Effects of different culture media on growth of Treponema spp. isolated from digital dermatitis.
Anaerobe 2021;
69:102345. [PMID:
33596466 DOI:
10.1016/j.anaerobe.2021.102345]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/10/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Digital dermatitis (DD) lesions in cattle are characterized by the presence of multiple Treponema species. Current culture media for isolating treponemes generally uses serum supplementation from different animals to target particular Treponema sp.; however, their suitability for DD Treponema isolation has not been fully determined. We studied the effect of culture media (OTEB, NOS and TYGV) and serum supplementation on mixed Treponema spp. dynamics. Bacterial growth was evaluated by direct microscopic count, optical density, wet weight and a species-specific qPCR and the correlations between these independent methods were calculated. Wet weight, optical density and bacterial count correlated best with each other. Different Treponema species performed differently under the tested culture media. T. phagedenis growth was enhanced in OTEB media supplemented with bovine fetal serum (BFS) or horse serum (HS). T. medium had lower generation time when culture media were supplemented with rabbit serum (RS). Lowest generation time for T. pedis and T. denticola were obtained in NOS media supplemented with HS and OTEB media supplemented with BFS, respectively. Detection of cystic forms observed after 5 days of culture did not differ among the culture media. Correlation between different Treponema spp. growth quantification techniques indicated that alternative quantification methods such as qPCR and wet weight could be used depending on the purpose. We conclude that effects of culture media and serum supplementation on mixed Treponema spp. communities should be taken into account when isolating a specific Treponema species.
Collapse