1
|
Grossi E, Nguyen CB, Carcamo S, Moran S, Callaú VK, Filipescu D, Hasson D, Bernstein E. The SWI/SNF PBAF complex facilitates REST occupancy at repressive chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609212. [PMID: 39229151 PMCID: PMC11370600 DOI: 10.1101/2024.08.23.609212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Multimeric SWI/SNF chromatin remodelers assemble into discrete conformations with unique complex functionalities difficult to dissect. Distinct cancers harbor mutations in specific subunits, altering the chromatin landscape, such as the PBAF-specific component ARID2 in melanoma. Here, we performed comprehensive epigenomic profiling of SWI/SNF complexes and their associated chromatin states in melanoma and melanocytes and uncovered a subset of PBAF-exclusive regions that coexist with PRC2 and repressive chromatin. Time-resolved approaches revealed that PBAF regions are generally less sensitive to ATPase-mediated remodeling than BAF sites. Moreover, PBAF/PRC2-bound loci are enriched for REST, a transcription factor that represses neuronal genes. In turn, absence of ARID2 and consequent PBAF complex disruption hinders the ability of REST to bind and inactivate its targets, leading to upregulation of synaptic transcripts. Remarkably, this gene signature is conserved in melanoma patients with ARID2 mutations. In sum, we demonstrate a unique role for PBAF in generating accessibility for a silencing transcription factor at repressed chromatin, with important implications for disease.
Collapse
Affiliation(s)
- Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christie B. Nguyen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shannon Moran
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valentina Kirigin Callaú
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Ponnimbaduge Perera P, Perez Guerra D, Riddle MR. The Mexican Tetra, Astyanax mexicanus, as a Model System in Cell and Developmental Biology. Annu Rev Cell Dev Biol 2023; 39:23-44. [PMID: 37437210 DOI: 10.1146/annurev-cellbio-012023-014003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.
Collapse
Affiliation(s)
| | | | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, Nevada, USA;
| |
Collapse
|
3
|
Xu J, Lin S, Gao X, Nie Q, Luo Q, Zhang X. Mapping of Id locus for dermal shank melanin in a Chinese indigenous chicken breed. J Genet 2018; 96:977-983. [PMID: 29321357 DOI: 10.1007/s12041-017-0862-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dermal shank pigmentation, one of the defining traits of chicken breeds, is caused by an abnormal deposition of melanin in the dermis of the shank. The abnormal deposition is controlled by the sex-linked inhibitor of dermal melanin (Id). In this study, we aim to locate the gene responsible for the dermal shank pigmentation in chickens by an association analysis and a differential expression analysis. Based on our results, 72 single-nucleotide polymorphisms (SNPs) located in Z chromosome (chrZ): 71-73 Mb (galGal3) were selected to further explore their relationships with the dermal shank pigmentation in pure lines of 96 Gushi hens and 96 Gushi hens with a yellow shank skin colour. The results of the association analysis showed that the SNPs located in chrZ: 72.58-72.99 Mb (galGal3) (chrZ: 79.02-79.44 Mb (galGal4)) are significantly associated with the dermal shank pigmentation. Based on the results of our previous studies and the present association analysis, the zinc-finger protein 608 (ZNF608), GRAM domain containing 3 (GRAMD3), aldehyde dehydrogenase 7 family member A1 (ALDH7A1), fem-1 homologue C (FEM1C), beta-1,4-galactosyltransferase 1 (B4GALT1) and versican (VCAN) genes were selected for the differential expression analysis. The gene expression profiles showed that the expression of GRAMD3 gene in the dermis tissues of the shank was significantly (P = 0.010738 < 0.05) higher in 350-day-old Gushi chickens characterized by the dermal shank pigmentation than in one-day-old Gushi chickens. The dermal shank pigmentation was not present in the one-day-old Gushi chickens. Additionally, the results of the association analysis and the expression analysis showed that GRAMD3 could be the most likely candidate gene for the Id locus. However, we did not detect a mutation, i.e. significantly associated with this trait within GRAMD3. Therefore, we concluded that the variations located in the flanking region of GRAMD3 led to the abnormal expression of GRAMD3, which requires further study.
