1
|
Ameloblastomas Exhibit Stem Cell Potential, Possess Neurotrophic Properties, and Establish Connections with Trigeminal Neurons. Cells 2020; 9:cells9030644. [PMID: 32155948 PMCID: PMC7140461 DOI: 10.3390/cells9030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Ameloblastomas are locally invasive and aggressive odontogenic tumors treated via surgical resection, which results in facial deformity and significant morbidity. Few studies have addressed the cellular and molecular events of ameloblastoma onset and progression, thus hampering the development of non-invasive therapeutic approaches. Tumorigenesis is driven by a plethora of factors, among which innervation has been long neglected. Recent findings have shown that innervation directly promotes tumor progression. On this basis, we investigated the molecular characteristics and neurotrophic properties of human ameloblastomas. Our results showed that ameloblastomas express dental epithelial stem cell markers, as well as components of the Notch signaling pathway, indicating persistence of stemness. We demonstrated that ameloblastomas express classical stem cell markers, exhibit stem cell potential, and form spheres. These tumors express also molecules of the Notch signaling pathway, fundamental for stem cells and their fate. Additionally, we showed that ameloblastomas express the neurotrophic factors NGF and BDNF, as well as their receptors TRKA, TRKB, and P75/NGFR, which are responsible for their innervation by trigeminal axons in vivo. In vitro studies using microfluidic devices showed that ameloblastoma cells attract and form connections with these nerves. Innervation of ameloblastomas might play a key role in the onset of this malignancy and might represent a promising target for non-invasive pharmacological interventions.
Collapse
|
2
|
Takamine K, Ueda Y, Nakano K, Ochiai T, Sugita Y, Kubo K, Maeda H, Hasegawa H, Kawakami T. Notch as a Possible Cell Differentiation Factor in Pleomorphic Adenomas. Int J Med Sci 2015; 12:759-63. [PMID: 26516303 PMCID: PMC4615235 DOI: 10.7150/ijms.12882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/09/2015] [Indexed: 02/04/2023] Open
Abstract
The expression of Notch in 30 cases of pleomorphic adenoma was examined by immunohistochemistry. Comparing the results of our study with previous literatures, from the partial CK7 expression and substantial Notch expression in ductal epithelial cells as well as the Notch expression in solid tumor nests, it can be inferred that Notch is involved in cell differentiation. CK13 expression was observed in cells undergoing squamous metaplasia and Notch expression was seen in the nucleus of basal and squamous cells. The intense Notch expression in basal cells and weak expression in squamous cells suggests that Notch is involved in the differentiation from basal to squamous cell. Moreover, the loss of nuclear expression on the inner layer would signify that differentiation is about to end or has been terminated. Notch was expressed in the cytoplasm of cartilage cells and in the cell membrane of mucous cells but not in the nucleus indicating that differentiation has been concluded. Notch involvement is suspected in cell differentiation in areas showing ductal structures and squamous metaplasia. In summary, Notch is involved in cell differentiation of ductal cells in PA. Nuclear expression was shown in tumor cells in solid nests and surrounding structures. Moreover, Notch is expressed by basal cells undergoing squamous metaplasia suggesting the participation of Notch in cell differentiation in PA.
Collapse
Affiliation(s)
- Keisuke Takamine
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | - Yukiko Ueda
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | - Keisuke Nakano
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan ; 2. Department of Oral Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmacuitical Sciences, Okayama, Japan
| | - Takanaga Ochiai
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | - Yoshihiko Sugita
- 3. Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Katsutoshi Kubo
- 3. Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Hatsuhiko Maeda
- 3. Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Hiromasa Hasegawa
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | - Toshiyuki Kawakami
- 1. Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| |
Collapse
|
3
|
Li Z, Yu M, Tian W. An inductive signalling network regulates mammalian tooth morphogenesis with implications for tooth regeneration. Cell Prolif 2013; 46:501-8. [PMID: 23952789 DOI: 10.1111/cpr.12051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/18/2013] [Indexed: 12/15/2022] Open
Abstract
Sequential and reciprocal epithelial-mesenchymal interactions, essential throughout such aspects of tooth morphogenesis as patterning, size and number of teeth, involves a well-ordered series of inductive and permissive signals that exert global control over cell proliferation, differentiation and organogenesis. In particular, growth factors, transcription factors and their corresponding receptors, as well as other soluble morphogens, make up a regulatory network at the molecular level that synergistically or antagonistically controls intra-/inter-cellular signal transduction during odontogenesis. This review summarizes recent advances in the study of crucial signalling pathways, for example of BMPs, Wnt, Notch, Shh and FGF, with emphasis on the potential integrated signalling network responsible for tooth formation. Our work probes into the complexity of these inductive signalling pathways to promote the understanding of tooth regeneration. Additionally, our study provides further insights into therapeutic strategies for various dental abnormalities in patterning and number, such as tooth agenesis and supernumerary teeth.
