1
|
Deliberador TM, Macalossi JMS, Tenorio C, Dall Agnol GDS, Boia MF, Zielak JC. An oxygen-releasing agent promotes healing of skin wounds in rats. J Wound Care 2023; 32:738-747. [PMID: 37907358 DOI: 10.12968/jowc.2023.32.11.738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
OBJECTIVE To evaluate the local effect of a slow oxygen-release gel on the healing of standardised skin wounds caused in rats. METHOD Skin wounds were created on the backs of male rats (Rattus norvegicus, Wistar) that were randomly allocated into two groups. In the treated (T) and control (C) groups, oxygen gel and distilled water, respectively, were applied to the wounds on alternate days for 28 days. Postoperatively, euthanasia was performed at 5, 10, 14, 21 and 28 days, followed by clinical, histological (Masson's trichrome) and immunohistochemical analysis. Data were subjected to analysis of variance (ANOVA) and Bonferroni's test. RESULTS The cohort comprised 50 rats. On clinical and histological analysis, groups C and T showed similar characteristics 5 days post-operation. Subsequently, group T showed better healing at 14, 21 and 28 days and presented more intense inflammatory infiltrate up to 10 days. At days 14, 21 and 28, group T exhibited a reduction in oedema and increased angiogenesis, granulation tissue formation, and deposition of collagen fibres than group C. Immunohistochemical analysis showed the presence of tumour necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) in both the groups, but the levels were significantly higher in group T (p<0.05). CONCLUSION The local application of slow oxygen-release gel accelerated the healing of standardised skin wounds created surgically in rats, with increased angiogenesis and better collagen fibre formation.
Collapse
|
2
|
Human gingival fibroblast response to enamel matrix derivative, porcine recombinant 21.3-kDa amelogenin and 5.3-kDa tyrosine-rich amelogenin peptide. Hum Cell 2017; 30:181-191. [PMID: 28470386 PMCID: PMC5486862 DOI: 10.1007/s13577-017-0164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Enamel matrix derivative (EMD) containing a variety of protein fractions has been used for periodontal tissue regeneration. It is suggested that the proteins contained in EMD positively influence gingival fibroblasts migration and proliferation. Effects of EMD as well as of porcine recombinated 21.3-kDa amelogenin (prAMEL) and 5.3-kDa tyrosine-rich amelogenin peptide (prTRAP) on human gingival fibroblast (HGF-1, ATCC; USA) cell line were investigated. Real-time cell analysis (xCELLigence system; Roche Applied Science) was performed to determine the effects of EMD, prAMEL and prTRAP (12.5–50 μg/mL) on HGF-1 cell proliferation and migration. The effect of treatment on cell cycle was determined using flow cytometry. EMD significantly increased HGF-1 cell proliferation after 24- and 48-h incubation. Individually, prAMEL and prTRAP also increased HGF-1 cell proliferation; however, the difference was significant only for prAMEL 50 µg/mL. prAMEL and TRAP significantly increased HGF-1 cell migration after 60- and 72-h incubation. Cell cycle analysis showed significant decrease of the percentage of cells in the G0/G1 phase and a buildup of cells in the S and M phase observed after EMD and prAMEL stimulation. This process was ligand and concentration-dependent. The various molecular components in the enamel matrix derivative might contribute to the reported effects on gingival tissue regeneration; however, biologic effects of prAMEL and prTRAP individually were different from that of EMD.
