1
|
Kemeter LM, Birzer A, Heym S, Thoma-Kress AK. Milk Transmission of Mammalian Retroviruses. Microorganisms 2023; 11:1777. [PMID: 37512949 PMCID: PMC10386362 DOI: 10.3390/microorganisms11071777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The transmission of viruses from one host to another typically occurs through horizontal or vertical pathways. The horizontal pathways include transmission amongst individuals, usually through bodily fluids or excretions, while vertical transmission transpires from mother to their offspring, either during pregnancy, childbirth, or breastfeeding. While there are more than 200 human pathogenic viruses to date, only a small number of them are known to be transmitted via breast milk, including cytomegalovirus (CMV), human immunodeficiency virus type 1 (HIV-1), and human T cell lymphotropic virus type 1 (HTLV-1), the latter two belonging to the family Retroviridae. Breast milk transmission is a common characteristic among mammalian retroviruses, but there is a lack of reports summarizing our knowledge regarding this route of transmission of mammalian retroviruses. Here, we provide an overview of the transmission of mammalian exogenous retroviruses with a focus on Orthoretrovirinae, and we highlight whether they have been described or suspected to be transmitted through breast milk, covering various species. We also elaborate on the production and composition of breast milk and discuss potential entry sites of exogenous mammalian retroviruses during oral transmission.
Collapse
Affiliation(s)
| | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.M.K.); (A.B.); (S.H.)
| |
Collapse
|
2
|
Jégado B, Kashanchi F, Dutartre H, Mahieux R. STLV-1 as a model for studying HTLV-1 infection. Retrovirology 2019; 16:41. [PMID: 31843020 PMCID: PMC6915939 DOI: 10.1186/s12977-019-0503-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/07/2019] [Indexed: 01/17/2023] Open
Abstract
Few years after HTLV-1 identification and isolation in humans, STLV-1, its simian counterpart, was discovered. It then became clear that STLV-1 is present almost in all simian species. Subsequent molecular epidemiology studies demonstrated that, apart from HTLV-1 subtype A, all human subtypes have a simian homolog. As HTLV-1, STLV-1 is the etiological agent of ATL, while no case of TSP/HAM has been described. Given its similarities with HTLV-1, STLV-1 represents a unique tool used for performing clinical studies, vaccine studies as well as basic science.
Collapse
Affiliation(s)
- Brice Jégado
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, USA
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
3
|
Roussel M, Pontier D, Kazanji M, Ngoubangoye B, Mahieux R, Verrier D, Fouchet D. Quantifying transmission by stage of infection in the field: the example of SIV-1 and STLV-1 infecting mandrills. Am J Primatol 2014; 77:309-18. [PMID: 25296992 DOI: 10.1002/ajp.22346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/17/2014] [Accepted: 09/07/2014] [Indexed: 11/08/2022]
Abstract
The early stage of viral infection is often followed by an important increase of viral load and is generally considered to be the most at risk for pathogen transmission. Most methods quantifying the relative importance of the different stages of infection were developed for studies aimed at measuring HIV transmission in Humans. However, they cannot be transposed to animal populations in which less information is available. Here we propose a general method to quantify the importance of the early and late stages of the infection on micro-organism transmission from field studies. The method is based on a state space dynamical model parameterized using Bayesian inference. It is illustrated by a 28 years dataset in mandrills infected by Simian Immunodeficiency Virus type-1 (SIV-1) and the Simian T-Cell Lymphotropic Virus type-1 (STLV-1). For both viruses we show that transmission is predominant during the early stage of the infection (transmission ratio for SIV-1: 1.16 [0.0009; 18.15] and 9.92 [0.03; 83.8] for STLV-1). However, in terms of basic reproductive number (R0 ), which quantifies the weight of both stages in the spread of the virus, the results suggest that the epidemics of SIV-1 and STLV-1 are mainly driven by late transmissions in this population.
