1
|
Wang Y, Liu Z, Ma G, Xu Y, Li Y. Mouth breathing induces condylar remodelling and chondrocyte apoptosis via both the extrinsic and mitochondrial pathways in male adolescent rats. Tissue Cell 2023; 83:102146. [PMID: 37399641 DOI: 10.1016/j.tice.2023.102146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/29/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
The prevalence of mouth breathing is high in children and adolescents. It causes various changes to the respiratory tract and, consequently, craniofacial growth deformities. However, the underlying mechanisms contributing to these effects are obscure. Herein, we aimed to study the effects of mouth breathing on chondrocyte proliferation and death in the condylar cartilage and morphological changes in the mandible and condyle. Additionally, we aimed to elucidate the mechanisms underlying chondrocyte apoptosis and investigate any variations in the related pathways. Subchondral bone resorption and decreased condylar cartilage thickness were observed in mouth-breathing rats; further, mRNA expression levels of Collagen II, Aggrecan, and Sox 9 were lower in the mouth breathing group, while those of matrix metalloproteinase 9 increased. TdT-mediated dUTP nick end labelling staining and immunohistochemistry analyses showed that apoptosis occurred in the proliferative and hypertrophic layers of cartilage in the mouth breathing group. TNF, BAX, cytochrome c, and cleaved-caspase-3 were highly expressed in the condylar cartilage of the mouth-breathing rats. These results suggest that mouth breathing leads to subchondral bone resorption, cartilage layer thinning, and cartilage matrix destruction, inducing chondrocyte apoptosis via both the extrinsic and mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Y Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai, CN 200072, China
| | - Z Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai, CN 200072, China
| | - G Ma
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai, CN 200072, China
| | - Y Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai, CN 200072, China
| | - Y Li
- The Affiliated Stomatology Hospital of Tongji University, Department of Orthodontics, No. 399, Yanchang Middle Road, Jing'an District, Shanghai CN 200072, China.
| |
Collapse
|
2
|
Keitoku M, Yonemitsu I, Ikeda Y, Tang H, Ono T. Differential Recovery Patterns of the Maxilla and Mandible after Eliminating Nasal Obstruction in Growing Rats. J Clin Med 2022; 11:jcm11247359. [PMID: 36555975 PMCID: PMC9783669 DOI: 10.3390/jcm11247359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Although nasal obstruction (NO) during growth causes maxillofacial growth suppression, it remains unclear whether eliminating the NO affects maxillary and mandibular growth differentially. We aimed to clarify whether eliminating NO can help regain normal maxillofacial growth and to determine the optimal intervention timing. Forty-two 4-week-old male Wistar rats were randomly divided into six groups. Their left nostril was sutured to simulate NO over different durations in the experimental groups; the sutures were later removed to resume nasal breathing. Maxillofacial morphology was assessed using microcomputed tomography. Immunohistochemical changes in hypoxia-inducible factor (HIF)-1α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) of the condylar cartilage were evaluated to reveal the underlying mechanisms of these changes. Maxillary length was significantly lower in rats with NO for ≥5 weeks. In groups with NO for ≥7 weeks, the posterior mandibular length, ramus height, thickness of the hypertrophic cell layer in the condylar cartilage, HIF-1α levels, and RANKL levels were significantly lower and OPG levels and RANKL/OPG were significantly higher than those in the control group. Our findings suggest that eliminating NO is effective in regaining maxillofacial growth. Moreover, the optimal timing of intervention differed between the maxilla and mandible.