Collapse
|
3
|
Almqvist S, Kleinman HK, Werthén M, Thomsen P, Agren MS. Effects of amelogenins on angiogenesis-associated processes of endothelial cells. J Wound Care 2016; 20:68, 70-5. [PMID: 21378680 DOI: 10.12968/jowc.2011.20.2.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay. METHOD Immobilised antibodies against specific integrins (alpha-1, alpha-2, alpha-3, alpha-4, alpha-5, alpha-v, ß1, ß2, ß3, ß4, ß6, alpha-vß3, alpha-vß5 and alpha-5ß1) were used to capture treated human dermal microvascular endothelial cells, which were detected colourimetrically. DNA synthesis of the cells was monitored by 5-bromo-2'- deoxyuridine incorporation and apoptosis by a TdT-mediated dUTP nick-end labelling technique. Tubule formation from aortic arches of 13-d-old chick embryos were followed over 48h. RESULTS The amelogenin mixture increased microvessel outgrowth by 76% (p < 0.01, n=12) from the aortic explants. Also, amelogenins increased the adhesion (p < 0.01, n = 5) by multiple angiogenesis associated integrin subunits and alpha-vß3, alpha-vß5 and alpha-5ß1 heterodimers on human dermal microvascular endothelial cells at a non-mitogenic concentration (100 µg/ml). Conversely, amelogenins at 1,000 µg/ml decreased microvessel formation possibly due to attenuation of corresponding integrins despite increasing (p < 0.001, n = 8) DNA synthesis. No significant apoptosis was detected in human dermal microvascular endothelial cells cultured on Matrigel with and without amelogenins. CONCLUSION Increased surface expression of integrins on endothelial cells may contribute to the proangiogenic property of amelogenins.
Collapse
Affiliation(s)
- S Almqvist
- Department of Biomaterials, Sahlgrenska Academy at the University of Gotheburg, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
4
|
Kuramitsu-Fujimoto S, Ariyoshi W, Saito N, Okinaga T, Kamo M, Ishisaki A, Takata T, Yamaguchi K, Nishihara T. Novel biological activity of ameloblastin in enamel matrix derivative. J Appl Oral Sci 2015; 23:49-55. [PMID: 25760267 PMCID: PMC4349119 DOI: 10.1590/1678-775720140291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Enamel matrix derivative (EMD) is used clinically to promote periodontal tissue regeneration. However, the effects of EMD on gingival epithelial cells during regeneration of periodontal tissues are unclear. In this in vitro study, we purified ameloblastin from EMD and investigated its biological effects on epithelial cells. MATERIAL AND METHODS Bioactive fractions were purified from EMD by reversed-phase high-performance liquid chromatography using hydrophobic support with a C18 column. The mouse gingival epithelial cell line GE-1 and human oral squamous cell carcinoma line SCC-25 were treated with purified EMD fraction, and cell survival was assessed with a WST-1 assay. To identify the proteins in bioactive fractions of EMD, we used proteome analysis with two-dimensional gel electrophoresis followed by identification with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. RESULTS Purified fractions from EMD suppressed proliferation of GE-1 and SCC-25. LC-MS/MS revealed that ameloblastin in EMD is the component responsible for inhibiting epithelial cell proliferation. The inhibitory effect of ameloblastin on the proliferation of GE-1 and SCC-25 was confirmed using recombinant protein. CONCLUSION The inhibitory effects of EMD on epithelial cell proliferation are caused by the biological activities of ameloblastin, which suggests that ameloblastin is involved in regulating epithelial downgrowth in periodontal tissues.