Collapse
Affiliation(s)
- Jiguo Xu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
4
|
Mehrotra A, Mehta G, Aras S, Trivedi A, de la Serna IL. SWI/SNF chromatin remodeling enzymes in melanocyte differentiation and melanoma. Crit Rev Eukaryot Gene Expr 2015; 24:151-61. [PMID: 24940768 DOI: 10.1615/critreveukaryotgeneexpr.2014007882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermal melanocytes are pigment-producing cells derived from the neural crest that protects skin from the damaging effects of solar radiation. Malignant melanoma, a highly aggressive cancer, arises from melanocytes. SWI/SNF enzymes are multiprotein complexes that remodel chromatin structure and have extensive roles in cellular differentiation. Components of the complex have been found to be mutated or lost in several human cancers. This review focuses on studies that implicate SWI/SNF enzymes in melanocyte differentiation and in melanoma.
Collapse
Affiliation(s)
- A Mehrotra
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - G Mehta
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - S Aras
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - A Trivedi
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - I L de la Serna
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| |
Collapse
|
5
|
Regad T. Molecular and cellular pathogenesis of melanoma initiation and progression. Cell Mol Life Sci 2013; 70:4055-65. [PMID: 23532409 PMCID: PMC11113476 DOI: 10.1007/s00018-013-1324-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022]
Abstract
Melanoma is a malignant tumor of melanocytes that can spread to other organs of the body, resulting in severe and/or lethal malignancies. Melanocytes are pigment-producing cells found in the deep layer of the epidermis and are originated from melanocytes stem cells through a cellular process called melanogenesis. Several genes and epigenetic and micro-environmental factors are involved in this process via the regulation and maintenance of the balance between melanocytes stem cells proliferation and their differentiation into melanocytes. Dysregulation of this balance through gain or loss of function of key genes implicated in the control and regulation of cell cycle progression and/or differentiation results in melanoma initiation and progression. This review aims to provide a comprehensive overview about the origin of melanocytes, the oncogenic events involved in melanocytes stem cells transformation, and the mechanisms implicated in the perpetuation of melanoma malignant phenotype.
Collapse
Affiliation(s)
- Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK,
| |
Collapse
|
6
|
Yoshimura N, Motohashi T, Aoki H, Tezuka KI, Watanabe N, Wakaoka T, Era T, Kunisada T. Dual origin of melanocytes defined by Sox1 expression and their region-specific distribution in mammalian skin. Dev Growth Differ 2013; 55:270-81. [DOI: 10.1111/dgd.12034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023]
Affiliation(s)
- Naoko Yoshimura
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Ken-ichi Tezuka
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Natsuki Watanabe
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Takanori Wakaoka
- Department of Otolaryngology; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Takumi Era
- Department of Cell Modulation; Institute of Molecular Embryology and Genetics (IMEG); Kumamoto University; 2-2-1 Honjo; 860-0811; Kumamoto; Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| |
Collapse
|
7
|
Alikhan A, Ibrahimi OA, Eisen DB. Congenital melanocytic nevi: where are we now? Part I. Clinical presentation, epidemiology, pathogenesis, histology, malignant transformation, and neurocutaneous melanosis. J Am Acad Dermatol 2012; 67:495.e1-17; quiz 512-4. [PMID: 22980258 DOI: 10.1016/j.jaad.2012.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 11/15/2022]
Abstract
Congenital melanocytic nevi (CMN) are present at birth or arise during the first few weeks of life. They are quite common, may have a heritable component, and can present with marked differences in size, shape, color, and location. Histologic and dermatoscopic findings may help suggest the diagnosis, but they are not entirely specific. CMN are categorized based on size, and larger lesions can have a significant psychosocial impact and other complications. They are associated with a variety of dermatologic lesions, ranging from benign to malignant. The risk of malignant transformation varies, with larger CMN carrying a significantly higher risk of malignant melanoma (MM), although with an absolute risk that is lower than is commonly believed. They may also be associated with neuromelanosis, which may be of greater concern than cutaneous MM. The information presented herein aims to help dermatologists determine when it is prudent to obtain a biopsy specimen or excise these lesions, to obtain radiographic imaging, and to involve other specialists (eg, psychiatrists and neurologists) in the patient's care.
Collapse
Affiliation(s)
- Ali Alikhan
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
8
|
Thibaudeau G, Altig R. Coloration of Anuran Tadpoles (Amphibia): Development, Dynamics, Function, and Hypotheses. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/725203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Colorations of anuran tadpoles surely function in many of the same ways that have been ascribed to color and pattern in other animals, but the paucity of data forces one to look to other groups to generate hypotheses. Such an action often occurs because of the difficulty of defining specific fitness parameters to larval forms. The commonly muted colorations of tadpoles are typically considered to function only in some form of crypsis, but we discuss other functions in the particular context of behavioral ecology and changes induced by various kinds of coinhabitants. We review the development, terminology, diversity, and functions of coloration in tadpoles and then pose various questions for future research. We strongly support a broad-based perspective that calls for an integration of several fields of research.
Collapse
Affiliation(s)
- Giselle Thibaudeau
- Insitute for Imaging and Analytical Technologies, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ronald Altig
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
9
|
Carcoforo P, Raiji MT, Palini GM, Pedriali M, Maestroni U, Soliani G, Detroia A, Zanzi MV, Manna AL, Crompton JG, Langan RC, Stojadinovic A, Avital I. Primary anorectal melanoma: an update. J Cancer 2012. [PMID: 23193431 PMCID: PMC3508425 DOI: 10.7150/jca.5187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The anorectum is a rare anatomic location for primary melanoma. Mucosal melanoma is a distinct biological and clinical entity from the more common cutaneous melanoma. It portrays worse prognosis than cutaneous melanoma, with distant metastases being the overwhelming cause of morbidity and mortality. Surgery is the treatment of choice, but significant controversy exists over the extent of surgical resection. We present an update on the state of the art of anorectal mucosal melanoma. To illustrate the multimodality approach to anorectal melanoma, we present a typical patient.
Collapse
Affiliation(s)
- P Carcoforo
- 1. Section of General Surgery, Department of Surgical, Anaesthesiological and Radiological Sciences, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fernandez AA, Paniker L, Garcia R, Mitchell DL. Recent advances in sunlight-induced carcinogenesis using the Xiphophorus melanoma model. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:64-70. [PMID: 21457786 PMCID: PMC3164944 DOI: 10.1016/j.cbpc.2011.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/23/2011] [Accepted: 03/23/2011] [Indexed: 01/25/2023]
Abstract
Unlike breast and prostate cancers, the nature and sequence of critical genetic and epigenetic events involved in the initiation and progression of melanoma are not well understood. A contributing factor to this dilemma, especially given our current understanding of the importance of UV light in melanoma etiology, is the lack of quality UV-inducible melanoma animal models. In this study we elaborate on the capability of UV light to induce cutaneous malignant melanomas (CMM) in Xiphophorus fishes, which were previously found to develop melanomas after acute neonatal UVB irradiation. In two separate tumorigenesis experiments, we exposed adult Xiphophorus hybrids to either acute UVB irradiations (5 consecutive daily treatments) or chronic solar irradiations (continuous UVA/UVB treatment for 9 months). Acute adult UVB irradiation resulted in the significant induction of melanomas, and moreover, this induction rate is equivalent to that of animals exposed to acute neonatal UVB irradiation. This study represents the first evidence that acute adult UVB irradiation, in the absence of any early life exposures, induces CMM. Similar to the findings conducted on other divergent melanoma models, including HGF/SF transgenic mice and Monodelphis domestica, prolonged chronic solar UV was not a factor in melanomagenesis.
