1
|
Mo C, Smilanich AM. Feeding on an exotic host plant enhances plasma levels of phenoloxidase by modulating feeding efficiency in a specialist insect herbivore. Front Physiol 2023; 14:1127670. [PMID: 36909228 PMCID: PMC9998540 DOI: 10.3389/fphys.2023.1127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Exotic plant species represent a novel resource for invertebrates and many herbivorous insects have incorporated exotic plants into their diet. Using a new host plant can have physiological repercussions for these herbivores that may be beneficial or detrimental. In this study, we compared how using an exotic versus native host plant affected the immune system response and feeding efficiency of a specialist lepidopteran, the common buckeye (Junonia coenia: Nymphalidae, Hübner 1822). Materials and Methods: In a lab experiment, larvae were reared on either the exotic host plant, Plantago lanceolata (Plantaginaceae), or the native host plant, Mimulus guttatus (Phrymaceae). Beginning at second instar feeding efficiency data were collected every 2 days until fifth instar when immune assays were performed. Immune assays consisted of standing phenoloxidase activity, total phenoloxidase activity, and melanization. Results: Interestingly, we found that all three immune system parameters were higher on the exotic host plant compared to the native host plant. The exotic host plant also supported higher pupal weights, faster development time, greater consumption, and more efficient approximate digestibility. In contrast, the native host plant supported higher efficiency of conversion of ingested and digested food. The relationship between immunity and feeding efficiency was more complex but showed a large positive effect of greater host plant consumption on all immune parameters, particularly for the exotic host plant. While not as strong, the efficiency of conversion of digested food tended to show a negative effect on the three immune parameters. Conclusion: Overall, the exotic host plant proved to be beneficial for this specialist insect with regard to immunity and many of the feeding efficiency parameters and continued use of this host plant is predicted for populations already using it.
Collapse
Affiliation(s)
- Carmen Mo
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Angela M Smilanich
- Department of Biology, University of Nevada, Reno, NV, United States.,Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV, United States
| |
Collapse
|
2
|
Muchoney ND, Bowers MD, Carper AL, Mason PA, Teglas MB, Smilanich AM. Use of an exotic host plant shifts immunity, chemical defense, and viral burden in wild populations of a specialist insect herbivore. Ecol Evol 2022; 12:e8723. [PMID: 35342612 PMCID: PMC8928866 DOI: 10.1002/ece3.8723] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly, Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant, Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus, Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field-collected caterpillars using either P. lanceolata or a native plant, Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the "vulnerable host" hypothesis) from a field-based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus-infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.
Collapse
Affiliation(s)
- Nadya D. Muchoney
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - M. Deane Bowers
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Adrian L. Carper
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Peri A. Mason
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Mike B. Teglas
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of Agriculture, Veterinary and Rangeland SciencesUniversity of NevadaRenoNevadaUSA
| | - Angela M. Smilanich
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
3
|
Tuttle LJ, Lamb RW, Stringer AL. Differential learning by native versus invasive predators to avoid distasteful cleaning mutualists. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lillian J. Tuttle
- Department of Integrative Biology Oregon State University Corvallis OR USA
- Hawai‘i Institute of Marine Biology School of Ocean and Earth Science and Technology University of Hawai‘i at Mānoa Kāne‘ohe HI USA
| | - Robert W. Lamb
- Department of Integrative Biology Oregon State University Corvallis OR USA
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA
| | - Allison L. Stringer
- Department of Integrative Biology Oregon State University Corvallis OR USA
- Montana Cooperative Fishery Research Unit Department of Ecology Montana State University Bozeman MT USA
| |
Collapse
|
4
|
Messina FJ, Lish AM, Springer A, Gompert Z. Colonization of Marginal Host Plants by Seed Beetles (Coleoptera: Chrysomelidae): Effects of Geographic Source and Genetic Admixture. ENVIRONMENTAL ENTOMOLOGY 2020; 49:938-946. [PMID: 32484545 DOI: 10.1093/ee/nvaa065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 06/11/2023]
Abstract