Collapse
Affiliation(s)
- Sachiko Kuramitsu-Fujimoto
- Division of Orofacial Functions and Orthodontics, Department of Growth Development of Functions, Kyushu Dental University, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Noriko Saito
- Division of Pulp Biology, Operative Dentistry and Endodontics, Department of Cariology and Periodontology, Kyushu Dental University, Fukuoka, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Yamaguchi
- Division of Orofacial Functions and Orthodontics, Department of Growth Development of Functions, Kyushu Dental University, Fukuoka, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| |
Collapse
|
5
|
Lee HK, Ji S, Park SJ, Choung HW, Choi Y, Lee HJ, Park SY, Park JC. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling. J Biol Chem 2015; 290:14740-53. [PMID: 25911094 PMCID: PMC4505539 DOI: 10.1074/jbc.m115.648022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 12/25/2022] Open
Abstract
Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- From the Departments of Oral Histology/Developmental Biology and
| | - Suk Ji
- the Department of Periodontology, Anam Hospital, Korea University, 73 Inchonro, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea, and
| | - Su-Jin Park
- From the Departments of Oral Histology/Developmental Biology and
| | - Han-Wool Choung
- From the Departments of Oral Histology/Developmental Biology and
| | - Youngnim Choi
- Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehagro, Chongro-gu, Seoul 110-744, Korea
| | - Hyo-Jung Lee
- the Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 173-82 Gumiro, Seongnam-si, Gyeonggi-do 463-707, Korea
| | - Shin-Young Park
- the Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 173-82 Gumiro, Seongnam-si, Gyeonggi-do 463-707, Korea
| | - Joo-Cheol Park
- From the Departments of Oral Histology/Developmental Biology and
| |
Collapse
|
6
|
Interaction between fibronectin and β1 integrin is essential for tooth development. PLoS One 2015; 10:e0121667. [PMID: 25830530 PMCID: PMC4382024 DOI: 10.1371/journal.pone.0121667] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
The dental epithelium and extracellular matrix interact to ensure that cell growth and differentiation lead to the formation of teeth of appropriate size and quality. To determine the role of fibronectin in differentiation of the dental epithelium and tooth formation, we analyzed its expression in developing incisors. Fibronectin mRNA was expressed during the presecretory stage in developing dental epithelium, decreased in the secretory and early maturation stages, and then reappeared during the late maturation stage. The binding of dental epithelial cells derived from postnatal day-1 molars to a fibronectin-coated dish was inhibited by the RGD but not RAD peptide, and by a β1 integrin-neutralizing antibody, suggesting that fibronectin-β1 integrin interactions contribute to dental epithelial-cell binding. Because fibronectin and β1 integrin are highly expressed in the dental mesenchyme, it is difficult to determine precisely how their interactions influence dental epithelial differentiation in vivo. Therefore, we analyzed β1 integrin conditional knockout mice (Intβ1lox-/lox-/K14-Cre) and found that they exhibited partial enamel hypoplasia, and delayed eruption of molars and differentiation of ameloblasts, but not of odontoblasts. Furthermore, a cyst-like structure was observed during late ameloblast maturation. Dental epithelial cells from knockout mice did not bind to fibronectin, and induction of ameloblastin expression in these cells by neurotrophic factor-4 was inhibited by treatment with RGD peptide or a fibronectin siRNA, suggesting that the epithelial interaction between fibronectin and β1 integrin is important for ameloblast differentiation and enamel formation.
Collapse
|
7
|
Miron RJ, Bosshardt DD, Laugisch O, Katsaros C, Buser D, Sculean A. Enamel Matrix Protein Adsorption to Root Surfaces in the Presence or Absence of Human Blood. J Periodontol 2012; 83:885-92. [DOI: 10.1902/jop.2011.110404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Amelogenins modulate cytokine expression in LPS-challenged cultured human macrophages. Cytokine 2012; 58:274-9. [DOI: 10.1016/j.cyto.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/20/2011] [Accepted: 02/01/2012] [Indexed: 11/22/2022]
|
9
|
Mohazab L, Koivisto L, Jiang G, Kytömäki L, Haapasalo M, Owen G, Wiebe C, Xie Y, Heikinheimo K, Yoshida T, Smith C, Heino J, Häkkinen L, McKee M, Larjava H. Critical role for αvβ6 integrin in enamel biomineralization. J Cell Sci 2012; 126:732-44. [DOI: 10.1242/jcs.112599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tooth enamel has the highest degree of biomineralization of all vertebrate hard tissues. During the secretory stage of enamel formation, ameloblasts deposit an extracellular matrix that is in direct contact with ameloblast plasma membrane. Although it is known that integrins mediate cell-matrix adhesion and regulate cell signaling in most cell types, the receptors that regulate ameloblast adhesion and matrix production are not well characterized. Thus, we hypothesized that αvβ6 integrin is expressed in ameloblasts where it regulates biomineralization of enamel. Human and mouse ameloblasts were found to express both β6 integrin mRNA and protein. The maxillary incisors of Itgb6−/− mice lacked yellow pigment and their mandibular incisors appeared chalky and rounded. Molars of Itgb6−/− mice showed signs of reduced mineralization and severe attrition. The mineral-to-protein ratio in the incisors was significantly reduced in Itgb6−/− enamel, mimicking hypomineralized amelogenesis imperfecta. Interestingly, amelogenin-rich extracellular matrix abnormally accumulated between the ameloblast layer of Itgb6−/− mouse incisors and the forming enamel surface, and also between ameloblasts. This accumulation was related to increased synthesis of amelogenin, rather than to reduced removal of the matrix proteins. This was confirmed in cultured ameloblast-like cells, which did not use αvβ6 integrin as an endocytosis receptor for amelogenins, although it participated in cell adhesion on this matrix indirectly via endogenously produced matrix proteins. In summary, integrin αvβ6 is expressed by ameloblasts and it plays a crucial role in regulating amelogenin deposition/turnover and subsequent enamel biomineralization.