Collapse
Affiliation(s)
- André A Fernandez
- The University of Texas MD Anderson Cancer Center, Department of Carcinogenesis, 1808 Park Road 1C, Smithville, TX 78957, USA.
| | | | | | | |
Collapse
|
11
|
Gene duplication of endothelin 3 is closely correlated with the hyperpigmentation of the internal organs (Fibromelanosis) in silky chickens. Genetics 2011; 190:627-38. [PMID: 22135351 DOI: 10.1534/genetics.111.136705] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During early development in vertebrates, pluripotent cells are generated from the neural crest and migrate according to their presumptive fate. In birds and mammals, one of the progeny cells, melanoblasts, generally migrate through a dorsolateral route of the trunk region and differentiate to melanocytes. However, Silky is an exceptional chicken in which numerous melanoblasts travel via a ventral pathway and disperse into internal organs. Finally, these ectopic melanocytes induce heavy dermal and visceral melanization known as Fibromelanosis (Fm). To identify the genetic basis of this phenotype, we confirmed the mode of inheritance of Fm as autosomal dominant and then performed linkage analysis with microsatellite markers and sequence-tagged site markers. Using 85 backcross progeny from crossing Black Minorca chickens (BM-C) with F(1) individuals between White Silky (WS) and BM-C Fm was located on 10.2-11.7 Mb of chicken chromosome 20. In addition, we noticed a DNA marker that all Silky chickens and the F(1) individuals showed heterozygous genotyping patterns, suggesting gene duplication in the Fm region. By quantitative real-time PCR assay, Silky line-specific gene duplication was detected as an ~130-kb interval. It contained five genes including endothelin 3 (EDN3), which encoded a potent mitogen for melanoblasts/melanocytes. EDN3 with another three of these duplicated genes in Silky chickens expressed almost twofold of those in BM-C. Present results strongly suggest that the increase of the expression levels resulting from the gene duplication in the Fm region is the trigger of hypermelanization in internal organs of Silky chickens.
Collapse
|
12
|
Adameyko I, Lallemend F. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes. Cell Mol Life Sci 2010; 67:3037-55. [PMID: 20454996 PMCID: PMC11115498 DOI: 10.1007/s00018-010-0390-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 12/12/2022]
Abstract
Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.
Collapse
Affiliation(s)
- Igor Adameyko
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| | - Francois Lallemend
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Stratakis CA. Genetics of Carney Complex and Related Familial Lentiginoses, and other Multiple Tumor Syndromes. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513810009168808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Dorshorst B, Okimoto R, Ashwell C. Genomic Regions Associated with Dermal Hyperpigmentation, Polydactyly and Other Morphological Traits in the Silkie Chicken. J Hered 2010; 101:339-50. [DOI: 10.1093/jhered/esp120] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
|
16
|
Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Müller T, Fritz N, Beljajeva A, Mochii M, Liste I, Usoskin D, Suter U, Birchmeier C, Ernfors P. Schwann Cell Precursors from Nerve Innervation Are a Cellular Origin of Melanocytes in Skin. Cell 2009; 139:366-79. [DOI: 10.1016/j.cell.2009.07.049] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 04/03/2009] [Accepted: 07/22/2009] [Indexed: 02/02/2023]
|
17
|
Haase B, Brooks SA, Tozaki T, Burger D, Poncet PA, Rieder S, Hasegawa T, Penedo C, Leeb T. Seven novel KIT mutations in horses with white coat colour phenotypes. Anim Genet 2009; 40:623-9. [PMID: 19456317 DOI: 10.1111/j.1365-2052.2009.01893.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.