Collapse
|
3
|
Lyros I, Ferdianakis E, Halazonetis D, Lykogeorgos T, Alexiou A, Alexiou KE, Georgaki M, Vardas E, Yfanti Z, Tsolakis AI. Three-Dimensional Analysis of Posterior Mandibular Displacement in Rats. Vet Sci 2022; 9:vetsci9030144. [PMID: 35324872 PMCID: PMC8953185 DOI: 10.3390/vetsci9030144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Mandibular protrusion and its treatment is challenging for the orthodontist. The aim of the present research was to identify macroscopic changes in the mandible, based on three-dimensional Cone Beam Computed Tomography analysis. Seventy-two male Wistar rats were divided into two equal groups, experimental (group A) and control (group B). Each consisted of three equal subgroups of 12 rats (A1, A2, A3, B1, B2, B3). Full-cast orthodontic intraoral devices were attached to the maxillary incisors of the experimental animals, and effected functional posterior mandibular displacement. Throughout the experimental period, all animals were fed with mashed food. Animals were sacrificed at 30 days (A1, B1), 60 days (A2, B2) and 90 days (A3, B3). At the 60th day of the experiment, the orthodontic devices were removed from the remaining experimental subgroup A3. Measurements revealed significant differences in the anteroposterior dimensions between experimental and control subgroups. However, the observed changes in the vertical dimensions, Condylion/Go’–Menton and the Intercondylar distance proved insignificant. Posterior mandibular displacement of the mandible in growing rats affects the morphology of the mandible and culminates in the development of a smaller mandible at a grown age.
Collapse
Affiliation(s)
- Ioannis Lyros
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
- Correspondence:
| | - Efstratios Ferdianakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
| | - Demetrios Halazonetis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
| | | | - Antigoni Alexiou
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
| | - Konstantina-Eleni Alexiou
- Department of Oral Diagnosis & Radiology, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athens, Greece; (K.-E.A.); (Z.Y.)
| | - Maria Georgaki
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athens, Greece; (M.G.); (E.V.)
| | - Emmanouil Vardas
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athens, Greece; (M.G.); (E.V.)
| | - Zafeiroula Yfanti
- Department of Oral Diagnosis & Radiology, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athens, Greece; (K.-E.A.); (Z.Y.)
| | - Apostolos I. Tsolakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Yu JL, Tangutur A, Thuler E, Evans M, Dedhia RC. The role of craniofacial maldevelopment in the modern OSA epidemic: a scoping review. J Clin Sleep Med 2022; 18:1187-1202. [PMID: 34984972 DOI: 10.5664/jcsm.9866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES There is increasing recognition that environmental factors affect human craniofacial development and our risk for disease. A scoping review of the literature was performed looking at environmental influences on craniofacial development to better understand this relationship and investigate what further study is needed to determine how this relationship may impact obstructive sleep apnea. METHODS A comprehensive literature search was performed using the Ovid Medline database from inception to May, 2020 with relevance to craniofacial development in 5 clinically-oriented variables: diet, secular change, breastfeeding/non-nutritive sucking habits (NNSH), nasal obstruction/mouth breathing, and masticatory muscle function. The Oxford Centre for Evidence-Based Medicine Levels of Evidence (LoE) was used to assess studies based on study design. RESULTS 18,196 articles were initially identified, of which 260 studies were fully reviewed and 97 articles excluded. The remaining 163 articles were categorized as follows: Secular change (n = 16), Diet (n = 33), Breastfeeding/NNSH (n = 28), Nasal obstruction/Mouth breathing (n = 57), and Masticatory muscle function (n = 35). 93% of included studies reported a significant association between craniofacial morphology and environmental factors. The majority of studies were characterized as low LoE studies with 90% of studies being LoE 4 or 5. CONCLUSIONS The studies in this review suggest that environmental factors are associated with changes in craniofacial development. However, most studies were heterogeneous and low-level studies, making strong conclusions about these relationships difficult. Future rigorous studies are needed to further our understanding of environmental influences on craniofacial development and OSA risk.