The ability to adapt to a novel host plant may vary among insect populations with different genetic histories, and colonization of a marginal host may be facilitated by genetic admixture of disparate populations. We assembled populations of the seed beetle, Callosobruchus maculatus (F.), from four continents, and compared their ability to infest two hosts, lentil and pea. We also formed two cross-continent hybrids (Africa × N.A. and Africa × S.A.). In pre-selection assays, survival was only ~3% in lentil and ~40% in pea. For three replicate populations per line, colonization success on lentil was measured as cumulative exit holes after 75-175 d. On pea, we estimated the change in larval survival after five generations of selection. Females in all lines laid few eggs on lentil, and survival of F1 larvae was uniformly <5%. Subsequently, however, the lines diverged considerably in population growth. Performance on lentil was highest in the Africa × N.A. hybrid, which produced far more adults (mean > 11,000) than either parental line. At the other extreme, Asian populations on lentil appeared to have gone extinct. The Africa × N.A. line also exhibited the highest survival on pea, and again performed better than either parent line. However, no line displayed a rapid increase in survival on pea, as is sometimes observed on lentil. Our results demonstrate that geographic populations can vary substantially in their responses to the same novel resource. In addition, genetic admixtures (potentially caused by long-distance transport of infested seeds) may facilitate colonization of an initially poor host.
Collapse
Affiliation(s)
| | | | - Amy Springer
- Department of Biology, Utah State University, Logan, UT
| | | |
Collapse
|
5
|
Messina FJ, Lish AM, Gompert Z. Variable Responses to Novel Hosts by Populations of the Seed Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:1194-1202. [PMID: 30052864 DOI: 10.1093/ee/nvy108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Cosmopolitan pests can consist of geographic populations that differ in their current host ranges or in their ability to colonize a novel host. We compared the responses of cowpea-adapted, seed-beetle populations (Callosobruchus maculatus [F.] (Coleoptera: Chrysomelidae: Bruchinae)) from Africa, North America, and South America to four novel legumes: chickpea, lentil, mung bean, and pea. We also qualitatively compared these results to those obtained earlier for an Asian population. For each host, we measured larval survival to adult emergence and used both no-choice and choice tests to estimate host acceptance. The pattern of larval survival was similar among populations: high or moderately high survival on cowpea, mung bean, and chickpea, intermediate survival on pea, and very low survival on lentil. One exception was unusually high survival of African larvae on pea, and there was modest variation among populations for survival on lentil. The African population was also an outlier with respect to host acceptance; under no-choice conditions, African females showed a much greater propensity to accept the two least preferred hosts, chickpea and lentil. However, greater acceptance of these hosts by African females was not evident in choice tests. Inferences about population differences in host acceptance can thus strongly depend on experimental protocol. Future selection experiments can be used to determine whether the observed population differences in initial performance will affect the probability of producing self-sustaining populations on a marginal crop host.
Collapse
|
6
|
Wood CW, Wice EW, Del Sol J, Paul S, Sanderson BJ, Brodie ED. Constraints Imposed by a Natural Landscape Override Offspring Fitness Effects to Shape Oviposition Decisions in Wild Forked Fungus Beetles. Am Nat 2018; 191:524-538. [PMID: 29570398 DOI: 10.1086/696218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oviposition site decisions often maximize offspring fitness, but costs constraining choice can cause females to oviposit in poor developmental environments. It is unclear whether these constraints cumulatively outweigh offspring fitness to determine oviposition decisions in wild populations. Understanding how constraints shape oviposition in natural landscapes is a critical step toward revealing how maternal behavior influences fundamental phenomena like the evolution of specialization and the use of sink environments. Here, we used a genetic capture-recapture technique to reconstruct the oviposition decisions of individual females in a natural metapopulation of a beetle (Bolitotherus cornutus) that oviposits on three fungus species. We measured larval fitness-related traits (mass, development time, survival) on each fungus and compared the oviposition preferences of females in laboratory versus field tests. Larval fitness differed substantially among fungi, and females preferred a high-quality (high larval fitness) fungus in laboratory trials. However, females frequently laid eggs on the lowest-quality fungus in the wild. They preferred high-quality fungi when moving between oviposition sites, but this preference disappeared as the distance between sites increased and was inconsistent between study plots. Our results suggest that constraints on oviposition preferences in natural landscapes are sufficiently large to drive oviposition in poor developmental environments even when offspring fitness consequences are severe.
