or molecularly (clone 8) cloned SIV/Mne. Two samples from each animal obtained either early (weeks 2-8) or late (weeks 21-137) after infection were analyzed. Three substitutions in the predicted Nef amino acid sequence were seen in all animals at the late time point, and two other substitutions were seen in all except one. Two of the common exchanges are located approximately 40 residues apart in the Nef core sequence but are juxtaposed on the tertiary structure as judged by computer modeling using the structure of the HIV Nef core protein as a guide. Most recurrent in vivo changes replaced a residue found in the cloned Nef sequence with one present in a consensus derived by aligning the Nef sequences of the SIV/Sm clade. Recombinant virus containing a macaque-adapted (MA nef) nef on the clone 8 backbone was 3-fold more infectious on SMAGI cells than the original virus. A lymphocyte line infected with SIV-clone 8-MAnef contained a large proportion of cells carrying provirus with defective nef genes. These findings suggest that the nef gene of the cloned SIV/Mne had undergone attenuating mutations during propagation in tissue culture that were "corrected" in vivo.
Collapse
Affiliation(s)
- G Heidecker
- SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland, 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Arthur LO, Bess JW, Urban RG, Strominger JL, Morton WR, Mann DL, Henderson LE, Benveniste RE. Macaques immunized with HLA-DR are protected from challenge with simian immunodeficiency virus. J Virol 1995; 69:3117-24. [PMID: 7707540 PMCID: PMC189013 DOI: 10.1128/jvi.69.5.3117-3124.1995] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Macaques immunized with uninfected human cells have been shown to be protected from challenge with simian immunodeficiency virus (SIV) propagated in human cells. To identify the potential antigens involved in this protection, macaques were immunized with uninfected human cells, sucrose density gradient-purified culture fluid from uninfected human cells (mock virus), beta-2 microglobulin (beta 2M), immunoaffinity-purified HLA class I and class II proteins from these human cells, and adjuvant. Although all macaques immunized with beta 2M and HLA class I developed high antibody titers to beta 2M, these animals were not protected from a subsequent challenge with infectious SIV grown in human cells. In contrast, the macaques immunized with class II protein (HLA-DR) and mock virus developed antibodies to class II protein and were protected from the intravenous infectious virus challenge. The class II protein- and mock virus-immunized animals which were protected from challenge were given boosters of the appropriate antigen and challenged with the same SIV propagated in macaque cells. All animals became infected, indicating that the protection seen with human class II protein did not extend to protection from infection with SIV containing macaque class II proteins. Since the virus released from SIV-infected macaque cells would contain macaque class II proteins, our results suggest that the initial SIV infected was completely prevented. In addition, the lack of protection from challenge with SIV propagated in macaque cells provided strong evidence that the protection was due to an immune response to the cellular proteins and not to epitopes cross-reactive between class II proteins and the viral proteins, since the identical virus proteins were present in both challenge stocks. These results are the first demonstration that immunization with a purified cellular protein can protect from virus infection.
Collapse
Affiliation(s)
- L O Arthur
- AIDS Vaccine Program, PRI/DynCorp, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yasutomi Y, Koenig S, Woods RM, Madsen J, Wassef NM, Alving CR, Klein HJ, Nolan TE, Boots LJ, Kessler JA. A vaccine-elicited, single viral epitope-specific cytotoxic T lymphocyte response does not protect against intravenous, cell-free simian immunodeficiency virus challenge. J Virol 1995; 69:2279-84. [PMID: 7884874 PMCID: PMC188898 DOI: 10.1128/jvi.69.4.2279-2284.1995] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Protection against simian immunodeficiency virus (SIV) challenge was assessed in rhesus monkeys with a vaccine-elicited, single SIV epitope-specific cytotoxic T-lymphocyte (CTL) response in the absence of SIV-specific antibody. Strategies were first explored for eliciting an optimal SIV Gag epitope-specific CTL response. These studies were performed in rhesus monkeys expressing the major histocompatibility complex (MHC) class I gene Mamu-A*01, a haplotype associated with a predominant SIV CTL epitope mapped to residues 182 to 190 of the Gag protein (p11C). We demonstrated that a combined modality immunization strategy using a recombinant Mycobacterium bovis BCG-SIV Gag construct for priming, and peptide formulated in liposome for boosting, elicited a greater p11C-specific CTL response than did a single immunization with peptide-liposome alone. Vaccinated and control monkeys were then challenged with cell-free SIVmne by an intravenous route of inoculation. Despite a vigorous p11C-specific CTL response at the time of virus inoculation, all monkeys became infected with SIV. gag gene sequencing of the virus isolated from these monkeys demonstrated that the established viruses had no mutations in the p11C-coding region. Thus, the preexisting CTL response did not select for a viral variant that might escape T-cell immune recognition. These studies demonstrate that a potent SIV-specific CTL response can be elicited by combining live vector and peptide vaccine modalities. However, a single SIV Gag epitope-specific CTL response in the absence of SIV-specific antibody did not provide protection against a cell-free, intravenous SIV challenge.
Collapse
Affiliation(s)
- Y Yasutomi
- Harvard Medical School, Beth Israel Hospital, Boston, Massachusetts 02215
| | | | | | | | | | | | | | | | | | | |
Collapse
|