Collapse
Affiliation(s)
- Jason L Yu
- Division of Sleep Surgery, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, PA.,Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, PA
| | - Akshay Tangutur
- Division of Sleep Surgery, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, PA
| | - Eric Thuler
- Division of Sleep Surgery, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, PA
| | - Marianna Evans
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, PA
| | - Raj C Dedhia
- Division of Sleep Surgery, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, PA.,Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, PA
| |
Collapse
|
5
|
Hong H, Hosomichi J, Maeda H, Lekvijittada K, Oishi S, Ishida Y, Usumi-Fujita R, Kaneko S, Suzuki JI, Yoshida KI, Ono T. Intermittent hypoxia retards mandibular growth and alters RANKL expression in adolescent and juvenile rats. Eur J Orthod 2021; 43:94-103. [PMID: 32219305 DOI: 10.1093/ejo/cjaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Chronic intermittent hypoxia (IH), a common state experienced in obstructive sleep apnoea (OSA), retards mandibular growth in adolescent rats. The aim of this study was to elucidate the differential effects of IH on mandibular growth in different growth stages. MATERIALS AND METHODS Three-week-old (juvenile stage) and 7-week-old (adolescent stage) male Sprague-Dawley rats underwent IH for 3 weeks. Age-matched control rats were exposed to room air. Mandibular growth was evaluated by radiograph analysis, micro-computed tomography, real-time polymerase chain reaction and immunohistology. Tibial growth was evaluated as an index of systemic skeletal growth. RESULTS IH had no significant impact on the general growth of either the juvenile or adolescent rats. However, it significantly decreased the total mandibular length and the posterior corpus length of the mandible in the adolescent rats and the anterior corpus length in the juvenile rats. IH also increased bone mineral density (BMD) of the condylar head in adolescent rats but did not affect the BMD of the tibia. Immunohistological analysis showed that the expression level of receptor activation of nuclear factor-κB ligand significantly decreased (in contrast to its messenger ribonucleicacid level) in the condylar head of adolescent rats with IH, while the number of osteoprotegerin-positive cells was comparable in the mandibles of adolescent IH rats and control rats. LIMITATIONS The animal model could not simulate the pathological conditions of OSA completely and there were differences in bone growth between humans and rodents. CONCLUSIONS These results suggest that the susceptibility of mandibular growth retardation to IH depends on the growth stage of the rats.
Collapse
Affiliation(s)
- Haixin Hong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Japan
| | - Kochakorn Lekvijittada
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.,Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Shuji Oishi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Sawa Kaneko
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Jun-Ichi Suzuki
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.,Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| |
Collapse
|
6
|
Fernandes Fagundes NC, d'Apuzzo F, Perillo L, Puigdollers A, Gozal D, Graf D, Heo G, Flores-Mir C. Potential impact of pediatric obstructive sleep apnea on mandibular cortical width dimensions. J Clin Sleep Med 2021; 17:1627-1634. [PMID: 33745506 DOI: 10.5664/jcsm.9262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
STUDY OBJECTIVES To analyze differences in mandibular cortical width (MCW) among children diagnosed with obstructive sleep apnea (OSA) or at high- or low-risk for OSA. METHODS A total of 161 children were assessed: 60 children with polysomnographically diagnosed OSA, 56 children presenting symptoms suggestive of high-risk for OSA, and 45 children at low risk for OSA. Children at high- and low-risk for OSA were evaluated through the Pediatric Sleep Questionnaire. MCW was calculated using ImageJ software from panoramic radiograph images available from all participants. Differences between MCW measurements in the 3 groups were evaluated using analysis of covariance and Bonferroni post-hoc tests, with age as a covariate. The association between MCW and specific cephalometric variables was assessed through regression analysis. RESULTS The participants' mean age was 9.6 ± 3.1 years (59% male and 41% female). The mean body mass index z-score was 0.62 ± 1.3. The polysomnographically diagnosed OSA group presented smaller MCW than the group at low-risk for OSA (mean difference = -0.385 mm, P = .001), but no difference with the group at high-risk for OSA (polysomnographically diagnosed OSA vs high-risk OSA: P = .085). In addition, the MCW in the group at high-risk for the OSA was significantly smaller than the group at low-risk for the OSA (mean difference = -0.301 mm, P = .014). The cephalometric variables (Sella-Nasion-A point angle (SNA) and Frankfort - Mandibular Plane angle (FMA)) explained only 8% of the variance in MCW. CONCLUSIONS Reductions in MCW appear to be present among children with OSA or those at high-risk for OSA, suggesting potential interactions between mandibular bone development and/or homeostasis and pediatric OSA. CITATION Fernandes Fagundes NC, d'Apuzzo F, Perillo L, et al. Potential impact of pediatric obstructive sleep apnea on mandibular cortical width dimensions. J Clin Sleep Med. 2021;17(8):1627-1634.
