1
|
Reseland JE, Heyward CA, Samara A. Revisiting ameloblastin; addressing the EMT-ECM axis above and beyond oral biology. Front Cell Dev Biol 2023; 11:1251540. [PMID: 38020879 PMCID: PMC10679718 DOI: 10.3389/fcell.2023.1251540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Ameloblastin (AMBN) is best characterized for its role in dental enamel formation, regulating cell differentiation and mineralization, and cell matrix adhesion. However, AMBN has also been detected in mesenchymal stem cells in addition to bone, blood, and adipose tissue. Using immunofluorescence in a pilot scheme, we identified that AMBN is expressed in different parts of the gastrointestinal (GI) tract. AMBN mRNA and protein detection in several tissues along the length of the GI tract suggests a role for AMBN in the structure and tissue integrity of the extracellular matrix (ECM). Intracellular AMBN expression in subsets of cells indicates a potential alternative role in signaling processes. Of note, our previous functional AMBN promoter analyses had shown that it contains epithelial-mesenchymal transition (EMT) regulatory elements. ΑΜΒΝ is herein presented as a paradigm shift of the possible associations and the spatiotemporal regulation of the ECM regulating the EMT and vice versa, using the example of AMBN expression beyond oral biology.
Collapse
Affiliation(s)
- Janne E. Reseland
- Center for Functional Tissue Reconstruction (FUTURE), University of Oslo, Oslo, Norway
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Catherine A. Heyward
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Athina Samara
- Center for Functional Tissue Reconstruction (FUTURE), University of Oslo, Oslo, Norway
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Stakkestad Ø, Heyward C, Lyngstadaas SP, Medin T, Vondrasek J, Lian AM, Pezeshki G, Reseland JE. An ameloblastin C-terminus variant is present in human adipose tissue. Heliyon 2018; 4:e01075. [PMID: 30603708 PMCID: PMC6307104 DOI: 10.1016/j.heliyon.2018.e01075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/02/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
Objective Transcriptional regulatory elements in the ameloblastin (AMBN) promoter indicate that adipogenesis may influence its expression. The objective here was to investigate if AMBN is expressed in adipose tissue, and have a role during differentiation of adipocytes. Design AMBN expression was examined in adipose tissue and adipocytes by real-time PCR and ELISA. Distribution of ameloblastin was investigated by immunofluorescence in sections of human subcutaneous adipose tissue. The effect of recombinant proteins resembling AMBN and its processed products on proliferation of primary human pre-adipocytes and murine 3T3-L1 cell lines was measured by [3H]-thymidine incorporation. The effect on adipocyte differentiation was evaluated by the expression profile of the adipogenic markers PPARγ and leptin, and the content of lipids droplets (Oil-Red-O staining). Results AMBN was found to be expressed in human adipose tissue, human primary adipocytes, and in 3T3-L1 cells. The C-terminus of the AMBN protein and a 45 bp shorter splice variant was identified in human subcutaneous adipose tissue. The expression of AMBN was found to increase four-fold during differentiation of 3T3-L1 cells. Administration of recombinant AMBN reduced the proliferation, and enhanced the expression of PPARγ and leptin in 3T3-L1 and human pre-adipocytes, respectively. Conclusions The AMBN C-terminus variant was identified in adipocytes. This variant may be encoded from a short splice variant. Increased expression of AMBN during adipogenesis and its effect on adipogenic factors suggests that AMBN also has a role in adipocyte development.
Collapse
Affiliation(s)
- Øystein Stakkestad
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Catherine Heyward
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | | | - Tirill Medin
- Department of Nursing and Health Promotion, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Norway
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aina-Mari Lian
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Gita Pezeshki
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| |
Collapse
|
3
|
Stakkestad Ø, Lyngstadaas SP, Thiede B, Vondrasek J, Skålhegg BS, Reseland JE. Phosphorylation Modulates Ameloblastin Self-assembly and Ca 2+ Binding. Front Physiol 2017; 8:531. [PMID: 28798693 PMCID: PMC5529409 DOI: 10.3389/fphys.2017.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023] Open
Abstract
Ameloblastin (AMBN), an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2) and protein kinase A (PKA) and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization.
Collapse
Affiliation(s)
- Øystein Stakkestad
- Department of Biomaterials, Institute of Clinical Dentistry, University of OsloOslo, Norway
| | - Ståle P Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of OsloOslo, Norway
| | - Bernd Thiede
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOslo, Norway
| | - Jiri Vondrasek
- Department of Bioinformatics, Institute of Organic Chemistry and Biochemistry, Czech Academy of SciencesPrague, Czechia
| | - Bjørn S Skålhegg
- Division of Molecular Nutrition, Department of Nutrition, University of OsloOslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of OsloOslo, Norway
| |
Collapse
|
4
|
Kim Y, Hur SW, Jeong BC, Oh SH, Hwang YC, Kim SH, Koh JT. The Fam50a positively regulates ameloblast differentiation via interacting with Runx2. J Cell Physiol 2017; 233:1512-1522. [PMID: 28574578 DOI: 10.1002/jcp.26038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/01/2017] [Indexed: 11/12/2022]
Abstract
Differentiated ameloblasts secret enamel matrix proteins such as amelogenin, ameloblastin, and enamelin. Expression levels of these proteins are regulated by various factors. To find a new regulatory factor for ameloblast differentiation, we performed 2D-PAGE analysis using mouse ameloblast lineage cell line (mALCs) cultured with mineralizing medium. Of identified proteins, family with sequence similarity 50 member A (Fam50a) was significantly increased during differentiation of mALCs. Fam50a protein was also highly expressed in secretory ameloblasts of mouse tooth germs. In mALCs cultures, forced expression of Fam50a up-regulated the expression of enamel matrix protein genes such as amelogenin, ameloblastin, and enamelin. In addition, up-regulation of Fam50a also increased ALP activity and mineralized nodule formation in a dose-dependent manner. In contrast, knockdown of Fam50a decreased expression levels of enamel matrix protein genes, ALP activity, and mineralized nodule formation. By fluorescence microscopy, endogenous Fam50a protein was found to be localized to the nucleus of ameloblasts. In addition, Fam50a synergistically increased Ambn transactivation by Runx2. Moreover, Fam50a increased binding affinity of Runx2 to Ambn promoter by physically interacting with Runx2. Taken together, these results suggest Fam50a might be a new positive regulator of ameloblast differentiation.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sung-Woong Hur
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Byung-Chul Jeong
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sin-Hye Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Yun-Chan Hwang
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sun-Hun Kim
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea.,Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
5
|
Gasse B, Sire JY. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis. EvoDevo 2015; 6:29. [PMID: 26421144 PMCID: PMC4587831 DOI: 10.1186/s13227-015-0024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Background In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. Results We provide the full-length cDNA sequence of A. carolinensisAMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. Conclusions Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.
Collapse
Affiliation(s)
- Barbara Gasse
- UMR7138, Institut de Biologie Paris-Seine (IBPS), UPMC Univ Paris 06, Sorbonne Universités, 75005 Paris, France
| | | |
Collapse
|
6
|
Evolutionary analysis of selective constraints identifies ameloblastin (AMBN) as a potential candidate for amelogenesis imperfecta. BMC Evol Biol 2015. [PMID: 26223266 PMCID: PMC4518657 DOI: 10.1186/s12862-015-0431-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Ameloblastin (AMBN) is a phosphorylated, proline/glutamine-rich protein secreted during enamel formation. Previous studies have revealed that this enamel matrix protein was present early in vertebrate evolution and certainly plays important roles during enamel formation although its precise functions remain unclear. We performed evolutionary analyses of AMBN in order to (i) identify residues and motifs important for the protein function, (ii) predict mutations responsible for genetic diseases, and (iii) understand its molecular evolution in mammals. Results In silico searches retrieved 56 complete sequences in public databases that were aligned and analyzed computationally. We showed that AMBN is globally evolving under moderate purifying selection in mammals and contains a strong phylogenetic signal. In addition, our analyses revealed codons evolving under significant positive selection. Evidence for positive selection acting on AMBN was observed in catarrhine primates and the aye-aye. We also found that (i) an additional translation initiation site was recruited in the ancestral placental AMBN, (ii) a short exon was duplicated several times in various species including catarrhine primates, and (iii) several polyadenylation sites are present. Conclusions AMBN possesses many positions, which have been subjected to strong selective pressure for 200 million years. These positions correspond to several cleavage sites and hydroxylated, O-glycosylated, and phosphorylated residues. We predict that these conserved positions would be potentially responsible for enamel disorder if substituted. Some motifs that were previously identified as potentially important functionally were confirmed, and we found two, highly conserved, new motifs, the function of which should be tested in the near future. This study illustrates the power of evolutionary analyses for characterizing the functional constraints acting on proteins with yet uncharacterized structure. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0431-0) contains supplementary material, which is available to authorized users.
Collapse
|