Collapse
|
10
|
Owen GR, Häkkinen L, Wu C, Larjava H. A reproducible technique for specific labeling of antigens using preformed fluorescent molecular IgG-F(ab')2 complexes from primary antibodies of the same species. Microsc Res Tech 2010; 73:623-30. [PMID: 20025053 DOI: 10.1002/jemt.20803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunolabeling two different antigens using the indirect approach with antibodies from the same species is not possible as secondary antibodies can bind to either primary target antibodies. In this study, we describe how preformed complexes of primary and secondary labeled antibodies can be used in such circumstances. In this situation, the first antigen is labeled using the conventional indirect method followed by incubation with the preformed primary-secondary antibody complex against the second antigen. To prevent unbound secondary antibody from binding the indirectly-labeled antibodies, resulting in a false positive, we quenched excess secondary antibody with nonimmune murine serum from the species of the primary antibody. Before the formation of the preformed complex, the optimum dilution of both primary and secondary antibodies was determined. Once these concentrations were established, the concentration of nonimmune murine serum required to quench excess unbound secondary was determined. This step was accomplished by first incubating the sample with an antibody against an antigen known to be localized away from the antigen of interest, followed by the preformed complex. If specific staining was seen, other than that expected from the preformed complex, then the concentration of the serum was deemed insufficient for quenching, and increased accordingly. We demonstrate that this approach is successful in determining the optimum conditions for the preformation of ascites and purified monoclonal primary IgG with fluorescently conjugated F(ab')(2). Double immunolabelling of two focal adhesion antigens and two cytoskeletal proteins, with two murine primary antibodies, are presented as examples of the methodology.
Collapse
Affiliation(s)
- Gethin Rh Owen
- Laboratory of Periodontal Biology, Faculty of Dentistry, Department of Oral, Biological and Medical Sciences, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
11
|
Almqvist S, Werthén M, Johansson A, Agren MS, Thomsen P, Lyngstadaas SP. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:947-954. [PMID: 20012165 DOI: 10.1007/s10856-009-3952-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100 and 1000 microg/ml increased binding of NHDF via several integrins, including alphavbeta3, alphavbeta5 and alpha5beta1. Further, both surface interaction and cellular uptake of amelogenin by NHDF was observed using scanning and transmission electron microscopy. Gene microarray studies showed >8-fold up or down-regulation of genes, of which most are involved in cellular growth, migration and differentiation. The effect of amelogenin was exemplified by increased proliferation over 7 days. In conclusion, the beneficial effects of amelogenin on wound healing are possibly conducted by stimulating fibroblast signalling, proliferation and migration via integrin interactions. It is hypothesized that amelogenin stimulates wound healing by providing connective tissue cells with a temporary extracellular matrix.