Collapse
Affiliation(s)
| | - Fabrizia d'Apuzzo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Orthodontic Program, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Letizia Perillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Orthodontic Program, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Andreu Puigdollers
- Department of Orthodontics and Craniofacial Orthopedics, Universitat Internacional de Catalunya, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Giseon Heo
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Carlos Flores-Mir
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Differences of Craniofacial Characteristics in Oral Breathing and Pediatric Obstructive Sleep Apnea. J Craniofac Surg 2021; 32:564-568. [PMID: 33704981 DOI: 10.1097/scs.0000000000006957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Oral breathing (OB) was considered associated with specific craniofacial structures and same for pediatric obstructive sleep apnea (OSA). This study aimed to investigate the differences of craniofacial structures between OB and OSA. METHODS In this retrospective study, 317 children under age 18 years were recruited and divided into OB group, OSA group, and control group. OSA group (15 boys, 4 girls) were referred from qualified sleep center and diagnosed as pediatric OSA with full-night polysomnography. OB group (10 boys, 10 girls) were mostly referral from pediatric or ENT department, some of whom undertook polysomnography and were not OSA. Control group consisted of orthodontic patients within the same period. Lateral cephalograms were obtained in all groups and their parameters were compared with Chinese normal values and each other. RESULTS R-PNS of OB group (18.04 ± 2.49 mm) was greater than OSA group (14.27 ± 4.36 mm) and even control group (16.22 ± 3.91 mm) (P < 0.01). U1-NA was also the greatest in OB group (7.15 ± 2.92 mm), followed by OSA group (4.88 ± 2.66 mm), while control group was the smallest (5.71 ± 2.94 mm) (P < 0.05). In addition, OB group presented the smallest adenoids and tonsils among three groups. Bony nasopharynx development, mandibular length and growth direction of mandible of OB group were all better than OSA group. CONCLUSION Despite of oral breathing, anatomical morphology (well-developed dentoalveolar structures; mild adenotonsillar hypertrophy) might protect children from developing OSA.
Collapse
|
8
|
Tsubamoto-Sano N, Ohtani J, Ueda H, Kaku M, Tanne K, Tanimoto K. Influences of mouth breathing on memory and learning ability in growing rats. J Oral Sci 2019; 61:119-124. [PMID: 30918208 DOI: 10.2334/josnusd.18-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study was to investigate the influences of habitual mouth breathing on memory and learning ability during the growth period. At age 5 weeks, the experimental rats were subjected to surgery to close completely one side of the nasal cavity. An 8-arm radial maze was used to evaluate memory and learning ability at age 7, 11, and 15 weeks. Moreover, the brain was extracted at age 7, 11, and 15 weeks, and subjected to histomorphometric examination for the distribution and number of pyramidal cells in the hippocampal CA1 and CA3 regions after Nissl staining. The trial time to accomplish each task was significantly longer in the experimental group than in the control group throughout the experimental period. The number of pyramidal cells was significantly less in the experimental rats than in controls in both the CA1 and CA3 regions for the entire experimental period. Thus, the functional deterioration of the respiratory system during the growth phase exerts a substantial effect on the growth and development of the central nervous system.