Collapse
Affiliation(s)
- Z Li
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | | | | |
Collapse
|
4
|
Fujita M, Nakano K, Funato A, Sugita Y, Kubo T, Maeda H, Okafuji N, Hasegawa H, Kawakami T. Heat shock protein27 expression and cell differentiation in ameloblastomas. Int J Med Sci 2013; 10:1271-7. [PMID: 23983585 PMCID: PMC3753412 DOI: 10.7150/ijms.6597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/18/2013] [Indexed: 11/05/2022] Open
Abstract
The expression of HSP27 and some CKs were examined the 40 cases of typical solid/multicystic ameloblastoma using immunohistochemical techniques. In order to examine the relevance of HSP in cell differentiation, we focused on the cytoskeletal expression of CK. CK19 is a marker of typical odontogenic epithelium widely observed in follicular and plexiform types of ameloblastomas. Since staining with CK14 is one of the measures of the differentiation potential of squamous cells and is extensively expressed in both follicular and plexiform types, it implies that squamous differentiation of each type can occur. CK8 was strongly detected in tumor nests in plexiform type but weakly detected in follicular type. It was considered that the expression of HSP27 in plexiform type correlated with the expression of CK8 suggesting that HSP27 might have regulated the expression of CK8.
Collapse
Affiliation(s)
- Muneteru Fujita
- Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs) are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites). Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (GCOT), their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4) and three ligands (Jagged1, Jagged2 and Delta1) was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0), mild (+), moderate (2+) and strong (3+). Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive.
Collapse
|
6
|
Muraki E, Nakano K, Maeda H, Takayama M, Jinno M, Kubo K, Yoshida W, Hasegawa H, Kawakami T. Immunohistochemical localization of Notch signaling molecules in ameloblastomas. Eur J Med Res 2011; 16:253-7. [PMID: 21810559 PMCID: PMC3353400 DOI: 10.1186/2047-783x-16-6-253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We examined Notch signaling molecules, Notch1 and Jagged1, in serial large cases of typical solid/multicystic ameloblastoma. In general, Notch positive staining products were frequently detected in the cytoplasms of the cells. In the same cells, Jagged positive staining were also frequently observed, while only occasionally positive in peripheral cells, especially in cuboidal cells. The results showed that these morphogenesis regulation factors are closely related to cytological differentiation in neoplastic cells of ameloblastoma. The Notch and Jagged positive-cell ratios were frequently positive, and the ratios were nearly the same between the varied histopathological, cytological patterns. However, the less-differentiated cells were fewer in number than that of well-differentiated cells.
Collapse
Affiliation(s)
- E Muraki
- Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Siar CH, Nakano K, Han PP, Tomida M, Tsujigiwa H, Nagatsuka H, H. Ng K, Kawakami T. Co-expression of BMP-2 and -7 in the Tumoral Epithelium of CEOT with Selective BMP-7 Expression in Amyloid Materials. J HARD TISSUE BIOL 2011. [DOI: 10.2485/jhtb.20.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Xu X, Zhao Y, Xu M, Dai Q, Meng W, Yang J, Qin R. Activation of Notch signal pathway is associated with a poorer prognosis in acute myeloid leukemia. Med Oncol 2010; 28 Suppl 1:S483-9. [DOI: 10.1007/s12032-010-9667-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
9
|
Chong Huat Siar, Kee Seng Chuah, Nakano K, Rosario Santos Rivera, Tsujigiwa H, Nagatsuka H, Kok Han Ng, Kawakami T. Immunohistochemical Study of Notch Signaling Proteins in the Calcifying Epithelial Odontogenic Tumor (Pindborg Tumor). J HARD TISSUE BIOL 2010. [DOI: 10.2485/jhtb.19.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Nakano K, Chong Huat Siar, Tomida M, Matsuura S, Tsujigiwa H, Nagatsuka H, Kawakami T. Immunohistochemical Observation of Notch Signaling in a Case of Calcifying Cystic Odontogenic Tumor. J HARD TISSUE BIOL 2010. [DOI: 10.2485/jhtb.19.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|