Collapse
Affiliation(s)
- Sofia Almqvist
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Box 412, 405 30, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Almqvist S, Werthén M, Johansson A, Törnqvist J, Agren MS, Thomsen P. Evaluation of a near-senescent human dermal fibroblast cell line and effect of amelogenin. Br J Dermatol 2009; 160:1163-71. [PMID: 19298284 DOI: 10.1111/j.1365-2133.2009.09071.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Fibroblast senescence may delay healing of chronic wounds. OBJECTIVES To characterize a chronic human dermal fibroblast cell line (CRL-7815) with near-senescent properties, cell proliferation and production of wound-healing modulating cytokines, and biosynthesis and remodelling of collagen were compared with normal human dermal fibroblasts. Also, the response of CRL-7815 fibroblasts to the extracellular matrix protein amelogenin that is beneficial in the treatment of stalled chronic wounds was studied. METHODS Fibroblast proliferation was monitored by time-resolved growth curves and factors secreted into the culture medium containing 10% fetal bovine serum were measured by enzyme-linked immunosorbent assays. Fibroblast-mediated reorganization was examined in three-dimensional type I collagen matrices. RESULTS Cell proliferation over 9 days was significantly (P < 0.01) slower for CRL-7815 than for normal fibroblasts. Amelogenin at 1 mg mL(-1) increased (P < 0.01) CRL-7815 proliferation to the level of the normal fibroblasts. The neutrophil chemoattractant interleukin (IL)-8 was low while the constitutive production of monocyte chemoattractant protein (MCP)-1 was highly elevated in medium from cultured CRL-7815 fibroblasts. Amelogenin augmented IL-8 but attenuated MCP-1 secretion in CRL-7815 fibroblasts. The elevated vascular endothelial growth factor production in CRL-7815 fibroblasts was further increased with amelogenin while increased type I collagen synthesis by CRL-7815 was reduced with 0.1 mg mL(-1) amelogenin. The dramatically impaired collagen matrix remodelling with CRL-7815 fibroblasts (P < 0.001) was slightly improved with amelogenin (P = 0.0011). CONCLUSIONS The near-senescent cell line CRL-7815 shares functional anomalies with fibroblasts isolated from nonhealing chronic cutaneous wounds. Amelogenin has the capacity to switch chronic fibroblasts into an acute-like phenotype.
Collapse
Affiliation(s)
- S Almqvist
- Department of Biomaterials, Sahlgrenska Academy at Göteborg University, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Bosshardt DD. Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 2008; 35:87-105. [DOI: 10.1111/j.1600-051x.2008.01264.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Weishaupt P, Bernimoulin JP, Trackman P, Hägewald S. Stimulation of osteoblasts with Emdogain increases the expression of specific mineralization markers. ACTA ACUST UNITED AC 2008; 106:304-8. [PMID: 18547835 DOI: 10.1016/j.tripleo.2008.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the effects of enamel matrix derivative on mRNA expression of markers related to periodontal healing. STUDY DESIGN Murine osteoprogenitor cells (MC3T3-E1) were grown for 12 and 16 days in mineralization media and stimulated with 100 microg/mL Emdogain (EMD). Cell cultures treated with 2% and 10% fetal calf serum (FCS) served as control. The mRNA expression of bone sialoprotein (BSP), osteopontin (OPN), and runt-related protein 2 (Runx2) was analyzed by real-time polymerase chain reaction. One-way analysis of variance was used for statistical analysis. RESULTS Stimulation with EMD significantly (P < .01) enhanced mRNA expression of BSP up to 13.9-fold and of OPN up to 3.2-fold at day 16 compared with the 2% FCS control. The expression of mRNA for transcription factor Runx2 was not significantly changed. CONCLUSION The beneficial effects seen in periodontal regeneration after treatment with EMD may be related to an increase of the mineralization markers BSP and OPN at mRNA level.
Collapse
Affiliation(s)
- Peggy Weishaupt
- Department of Operative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | |
Collapse
|