Collapse
Affiliation(s)
- Noriko Tsubamoto-Sano
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | | | - Hiroshi Ueda
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Masato Kaku
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Kazuo Tanne
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Kotaro Tanimoto
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| |
Collapse
|
9
|
Ren E, Watari I, Jui-Chin H, Mizumachi-Kubono M, Podyma-Inoue KA, Narukawa M, Misaka T, Watabe T, Ono T. Unilateral nasal obstruction alters sweet taste preference and sweet taste receptors in rat circumvallate papillae. Acta Histochem 2019; 121:135-142. [PMID: 30473241 DOI: 10.1016/j.acthis.2018.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 01/02/2023]
Abstract
Nasal obstruction causes mouth breathing, and affects the growth and development of craniofacial structures, muscle function in the stomatognathic system, and the taste perceptive system. However, the detailed mechanism underlying the effects of nasal obstruction on taste perception has not been fully elucidated. In this study, we investigated this mechanism using the two-bottle taste preference test, immunohistological analysis, and quantification of the mRNA expression of taste-related molecules in the circumvallate papillae. Neonatal male Wistar rats were divided randomly into control and experimental groups. Rats in the experimental group underwent unilateral nasal obstruction by cauterization of the external nostril at the age of 8 days. Arterial oxygen saturation (SpO2) was recorded in awake rats using collar clip sensors. Taste preference for five basic taste solutions was evaluated. Immunohistochemical analysis and quantitative real-time polymerase chain reaction (RT-PCR) were conducted to evaluate the expressions of taste-related molecules in the taste cells of the circumvallate papillae. Body weights were similar between the two groups throughout the experimental period. The SpO2 in the 7- to 12-week-old rats in the experimental group was significantly lower than that in the age-matched rats in the control group. In the two-bottle taste preference test, the sensitivities to sweet taste decreased in the experimental group. The mRNA expression of T1R2, T1R3, α-gustducin, and PLCβ2 was significantly lower in the experimental group than in the control group as determined by quantitative RT-PCR, and the immunohistochemical staining for α-gustducin and PLCβ2 was less prominent. These findings suggest that nasal obstruction may affect sweet taste perception via the reduced expression of taste-related molecules in the taste cells in rat circumvallate papillae.
Collapse
|
10
|
Sato T, Yamaguchi M, Murakami Y, Horigome Y, Negishi S, Kasai K. Changes in maxillofacial morphology due to improvement of nasal obstruction in rats. Orthod Craniofac Res 2018; 21:84-89. [PMID: 29493884 DOI: 10.1111/ocr.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the effect of release of experimentally introduced nasal obstruction on maxillofacial morphology and percutaneous arterial oxygen saturation (SpO2 ) in rats. MATERIALS AND METHODS Six-week-old male Wistar rats (n = 36) were divided into a control group (n = 6) and a nasal obstruction group (n = 30). In the nasal obstruction group, the right nostril was occluded with silicon, which was subsequently removed after a given experimental period (days 7, 21, 35, 49 and 63). These animals were then divided into groups D7, D21, D35, D49 and D63 (each n = 6), according to the day at which the obstruction was released. The SpO2 was measured in rats with nasal obstruction at five experimental points. The maxillofacial morphology in rats on the first day and 63 days after the start of the experiment was evaluated by microcomputed tomography. RESULTS The SpO2 was still lower at 2 weeks after the improvement of the nasal obstruction in the D49 group than in the control group. In addition, the height of the nasal maxillary complex of the D35, D49 and D63 groups was significantly decreased compared with the control group. CONCLUSIONS The results of this study suggest that long-term unilateral nasal obstruction in growing rats may affect the growth of the nasomaxillary complex and reduce the SpO2 permanently. Therefore, early improvement of nasal obstruction in rats during the growth period may improve the SpO2 and cranial development and promote normal growth and development.
Collapse
Affiliation(s)
- T Sato
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - M Yamaguchi
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Y Murakami
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Y Horigome
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - S Negishi
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - K Kasai
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
11
|
Oishi S, Shimizu Y, Hosomichi J, Kuma Y, Nagai H, Maeda H, Usumi-Fujita R, Kaneko S, Shitano C, Suzuki JI, Yoshida KI, Ono T. Intermittent hypoxia induces disturbances in craniofacial growth and defects in craniofacial morphology. Arch Oral Biol 2015; 61:115-24. [PMID: 26552021 DOI: 10.1016/j.archoralbio.2015.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/02/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate intermittent hypoxia (IH) induced changes in craniofacial morphology and bone mineral density (BMD) in the mandible of growing rats. DESIGN Seven-week-old male Sprague-Dawley rats were exposed to IH for 4 days or 3 weeks. Sham-operated rats simultaneously breathed room air. Lateral and transverse cephalometric radiographs of the craniofacial region were obtained, and the linear distances between cephalometric landmarks were statistically analyzed. BMD and bone microstructure of the mandible were evaluated using micro-computed tomography (micro-CT). RESULTS Cephalometric analyses demonstrated that exposure to IH only in the two groups for 3 weeks decreased the size of the mandibular and viscerocranial bones, but not that of the neurocranial bones, in early adolescent rats. These findings are consistent with upper airway narrowing and obstructive sleep apnea (OSA). Micro-CT showed that IH increased the BMD in the cancellous bone of the mandibular condyle and the inter-radicular alveolar bone in the mandibular first molar (M1) region. CONCLUSIONS This study is the first to identify growth retardation of the craniofacial bones in an animal model of sleep apnea. Notably, 3 weeks of IH can induce multiple changes in the bones around the upper airway in pubertal rats, which can enhance upper airway narrowing and the development of OSA. The reproducibility of these results supports the validity and usefulness of this model. These findings also emphasize the critical importance of morphometric evaluation of patients with OSA.