Collapse
|
7
|
Chaturvedi S, Rego A, Lucas LK, Gompert Z. Sources of Variation in the Gut Microbial Community of Lycaeides melissa Caterpillars. Sci Rep 2017; 7:11335. [PMID: 28900218 PMCID: PMC5595848 DOI: 10.1038/s41598-017-11781-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Microbes can mediate insect-plant interactions and have been implicated in major evolutionary transitions to herbivory. Whether microbes also play a role in more modest host shifts or expansions in herbivorous insects is less clear. Here we evaluate the potential for gut microbial communities to constrain or facilitate host plant use in the Melissa blue butterfly (Lycaeides melissa). We conducted a larval rearing experiment where caterpillars from two populations were fed plant tissue from two hosts. We used 16S rRNA sequencing to quantify the relative effects of sample type (frass versus whole caterpillar), diet (plant species), butterfly population and development (caterpillar age) on the composition and diversity of the caterpillar gut microbial communities, and secondly, to test for a relationship between microbial community and larval performance. Gut microbial communities varied over time (that is, with caterpillar age) and differed between frass and whole caterpillar samples. Diet (host plant) and butterfly population had much more limited effects on microbial communities. We found no evidence that gut microbe community composition was associated with caterpillar weight, and thus, our results provide no support for the hypothesis that variation in microbial community affects performance in L. melissa.
Collapse
Affiliation(s)
- Samridhi Chaturvedi
- Utah State University, Department of Biology, Logan, 84322, UT, USA.,Utah State University, Ecology Center, Logan, 84322, UT, USA
| | - Alexandre Rego
- Utah State University, Department of Biology, Logan, 84322, UT, USA
| | - Lauren K Lucas
- Utah State University, Department of Biology, Logan, 84322, UT, USA
| | - Zachariah Gompert
- Utah State University, Department of Biology, Logan, 84322, UT, USA. .,Utah State University, Ecology Center, Logan, 84322, UT, USA.
| |
Collapse
|
8
|
Brown LM, Breed GA, Severns PM, Crone EE. Losing a battle but winning the war: moving past preference–performance to understand native herbivore–novel host plant interactions. Oecologia 2016; 183:441-453. [DOI: 10.1007/s00442-016-3787-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022]
|
9
|
Gallien L, Altermatt F, Wiemers M, Schweiger O, Zimmermann NE. Invasive plants threaten the least mobile butterflies in Switzerland. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Laure Gallien
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL; CH-8903 Birmensdorf Switzerland
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; 7602 Matieland South Africa
| | - Florian Altermatt
- Department of Aquatic Ecology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 CH-8600 Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstr. 190 CH-8057 Zürich Switzerland
| | - Martin Wiemers
- UFZ - Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 06120 Halle Germany
| | - Oliver Schweiger
- UFZ - Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 06120 Halle Germany
| | - Niklaus E. Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL; CH-8903 Birmensdorf Switzerland
| |
Collapse
|
10
|
Host range expansion is density dependent. Oecologia 2016; 182:779-88. [DOI: 10.1007/s00442-016-3711-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
11
|
Audusseau H, de la Paz Celorio-Mancera M, Janz N, Nylin S. Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host. BMC Evol Biol 2016; 16:144. [PMID: 27356867 PMCID: PMC4928354 DOI: 10.1186/s12862-016-0709-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plant-feeding insects, the evolutionary retention of polyphagy remains puzzling. A better understanding of the relationship between these organisms and changes in the metabolome of their host plants is likely to suggest functional links between them, and may provide insights into how polyphagy is maintained. RESULTS We investigated the phenological change of Cynoglossum officinale, and how a generalist butterfly species, Vanessa cardui, responded to this change. We used untargeted metabolite profiling to map plant seasonal changes in both primary and secondary metabolites. We compared these data to differences in larval performance on vegetative plants early and late in the season. We also performed two oviposition preference experiments to test females' ability to choose between plant developmental stages (vegetative and reproductive) early and late in the season. We found clear seasonal changes in plant primary and secondary metabolites that correlated with larval performance. The seasonal change in plant metabolome reflected changes in both nutrition and toxicity and resulted in zero survival in the late period. However, large differences among families in larval ability to feed on C. officinale suggest that there is genetic variation for performance on this host. Moreover, females accepted all plants for oviposition, and were not able to discriminate between plant developmental stages, in spite of the observed overall differences in metabolite profile potentially associated with differences in suitability as larval food. CONCLUSIONS In V. cardui, migratory behavior, and thus larval feeding times, are not synchronized with plant phenology at the reproductive site. This lack of synchronization, coupled with the observed lack of discriminatory oviposition, obviously has potential fitness costs. However, this "opportunistic" behavior may as well function as a source of potential host plant evolution, promoting for example the acceptance of new plants.
Collapse
Affiliation(s)
- Hélène Audusseau
- UMR Institute of Ecology and Environmental Sciences-Paris, Paris-Est Créteil University, Créteil, France. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | | | - Niklas Janz
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
The Many Dimensions of Diet Breadth: Phytochemical, Genetic, Behavioral, and Physiological Perspectives on the Interaction between a Native Herbivore and an Exotic Host. PLoS One 2016; 11:e0147971. [PMID: 26836490 PMCID: PMC4737494 DOI: 10.1371/journal.pone.0147971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
From the perspective of an herbivorous insect, conspecific host plants are not identical, and intraspecific variation in host nutritional quality or defensive capacity might mediate spatially variable outcomes in plant-insect interactions. Here we explore this possibility in the context of an ongoing host breadth expansion of a native butterfly (the Melissa blue, Lycaeides melissa) onto an exotic host plant (alfalfa, Medicago sativa). We examine variation among seven alfalfa populations that differed in terms of colonization by L. melissa; specifically, we examined variation in phytochemistry, foliar protein, and plant population genetic structure, as well as responses of caterpillars and adult butterflies to foliage from the same populations. Regional patterns of alfalfa colonization by L. melissa were well predicted by phytochemical variation, and colonized patches of alfalfa showed a similar level of inter-individual phytochemical diversity. However, phytochemical variation was a poor predictor of larval performance, despite the fact that survival and weight gain differed dramatically among caterpillars reared on plants from different alfalfa populations. Moreover, we observed a mismatch between alfalfa supporting the best larval performance and alfalfa favored by ovipositing females. Thus, the axes of plant variation that mediate interactions with L. melissa depend upon herbivore life history stage, which raises important issues for our understanding of adaptation to novel resources by an organism with a complex life history.
Collapse
|
13
|
Yoon S, Read Q. Consequences of exotic host use: impacts on Lepidoptera and a test of the ecological trap hypothesis. Oecologia 2016; 181:985-96. [PMID: 26820566 DOI: 10.1007/s00442-016-3560-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
Investigating the effects of invasive species on native biodiversity is one of the most pressing challenges in ecology. Our goal in this study was to quantify the effects of invasive plants on butterfly and moth communities. In addition, we sought to elucidate the fitness consequences of non-native hosts on lepidopterans. We conducted a meta-analysis on a total of 76 studies which provided data on larval performance, survival, oviposition preference, abundance, and species richness of Lepidoptera on native and exotic plants. Overwhelmingly, we found that performance and survival were reduced for larvae developing on exotic hosts, relative to native hosts. At the community level, alien plant invasion was associated with a reduction in the overall abundance and richness of lepidopteran communities. We found that lepidopterans did not show strong oviposition preference for native hosts. This result suggests that many invasive plant species may decrease lepidopteran abundance by providing a target for oviposition where larvae have a relatively poor chance of survival. Among studies that tested both survival and preference on exotic hosts, 37.5 % found evidence for novel hosts that could function as ecological traps (the figure was 18 % when considering studies that only assayed larval performance). Thus, although the majority of novel hosts included in our analyses are not likely to act as ecological traps, the potential clearly exists for this effect, and the role of ecological traps should be considered along with other aspects of global change impacting natural communities.
