1
|
Hubbard MJ, Mangum JE, Perez VA, Williams R. A Breakthrough in Understanding the Pathogenesis of Molar Hypomineralisation: The Mineralisation-Poisoning Model. Front Physiol 2022; 12:802833. [PMID: 34992550 PMCID: PMC8724775 DOI: 10.3389/fphys.2021.802833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Popularly known as "chalky teeth", molar hypomineralisation (MH) affects over 1-in-5 children worldwide, triggering massive amounts of suffering from toothache and rapid decay. MH stems from childhood illness and so offers a medical-prevention avenue for improving oral and paediatric health. With a cross-sector translational research and education network (The D3 Group; thed3group.org) now highlighting this global health opportunity, aetiological understanding is urgently needed to enable better awareness, management and eventual prevention of MH. Causation and pathogenesis of "chalky enamel spots" (i.e., demarcated opacities, the defining pathology of MH) remain unclear despite 100 years of investigation. However, recent biochemical studies provided a pathomechanistic breakthrough by explaining several hallmarks of chalky opacities for the first time. This article outlines these findings in context of previous understanding and provides a working model for future investigations. The proposed pathomechanism, termed "mineralisation poisoning", involves localised exposure of immature enamel to serum albumin. Albumin binds to enamel-mineral crystals and blocks their growth, leading to chalky opacities with distinct borders. Being centred on extracellular fluid rather than enamel-forming cells as held by dogma, this localising pathomechanism invokes a new type of connection with childhood illness. These advances open a novel direction for research into pathogenesis and causation of MH, and offer prospects for better clinical management. Future research will require wide-ranging inputs that ideally should be coordinated through a worldwide translational network. We hope this breakthrough will ultimately lead to medical prevention of MH, prompting global health benefits including major reductions in childhood tooth decay.
Collapse
Affiliation(s)
- Michael J Hubbard
- Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dental School, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan E Mangum
- Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Vidal A Perez
- Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Department of Pediatric Stomatology, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Rebecca Williams
- Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dental School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Costiniti V, Bomfim GH, Mitaishvili E, Son GY, Li Y, Lacruz RS. Calcium Transport in Specialized Dental Epithelia and Its Modulation by Fluoride. Front Endocrinol (Lausanne) 2021; 12:730913. [PMID: 34456880 PMCID: PMC8385142 DOI: 10.3389/fendo.2021.730913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Most cells use calcium (Ca2+) as a second messenger to convey signals that affect a multitude of biological processes. The ability of Ca2+ to bind to proteins to alter their charge and conformation is essential to achieve its signaling role. Cytosolic Ca2+ (cCa2+) concentration is maintained low at ~100 nM so that the impact of elevations in cCa2+ is readily sensed and transduced by cells. However, such elevations in cCa2+ must be transient to prevent detrimental effects. Cells have developed a variety of systems to rapidly clear the excess of cCa2+ including Ca2+ pumps, exchangers and sequestering Ca2+ within intracellular organelles. This Ca2+ signaling toolkit is evolutionarily adapted so that each cell, tissue, and organ can fulfill its biological function optimally. One of the most specialized cells in mammals are the enamel forming cells, the ameloblasts, which also handle large quantities of Ca2+. The end goal of ameloblasts is to synthesize, secrete and mineralize a unique proteinaceous matrix without the benefit of remodeling or repair mechanisms. Ca2+ uptake into ameloblasts is mainly regulated by the store operated Ca2+ entry (SOCE) before it is transported across the polarized ameloblasts to reach the insulated enamel space. Here we review the ameloblasts Ca2+ signaling toolkit and address how the common electronegative non-metal fluoride can alter its function, potentially addressing the biology of dental fluorosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Rodrigo S. Lacruz
- Department Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| |
Collapse
|
3
|
Nurbaeva MK, Eckstein M, Devotta A, Saint-Jeannet JP, Yule DI, Hubbard MJ, Lacruz RS. Evidence That Calcium Entry Into Calcium-Transporting Dental Enamel Cells Is Regulated by Cholecystokinin, Acetylcholine and ATP. Front Physiol 2018; 9:801. [PMID: 30013487 PMCID: PMC6036146 DOI: 10.3389/fphys.2018.00801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023] Open
Abstract
Dental enamel is formed by specialized epithelial cells which handle large quantities of Ca2+ while producing the most highly mineralized tissue. However, the mechanisms used by enamel cells to handle bulk Ca2+ safely remain unclear. Our previous work contradicted the dogma that Ca2+ is ferried through the cytosol of Ca2+-transporting cells and instead suggested an organelle-based route across enamel cells. This new paradigm involves endoplasmic reticulum (ER)-associated Ca2+ stores and their concomitant refilling by store-operated Ca2+ entry (SOCE) mediated by Ca2+ release activated Ca2+ (CRAC) channels. Given that Ca2+ handling is maximal during the enamel-mineralization stage (maturation), we anticipated that SOCE would also be elevated then. Confirmation was obtained here using single-cell recordings of cytosolic Ca2+ concentration ([Ca2+]cyt) in rat ameloblasts. A candidate SOCE agonist, cholecystokinin (CCK), was found to be upregulated during maturation, with Cck transcript abundance reaching 30% of that in brain. CCK-receptor transcripts were also detected and Ca2+ imaging showed that CCK stimulation increased [Ca2+]cyt in a dose-responsive manner that was sensitive to CRAC-channel inhibitors. Similar effects were observed with two other SOCE activators, acetylcholine and ATP, whose receptors were also found in enamel cells. These results provide the first evidence of a potential regulatory system for SOCE in enamel cells and so strengthen the Ca2+ transcytosis paradigm for ER-based transport of bulk Ca2+. Our findings also implicate enamel cells as a new physiological target of CCK and raise the possibility of an auto/paracrine system for regulating Ca2+ transport.
Collapse
Affiliation(s)
- Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Arun Devotta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Michael J Hubbard
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| |
Collapse
|
4
|
Eckstein M, Aulestia FJ, Nurbaeva MK, Lacruz RS. Altered Ca 2+ signaling in enamelopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1778-1785. [PMID: 29750989 DOI: 10.1016/j.bbamcr.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Biomineralization requires the controlled movement of ions across cell barriers to reach the sites of crystal growth. Mineral precipitation occurs in aqueous phases as fluids become supersaturated with specific ionic compositions. In the biological world, biomineralization is dominated by the presence of calcium (Ca2+) in crystal lattices. Ca2+ channels are intrinsic modulators of this process, facilitating the availability of Ca2+ within cells in a tightly regulated manner in time and space. Unequivocally, the most mineralized tissue produced by vertebrates, past and present, is dental enamel. With some of the longest carbonated hydroxyapatite (Hap) crystals known, dental enamel formation is fully coordinated by specialized epithelial cells of ectodermal origin known as ameloblasts. These cells form enamel in two main developmental stages: a) secretory; and b) maturation. The secretory stage is marked by volumetric growth of the tissue with limited mineralization, and the opposite is found in the maturation stage, as enamel crystals expand in width concomitant with increased ion transport. Disruptions in the formation and/or mineralization stages result, in most cases, in permanent alterations in the crystal assembly. This introduces weaknesses in the material properties affecting enamel's hardness and durability, thus limiting its efficacy as a biting, chewing tool and increasing the possibility of pathology. Here, we briefly review enamel development and discuss key properties of ameloblasts and their Ca2+-handling machinery, and how alterations in this toolkit result in enamelopathies.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Francisco J Aulestia
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Meerim K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, United States.
| |
Collapse
|
5
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
6
|
Nurbaeva MK, Eckstein M, Feske S, Lacruz RS. Ca 2+ transport and signalling in enamel cells. J Physiol 2017; 595:3015-3039. [PMID: 27510811 PMCID: PMC5430215 DOI: 10.1113/jp272775] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/21/2016] [Indexed: 01/02/2023] Open
Abstract
Dental enamel is one of the most remarkable examples of matrix-mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage-dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up-dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ.