Collapse
Affiliation(s)
- Shuji Oishi
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yasuhiro Shimizu
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Jun Hosomichi
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Yoichiro Kuma
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Hisashi Nagai
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Risa Usumi-Fujita
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Sawa Kaneko
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Chisa Shitano
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken-ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takashi Ono
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
12
|
Rossi RC, Rossi NJ, Rossi NJC, Yamashita HK, Pignatari SSN. Dentofacial characteristics of oral breathers in different ages: a retrospective case-control study. Prog Orthod 2015; 16:23. [PMID: 26174032 PMCID: PMC4502049 DOI: 10.1186/s40510-015-0092-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/13/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND This study aimed to investigate the dental and skeletal variables associated with disturbances of craniofacial development in oral-breathing (OB) individuals and the probability that these variables are related to this condition. METHODS This is an observational retrospective case-control study of 1596 patients divided into three groups of age n1 5-12, n2 13-18, and n3 19-57 years. Radiographic, clinical, and models data were analyzed. The control group was consisted of nasal breathing (NB) individuals. Statistical analyses of the qualitative data were performed with x (2) test to identify associations, and odds ratio (OR) tests were performed for the variables that the chi-square test (x (2)) identified an association. RESULTS In the descriptive analysis of the data, we observed that the class II malocclusion was the most frequent in the total sample, but when divided by age group and mode of breathing, there is a random division of these variables. In n1 group, class II, (OR = 2.02) short and retruded mandible (SM and RM) (OR = 1.65 and1.89) were associated with OB and it was considered a risk factor. In n2 group, class II (OR = 1.73), SM (OR = 1.87) and increased lower anterior height (ILAFH) (OR = 1.84) seemed to be associated and to be risk factors for OB. In the n1 group, decreased lower anterior facial height (DLAFH) and brachycephalic facial pattern (BP) seemed to be associated with NB and a protective factor against oral breathing. CONCLUSIONS This study showed that dental and skeletal factors are associated with OB in children, and it seems that it becomes more severe until adolescence. But adults showed no associations between OB and skeletal factors, only in dental variables, indicating that there is no cause-effect relationship between the dental and skeletal factors and OB. The treatment of nose breathing patient should be multidisciplinary, since OB remains even when dental and skeletal factors slow down.
Collapse
Affiliation(s)
- Rosa Carrieri Rossi
- Division of Pediatric Otolaryngology, Federal University of Sao Paulo- UNIFESP Brasil, Rua Botucatu 740, 4 andar, V. Clementino, São Paulo, CEP:04023-062, Brazil,
| | | | | | | | | |
Collapse
|
13
|
Padzys GS, Omouendze LP. Temporary forced oral breathing affects neonates oxygen consumption, carbon dioxide elimination, diaphragm muscles structure and physiological parameters. Int J Pediatr Otorhinolaryngol 2014; 78:1807-12. [PMID: 25193589 DOI: 10.1016/j.ijporl.2014.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We studied adaptation of diaphragm, oxygen consumption and carbon dioxide elimination to forced oral breathing (lasting for only 4 days) following reversible bilateral nasal obstruction performed on day 8 post-natal male rats. METHODS Diaphragm myosin heavy chain (MHC) composition, oxygen consumption, carbon dioxide elimination and hormones level were analysed during nasal obstruction period. RESULTS Diaphragm muscle showed significant increases in adult isoforms (MHC 1, 2a) in oral breathing group versus control. Reversible nasal obstruction was associated with a decrease of oxygen consumption and carbon dioxide elimination. Nasal obstruction period was associated with reduced growth of the olfactory bulbs and an initial decrease in lung growth. One day after implementing nasal obstruction, basal corticosterone levels had increased (by over 1000). Oral breathing was also associated with a lower level of thyroid hormone. CONCLUSIONS We conclude that a 4 day nasal obstruction period in young rats leads to hormonal changes and to Diaphragm myosin heavy chain structural adaptation.