Collapse
Affiliation(s)
- Su'ad Yoon
- Department of Ecology, Evolution, and Conservation, University of Nevada, Reno, NV, 89512, USA. .,, PO Box 9343, Reno, NV, 89507, USA.
| | - Quentin Read
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
14
|
Preston MD, Forister ML, Pitchford JW, Armsworth PR. Impact of individual movement and changing resource availability on male–female encounter rates in an herbivorous insect. ECOLOGICAL COMPLEXITY 2015. [DOI: 10.1016/j.ecocom.2015.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Saul WC, Jeschke JM. Eco-evolutionary experience in novel species interactions. Ecol Lett 2015; 18:236-45. [DOI: 10.1111/ele.12408] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/27/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Wolf-Christian Saul
- Department of Ecology and Ecosystem Management; Technische Universität München; Emil-Ramann-Str. 6 85354 Freising Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB); Müggelseedamm 310 12587 Berlin Germany
- Department of Biology; Chemistry; Pharmacy; Institute of Biology; Freie Universität Berlin; Königin-Luise-Str. 1-3 14195 Berlin Germany
| | - Jonathan M. Jeschke
- Department of Ecology and Ecosystem Management; Technische Universität München; Emil-Ramann-Str. 6 85354 Freising Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB); Müggelseedamm 310 12587 Berlin Germany
- Department of Biology; Chemistry; Pharmacy; Institute of Biology; Freie Universität Berlin; Königin-Luise-Str. 1-3 14195 Berlin Germany
| |
Collapse
|
16
|
Morton TAL, Thorn A, Reed JM, Van Driesche RG, Casagrande RA, Chew FS. Modeling the decline and potential recovery of a native butterfly following serial invasions by exotic species. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0826-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Tan WH, Liu TH, Lin YK, Hsu YF. Restoration of an endangered plant, Hygrophila pogonocalyx, leads to an adaptive host shift of the chocolate pansy (Junonia iphita iphita). ZOOLOGY 2014; 117:237-44. [PMID: 25037647 DOI: 10.1016/j.zool.2014.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/14/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
Anthropogenic introduction of a plant species may cause novel encounters between the plant and local herbivores, and initiate evolutionary changes in host plant usage by herbivores. Until recently the endemic aquatic plant Hygrophila pogonocalyx was endangered and had a restricted distribution in Taiwan. Massive restoration efforts since 1997 have led to an expansion of the plant's distribution and a novel encounter between it and an Asian butterfly, the chocolate pansy, Junonia iphita (Nymphalidae). This butterfly appears to have colonized H. pogonocalyx, switching from its original host, Strobilanthes penstemonoides var. formosana. In the present study, we aimed to investigate whether the utilization of H. pogonocalyx as a host plant has initiated a differentiation between butterflies using the novel and the original hosts. To this purpose we collected butterflies from patches of the two host plants which grow sympatrically. We tested oviposition preference for the two hosts and larval performance on them. Female adults exhibited distinct oviposition preference toward the host plant their mothers preferred. Offspring showed greater survivorship and pupal weight when fed on the host plant their mothers preferred. Male adults displayed territorial behaviors on the host plant that their mothers had preferred. Finally, the survival rate of offspring produced from cross-mating between individuals with different host plant preference was lower than that of non-hybrids. Taken together, we suggest that genetic differentiation has occurred between individuals preferring H. pogonocalyx versus S. penstemonoides as host plants via host shifting. This process was likely induced by the mass restoration of the formerly rare and endangered plant species.