Collapse
Affiliation(s)
- Meerim K. Nurbaeva
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| | - Stefan Feske
- Department of PathologyNew York University School of MedicineNew YorkNY10016USA
| | - Rodrigo S. Lacruz
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| |
Collapse
|
7
|
Advances of Proteomic Sciences in Dentistry. Int J Mol Sci 2016; 17:ijms17050728. [PMID: 27187379 PMCID: PMC4881550 DOI: 10.3390/ijms17050728] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/01/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.
Collapse
|
8
|
Dental enamel cells express functional SOCE channels. Sci Rep 2015; 5:15803. [PMID: 26515404 PMCID: PMC4626795 DOI: 10.1038/srep15803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022] Open
Abstract
Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.
Collapse
|
9
|
Anandani C, Metgud R, Singh K. Calretinin as a diagnostic adjunct for ameloblastoma. PATHOLOGY RESEARCH INTERNATIONAL 2014; 2014:308240. [PMID: 24839578 PMCID: PMC4009281 DOI: 10.1155/2014/308240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/04/2022]
Abstract
Background. Calretinin is a 29 kDa calcium-binding protein of the EF-hand family which is expressed in a variety of normal and tumorigenic tissues. Its expression in odontogenic epithelium during odontogenesis and in neoplastic odontogenic tissues has been demonstrated. Unicystic ameloblastoma poses a diagnostic challenge, as its histologic presentation can be sometimes mistaken for keratocystic odontogenic tumor (KCOT). This study was performed to assess the usefulness of calretinin as a confirmatory marker for ameloblastic tissue. Methodology. Total of 40 cases: 16 unicystic ameloblastoma, 4 multicystic ameloblastoma, and 20 KCOT, were evaluated immunohistochemically for the presence, localization, distribution, and intensity of calretinin expression. Statistical analysis was done using Chi-square test to intercompare the expression between ameloblastoma and KCOT. Results. Sixteen cases of ameloblastoma (12 unicystic, 4 multicystic) showed positive calretinin staining of ameloblastic epithelium and only one case of KCOT was positive for calretinin, with the positivity restricted to the stellate reticulum like epithelium. Intercomparison between two groups revealed statistically significant difference (P = 0.000). Conclusion. Calretinin appears to be a specific immunohistochemical marker for neoplastic ameloblastic epithelium and may be an important diagnostic adjunct in the differential diagnosis of ameloblastoma and KCOT.
Collapse
Affiliation(s)
- Chitra Anandani
- Department of Oral and Maxillofacial Pathology, Pacific Dental College and Hospital, PAHER University, Udaipur, Rajasthan 313024, India
| | - Rashmi Metgud
- Department of Oral and Maxillofacial Pathology, Pacific Dental College and Hospital, PAHER University, Udaipur, Rajasthan 313024, India
| | - Karanprakash Singh
- Department of Public Health Dentistry, Genesis Institute of Dental Sciences and Research, Ferozepur, Punjab 152001, India
| |
Collapse
|
10
|
Rezende TMB, Lima SMF, Petriz BA, Silva ON, Freire MS, Franco OL. Dentistry proteomics: From laboratory development to clinical practice. J Cell Physiol 2013; 228:2271-84. [DOI: 10.1002/jcp.24410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Taia M. B. Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Stella M. F. Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Bernardo A. Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Osmar N. Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Mirna S. Freire
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| |
Collapse
|
11
|
Lacruz RS, Smith CE, Kurtz I, Hubbard MJ, Paine ML. New paradigms on the transport functions of maturation-stage ameloblasts. J Dent Res 2012; 92:122-9. [PMID: 23242231 DOI: 10.1177/0022034512470954] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fully matured dental enamel is an architecturally and mechanically complex hydroxyapatite-based bioceramic devoid of most of the organic material that was essential in its making. Enamel formation is a staged process principally involving secretory and maturation stages, each associated with major changes in gene expression and cellular function. Cellular activities that define the maturation stage of amelogenesis include ion (e.g., calcium and phosphate) transport and storage, control of intracellular and extracellular pH (e.g., bicarbonate and hydrogen ion movements), and endocytosis. Recent studies on rodent amelogenesis have identified a multitude of gene products that appear to be linked to these cellular activities. This review describes the main cellular activities of these genes during the maturation stage of amelogenesis.
Collapse
Affiliation(s)
- R S Lacruz
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|