Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War".
Int J Mol Sci 2021;
22:ijms22126459. [PMID:
34208697 PMCID:
PMC8235535 DOI:
10.3390/ijms22126459]
[Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse