1
|
Liang T, Wang SK, Smith C, Zhang H, Hu Y, Seymen F, Koruyucu M, Kasimoglu Y, Kim JW, Zhang C, Saunders TL, Simmer JP, Hu JCC. Enamel defects in Acp4 R110C/R110C mice and human ACP4 mutations. Sci Rep 2022; 12:16477. [PMID: 36183038 PMCID: PMC9526733 DOI: 10.1038/s41598-022-20684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human ACP4 (OMIM*606362) encodes a transmembrane protein that belongs to histidine acid phosphatase (ACP) family. Recessive mutations in ACP4 cause non-syndromic hypoplastic amelogenesis imperfecta (AI1J, OMIM#617297). While ACP activity has long been detected in developing teeth, its functions during tooth development and the pathogenesis of ACP4-associated AI remain largely unknown. Here, we characterized 2 AI1J families and identified a novel ACP4 disease-causing mutation: c.774_775del, p.Gly260Aspfs*29. To investigate the role of ACP4 during amelogenesis, we generated and characterized Acp4R110C mice that carry the p.(Arg110Cys) loss-of-function mutation. Mouse Acp4 expression was the strongest at secretory stage ameloblasts, and the protein localized primarily at Tomes' processes. While Acp4 heterozygous (Acp4+/R110C) mice showed no phenotypes, incisors and molars of homozygous (Acp4R110C/R110C) mice exhibited a thin layer of aplastic enamel with numerous ectopic mineralized nodules. Acp4R110C/R110C ameloblasts appeared normal initially but underwent pathology at mid-way of secretory stage. Ultrastructurally, sporadic enamel ribbons grew on mineralized dentin but failed to elongate, and aberrant needle-like crystals formed instead. Globs of organic matrix accumulated by the distal membranes of defective Tomes' processes. These results demonstrated a critical role for ACP4 in appositional growth of dental enamel probably by processing and regulating enamel matrix proteins around mineralization front apparatus.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Zhongzheng Dist., Taipei City, 100, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children's Hospital, No. 8, Zhongshan S. Rd., Zhongzheng Dist., Taipei City, 100, Taiwan
| | - Charles Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Altinbas University, 34147, Istanbul, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, 34116, Istanbul, Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, 34116, Istanbul, Turkey
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Thomas L Saunders
- Division of Molecular, Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Al Kawas S, Amizuka N, Bergeron JJ, Warshawsky H. Immunolocalization of the cation-independent mannose 6-phosphate receptor and cathepsin B in the enamel organ and alveolar bone of the rat incisor. Calcif Tissue Int 1996; 59:192-9. [PMID: 8694897 DOI: 10.1007/s002239900108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to examine our hypothesis that maturation ameloblasts could degrade the enamel matrix in a manner analogous to bone resorption mediated by osteoclasts, we have assessed the distribution of lysosomal enzymes in the enamel organ by immunolocalizing the cation-in-independent mannose 6-phosphate receptor (MPR) and the lysosomal enzyme cathepsin B at all stages of amelogenesis. Secretory ameloblasts showed strong immunoreactivity for MPR in the supranuclear Golgi region and in the cytoplasm between the Golgi region and the distal junctional complexes. However, cathepsin B immunoreactivity was mainly seen in the distal portion of Tomes' process, which was unreactive for MPR immunogenicity. In maturation ameloblasts, the MPR was observed on the ruffled border of the ruffle-ended ameloblast (RA) but not on the distal cell membrane of the smooth-ended ameloblast (SA), although both cell types demonstrated strong immunoreactivity for MPR in the Golgi region. Immunoreactive cathepsin B was seen at the distal ends of both RA and SA. It is postulated that the nascent lysosomal enzymes bind to the mannose 6-phosphate receptors which target them not only to intracellular lysosomes, but also to the ruffled border of maturation ameloblasts where these enzymes are secreted into the enamel. Since MPR and lysosomal enzymes were also detected on the ruffled border of osteoclasts (Ocl) adjacent to alveolar bone, our immunocytochemical approach provides strong evidence for a similarity between the maturation process in enamel, as mediated by the ruffle-ended maturation ameloblasts, and bone resorption mediated by osteoclasts. This study has established that a common mechanism, based on MPR-targeted lysosomal secretion and matrix degradation, is basic to the maturation process involved in calcified tissues as different as bone and enamel.
Collapse
Affiliation(s)
- S Al Kawas
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada, H3A 2B2
| | | | | | | |
Collapse
|