Collapse
Affiliation(s)
- Marion Roussel
- Université de Lyon, F-69000, Lyon ; Université Lyon 1 ; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622 Villeurbanne, France; LabEx ECOFECT - Ecoevolutionary Dynamics of Infectious Diseases, Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Immunological alterations and associated diseases in mandrills (Mandrillus sphinx) naturally co-infected with SIV and STLV. Virology 2014; 454-455:184-96. [DOI: 10.1016/j.virol.2014.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/16/2014] [Accepted: 02/18/2014] [Indexed: 12/11/2022]
|
5
|
Miura M, Yasunaga JI, Tanabe J, Sugata K, Zhao T, Ma G, Miyazato P, Ohshima K, Kaneko A, Watanabe A, Saito A, Akari H, Matsuoka M. Characterization of simian T-cell leukemia virus type 1 in naturally infected Japanese macaques as a model of HTLV-1 infection. Retrovirology 2013; 10:118. [PMID: 24156738 PMCID: PMC4016002 DOI: 10.1186/1742-4690-10-118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/15/2013] [Indexed: 01/11/2023] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) causes chronic infection leading to development of adult T-cell leukemia (ATL) and inflammatory diseases. Non-human primates infected with simian T-cell leukemia virus type 1 (STLV-1) are considered to constitute a suitable animal model for HTLV-1 research. However, the function of the regulatory and accessory genes of STLV-1 has not been analyzed in detail. In this study, STLV-1 in naturally infected Japanese macaques was analyzed. Results We identified spliced transcripts of STLV-1 corresponding to HTLV-1 tax and HTLV-1 bZIP factor (HBZ). STLV-1 Tax activated the NFAT, AP-1 and NF-κB signaling pathways, whereas STLV-1 bZIP factor (SBZ) suppressed them. Conversely, SBZ enhanced TGF-β signaling and induced Foxp3 expression. Furthermore, STLV-1 Tax activated the canonical Wnt pathway while SBZ suppressed it. STLV-1 Tax enhanced the viral promoter activity while SBZ suppressed its activation. Then we addressed the clonal proliferation of STLV-1+ cells by massively sequencing the provirus integration sites. Some clones proliferated distinctively in monkeys with higher STLV-1 proviral loads. Notably, one of the monkeys surveyed in this study developed T-cell lymphoma in the brain; STLV-1 provirus was integrated in the lymphoma cell genome. When anti-CCR4 antibody, mogamulizumab, was administered into STLV-1-infected monkeys, the proviral load decreased dramatically within 2 weeks. We observed that some abundant clones recovered after discontinuation of mogamulizumab administration. Conclusions STLV-1 Tax and SBZ have functions similar to those of their counterparts in HTLV-1. This study demonstrates that Japanese macaques naturally infected with STLV-1 resemble HTLV-1 carriers and are a suitable model for the investigation of persistent HTLV-1 infection and asymptomatic HTLV-1 carrier state. Using these animals, we verified that mogamulizumab, which is currently used as a drug for relapsed ATL, is also effective in reducing the proviral load in asymptomatic individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Shogoin Kawahara-cho 53, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
6
|
Mitchell JL, Hood S, Mee ET, Wigglesworth E, Sethi M, Auda G, Almond NM, Rose NJ. Simian T-cell lymphotropic virus type I alters the proviral load and biodistribution of simian retrovirus type 2 in co-infected macaques, supporting advancement of immunosuppressive pathology. J Gen Virol 2013. [DOI: 10.1099/vir.0.046078-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The infection dynamics and pathology of a retrovirus may be altered by one or more additional viruses. To investigate this further, this study characterized proviral load, biodistribution and the immune response in Macaca fascicularis naturally infected with combinations of simian retrovirus type 2 (SRV-2) and simian T-cell lymphotropic virus type I (STLV-I). As the mesenteric lymph node (MLN) and the spleen have been implicated previously in response to retroviral infection, the morphology and immunopathology of these tissues were assessed. The data revealed a significant change in SRV-2 biodistribution in macaques infected with STLV-I. Pathological changes were greater in the MLN and spleen of STLV-I-infected and co-infected macaques compared with the other groups. Immune-cell populations in co-infected macaque spleens were increased and there was an atypical distribution of B-cells. These findings suggest that the infection dynamics of each virus in a co-infected individual may be affected to a different extent and that STLV-I appears to be responsible for enhancing the biodistribution and associated pathological changes in SRV-2 in macaques.