Collapse
Affiliation(s)
- Wen-Hao Tan
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC
| | - Tsui-Hua Liu
- Taipei Municipal Jianguo High School, Taipei, Taiwan, ROC
| | - Y Kirk Lin
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC; Institute of Ecology and Evolutionary Biology, National Taiwan University, Taiwan, ROC
| | - Yu-Feng Hsu
- Department of Life Science, National Taiwan Normal University, No. 88, Ting-Chou Rd., Sec. 4, Taipei 116, Taiwan, ROC.
| |
Collapse
|
18
|
Chupp AD, Battaglia LL. Potential for host shifting in Papilio palamedes following invasion of laurel wilt disease. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0693-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Terpenes tell different tales at different scales: glimpses into the Chemical Ecology of conifer - bark beetle - microbial interactions. J Chem Ecol 2013; 40:1-20. [PMID: 24337719 DOI: 10.1007/s10886-013-0368-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/09/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022]
Abstract
Chemical signaling mediates nearly all aspects of species interactions. Our knowledge of these signals has progressed dramatically, and now includes good characterizations of the bioactivities, modes of action, biosynthesis, and genetic programming of numerous compounds affecting a wide range of species. A major challenge now is to integrate this information so as to better understand actual selective pressures under natural conditions, make meaningful predictions about how organisms and ecosystems will respond to a changing environment, and provide useful guidance to managers who must contend with difficult trade-offs among competing socioeconomic values. One approach is to place stronger emphasis on cross-scale interactions, an understanding of which can help us better connect pattern with process, and improve our ability to make mechanistically grounded predictions over large areas and time frames. The opportunity to achieve such progress has been heightened by the rapid development of new scientific and technological tools. There are significant difficulties, however: Attempts to extend arrays of lower-scale processes into higher scale functioning can generate overly diffuse patterns. Conversely, attempts to infer process from pattern can miss critically important lower-scale drivers in systems where their biological and statistical significance is negated after critical thresholds are breached. Chemical signaling in bark beetle - conifer interactions has been explored for several decades, including by the two pioneers after whom this award is named. The strong knowledge base developed by many researchers, the importance of bark beetles in ecosystem functioning, and the socioeconomic challenges they pose, establish these insects as an ideal model for studying chemical signaling within a cross-scale context. This report describes our recent work at three levels of scale: interactions of bacteria with host plant compounds and symbiotic fungi (tree level, biochemical time), relationships among inducible and constitutive defenses, population dynamics, and plastic host-selection behavior (stand level, ecological time), and climate-driven range expansion of a native eruptive species into semi-naïve and potentially naïve habitats (geographical level, evolutionary time). I approach this problem by focusing primarily on one chemical group, terpenes, by emphasizing the curvilinear and threshold-structured basis of most underlying relationships, and by focusing on the system's feedback structure, which can either buffer or amplify relationships across scales.
Collapse
|
20
|
Messina FJ, Durham SL. Adaptation to a novel host by a seed beetle (Coleoptera: Chrysomelidae: Bruchinae): effect of source population. ENVIRONMENTAL ENTOMOLOGY 2013; 42:733-742. [PMID: 23905736 DOI: 10.1603/en13066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Geographic populations of a widespread species can differ in their ability to adapt to a novel environment because they possess different amounts of the requisite genetic variation. We compared responses to the same novel host in ecologically and genetically divergent populations of the seed beetle Callosobruchus maculatus (F.). Populations from Africa and Asia had been derived from and maintained on different legume hosts. In preselection assays, both populations exhibited lower survival, slower development, and smaller size on a third host (adzuki bean), and the difference in performance between the ancestral and novel hosts was especially high for the African population. Replicate lines of each population were switched to adzuki bean or maintained on the ancestral host, and beetle performance was measured on both hosts after 12 generations. Survival on adzuki bean increased substantially in the adzuki-bean lines of the African population, but improved only slightly in the Asian lines. Similarly, only the African adzuki-bean lines exhibited significantly faster development on adzuki bean. Improved performance on adzuki bean did not simultaneously reduce performance on the ancestral host. Together with previous studies, these results confirm that populations of C. maculatus often possess sufficient standing genetic variation for rapid adaptation to a novel host, but the magnitude of the response may depend on the source population. Although international trade in grain legumes can expand beetle host ranges and produce unusual biotypes, the consistent absence of strong genetic trade-offs in larval performance or adult oviposition across hosts makes it unlikely that this insect would form distinct host races.
Collapse
Affiliation(s)
- Frank J Messina
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA.
| | | |
Collapse
|
21
|
|