Collapse
Affiliation(s)
- Guy Stéphane Padzys
- Université des Sciences et Techniques de Masuku, BP: 943 Franceville, Gabon; Université de Lorraine, 34 cours Léopold 54000 Nancy, France.
| | | |
Collapse
|
14
|
Kuma Y, Usumi-Fujita R, Hosomichi J, Oishi S, Maeda H, Nagai H, Shimizu Y, Kaneko S, Shitano C, Suzuki JI, Yoshida KI, Ono T. Impairment of nasal airway under intermittent hypoxia during growth period in rats. Arch Oral Biol 2014; 59:1139-45. [PMID: 25073088 DOI: 10.1016/j.archoralbio.2014.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/30/2014] [Accepted: 06/13/2014] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To clarify the influences of intermittent hypoxia (IH) on the growth and development of the midfacial area, including the nasal cavity, in growing rats. DESIGN Seven-week-old male Sprague-Dawley rats were divided into two groups: the experimental group (n=5), which was exposed to IH for 8h during light periods at a rate of 20 cycles/h (nadir, 4% O₂ to peak, 21% O₂ with 0% CO₂), and the control group (n=5), which was exposed to room air. After 3 weeks, the maxillofacial structures in both groups were evaluated with respect to the height, width, length, surface area, cross-sectional area, and volume of the nasal cavity using soft X-ray and micro-CT. RESULTS The experimental group showed a significantly smaller cross-sectional area and volume than did the control group. The surface area exhibited no significant differences between the two groups, although it tended to be smaller in the experimental group than in the control group. The nasal volume divided by the length of the tibia (for comparison with whole-body growth) was significantly smaller in the experimental group than in the control group. CONCLUSIONS These data suggest that IH exposure suppresses growth and development of the nasal cavity and may result in nasal breathing disturbance.
Collapse
Affiliation(s)
- Yoichiro Kuma
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Risa Usumi-Fujita
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Jun Hosomichi
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Shuji Oishi
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisashi Nagai
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Shimizu
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Sawa Kaneko
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Chisa Shitano
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken-ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ono
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
15
|
Funaki Y, Hiranuma M, Shibata M, Kokai S, Ono T. Effects of nasal obstruction on maturation of the jaw-opening reflex in growing rats. Arch Oral Biol 2014; 59:530-8. [DOI: 10.1016/j.archoralbio.2014.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/20/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
|
16
|
Thornton S, Padzys G, Trabalon M. Sexual odor discrimination and physiological profiles in adult male rats after a neonatal, short term, reversible nasal obstruction. Brain Res Bull 2014; 104:74-81. [DOI: 10.1016/j.brainresbull.2014.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 02/06/2023]
|
17
|
It takes a mouth to eat and a nose to breathe: abnormal oral respiration affects neonates' oral competence and systemic adaptation. Int J Pediatr 2012; 2012:207605. [PMID: 22811731 PMCID: PMC3397177 DOI: 10.1155/2012/207605] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/10/2012] [Indexed: 12/20/2022] Open
Abstract
Mammalian, including human, neonates are considered to be obligate nose breathers. When constrained to breathe through their mouth in response to obstructed or closed nasal passages, the effects are pervasive and profound, and sometimes last into adulthood. The present paper briefly surveys neonates' and infants' responses to this atypical mobilisation of the mouth for breathing and focuses on comparisons between human newborns and infants and the neonatal rat model. We present the effects of forced oral breathing on neonatal rats induced by experimental nasal obstruction. We assessed the multilevel consequences on physiological, structural, and behavioural variables, both during and after the obstruction episode. The effects of the compensatory mobilisation of oral resources for breathing are discussed in the light of the adaptive development of oromotor functions.
Collapse
|