Collapse
Affiliation(s)
- Jane L. Mitchell
- Divisions of Virology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Simon Hood
- Divisions of Virology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Edward T. Mee
- Divisions of Virology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Erin Wigglesworth
- Divisions of Virology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Meera Sethi
- Divisions of Virology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ghazi Auda
- Divisions of Virology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Neil M. Almond
- Divisions of Virology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Nicola J. Rose
- Divisions of Virology, National Institute for Biological Standards and Control, A Centre of the Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
7
|
|
8
|
Lerche NW. Simian retroviruses: infection and disease--implications for immunotoxicology research in primates. J Immunotoxicol 2010; 7:93-101. [PMID: 20433415 DOI: 10.3109/15476911003657406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-human primates have assumed an important role in preclinical safety assessment studies, particularly in the evaluation of biopharmaceutical and immunomodulatory therapies. Naturally occurring simian retrovirus infections may adversely affect the suitability of primates for use in such studies. Various species of non-human primates are the natural hosts for six exogenous retroviruses, representing five genera within the family Retroviridae. Retroviruses establish persistent infections with a broad spectrum of pathogenic potential, ranging from nonpathogenic to highly pathogenic, depending on the variety of the host, virus, and environmental factors. In the context of immunotoxicology, in which the research objective is to specifically evaluate the effect of drugs or biologics on the immune system, the immune modulatory effects of simian retroviruses, which may be subtle or profound, may introduce significant confounding into the studies of immunotoxic effects utilizing non-human primates. Latent or subclinical retrovirus infections are common and research-related procedures may lead to virus reactivation or overt disease. Adverse effects of undetected retrovirus infections on preclinical research include the loss of experimental subjects (and potentially of statistical power) due to increased morbidity and mortality, virus-induced clinical abnormalities, histologic lesions, alteration of physiologic parameters and biologic responses, and interference with in vitro assays and/or cytolytic destruction of primary cell cultures. The aim of this review is to provide an overview of the key biological, clinical, and pathological features of several important simian retroviruses, with emphasis on viruses infecting macaques and other primate species commonly used in preclinical research, and a discussion of the implications of these infections for immunotoxicology and other preclinical research in primates. Adequate pre-study retrovirus screening is essential to exclude retrovirus-infected primates from research protocols.
Collapse
Affiliation(s)
- Nicholas W Lerche
- California National Primate Research Center, University of California, Davis, CA 95616-8542, USA.
| |
Collapse
|
9
|
Dynamic interaction between STLV-1 proviral load and T-cell response during chronic infection and after immunosuppression in non-human primates. PLoS One 2009; 4:e6050. [PMID: 19557183 PMCID: PMC2698465 DOI: 10.1371/journal.pone.0006050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 05/25/2009] [Indexed: 11/25/2022] Open
Abstract
We used mandrills (Mandrillus sphinx) naturally infected with simian T-cell leukemia virus type 1 (STLV-1) as a model for evaluating the influence of natural STLV-1 infection on the dynamics and evolution of the immune system during chronic infection. Furthermore, in order to evaluate the role of the immune system in controlling the infection during latency, we induced immunosuppression in the infected monkeys. We first showed that the STLV-1 proviral load was higher in males than in females and increased significantly with the duration of infection: mandrills infected for 10–6 years had a significantly higher proviral load than those infected for 2–4 years. Curiously, this observation was associated with a clear reduction in CD4+ T-cell number with age. We also found that the percentage of CD4+ T cells co-expressing the activation marker HLA-DR and the mean percentage of CD25+ in CD4+ and CD8+ T cells were significantly higher in infected than in uninfected animals. Furthermore, the STLV-1 proviral load correlated positively with T-cell activation but not with the frequency of T cells secreting interferon γ in response to Tax peptides. Lastly, we showed that, during immunosuppression in infected monkeys, the percentages of CD8+ T cells expressing HLA-DR+ and of CD4+ T cells expressing the proliferation marker Ki67 decreased significantly, although the percentage of CD8+ T cells expressing HLA-DR+ and Ki67 increased significantly by the end of treatment. Interestingly, the proviral load increased significantly after immunosuppression in the monkey with the highest load. Our study demonstrates that mandrills naturally infected with STLV-1 could be a suitable model for studying the relations between host and virus. Further studies are needed to determine whether the different compartments of the immune response during infection induce the long latency by controlling viral replication over time. Such studies would provide important information for the development of immune-based therapeutic strategies.
Collapse
|