Collapse
Affiliation(s)
- B Haase
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The teleost Astyanax mexicanus is a single species consisting of two radically different forms: a sighted pigmented surface-dwelling form (surface fish) and a blind depigmented cave-dwelling form (cavefish). The two forms of Astyanax have favorable attributes, including descent from a common ancestor, ease of laboratory culture, and the ability to perform genetic analysis, permitting their use as a model system to explore questions in evolution and development. Here, we review current research on the molecular, cellular, and developmental mechanisms underlying the loss of eyes and pigmentation in Astyanax cavefish. Although functional eyes are lacking in adults, cavefish embryos begin to develop eye primordia, which subsequently degenerate. The major cause of eye degeneration appears to be apoptotic cell death of the lens, which prevents the growth of other optic tissues, including the retina. Ultimately, the loss of the eye is the cause of craniofacial differences between cavefish and surface fish. Lens apoptosis is induced by enhanced activity of the Hedgehog signaling system along the cavefish embryonic midline. The absence of melanin pigmentation in cavefish is due to a block in the ability of undifferentiated melanoblasts to accumulate L-tyrosine, the precursor of L-DOPA and melanin, in melanosomes. Genetic analysis has shown that this defect is caused by a hypomorphic mutation in the p/oca2 gene encoding an integral melanosomal membrane protein. We discuss how current studies of eye and pigment regression have revealed some of the mechanisms in which cavefish development has been changed during evolution.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
19
|
Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics 2008; 179:1861-70. [PMID: 18660533 DOI: 10.1534/genetics.108.088807] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The appaloosa coat spotting pattern in horses is caused by a single incomplete dominant gene (LP). Homozygosity for LP (LP/LP) is directly associated with congenital stationary night blindness (CSNB) in Appaloosa horses. LP maps to a 6-cM region on ECA1. We investigated the relative expression of two functional candidate genes located in this LP candidate region (TRPM1 and OCA2), as well as three other linked loci (TJP1, MTMR10, and OTUD7A) by quantitative real-time RT-PCR. No large differences were found for expression levels of TJP1, MTMR10, OTUD7A, and OCA2. However, TRPM1 (Transient Receptor Potential Cation Channel, Subfamily M, Member 1) expression in the retina of homozygous appaloosa horses was 0.05% the level found in non-appaloosa horses (R = 0.0005). This constitutes a >1800-fold change (FC) decrease in TRPM1 gene expression in the retina (FC = -1870.637, P = 0.001) of CSNB-affected (LP/LP) horses. TRPM1 was also downregulated in LP/LP pigmented skin (R = 0.005, FC = -193.963, P = 0.001) and in LP/LP unpigmented skin (R = 0.003, FC = -288.686, P = 0.001) and was downregulated to a lesser extent in LP/lp unpigmented skin (R = 0.027, FC = -36.583, P = 0.001). TRP proteins are thought to have a role in controlling intracellular Ca(2+) concentration. Decreased expression of TRPM1 in the eye and the skin may alter bipolar cell signaling as well as melanocyte function, thus causing both CSNB and LP in horses.
Collapse
|
20
|
Parichy DM. Homology and the evolution of novelty during Danio adult pigment pattern development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:578-90. [PMID: 17094081 DOI: 10.1002/jez.b.21141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies using zebrafish and its relatives have provided insights into the development and evolution of adult pigment patterns. In this review, I describe how an iterative approach using a biomedical model organism and its close relatives can be used to elucidate both mechanistic and organismal aspects of pigment pattern formation. Such analyses have revealed critical roles for post-embryonic latent precursors as well as interactions among different pigment cell classes during adult pigment pattern formation and diversification. These studies also have started to reveal homologous and novel features of the underlying developmental processes.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195-1800, USA.
| |
Collapse
|
21
|
Jeffery WR. Chordate ancestry of the neural crest: New insights from ascidians. Semin Cell Dev Biol 2007; 18:481-91. [PMID: 17509911 DOI: 10.1016/j.semcdb.2007.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 01/31/2007] [Accepted: 04/10/2007] [Indexed: 11/29/2022]
Abstract
This article reviews new insights from ascidians on the ancestry of vertebrate neural crest (NC) cells. Ascidians have neural crest-like cells (NCLC), which migrate from the dorsal midline, express some of the typical NC markers, and develop into body pigment cells. These characters suggest that primordial NC cells were already present in the common ancestor of the vertebrates and urochordates, which have been recently inferred as sister groups. The primitive role of NCLC may have been in pigment cell dispersal and development. Later, additional functions may have appeared in the vertebrate lineage, resulting in the evolution of definitive NC cells.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Abstract
Many cave animals are colorless due to loss of pigment cells. Here, we review recent progress on how and why pigmentation has disappeared inAstyanax mexicanus, a single teleost species with conspecific surface-dwelling (surface fish) and many different cave-dwelling (cavefish) forms. During surface fish development, migratory neural crest cells form three types of pigment cells: silver iridophores, orange xanthophores, and black melanophores. Cavefish have eliminated or substantially reduced their complement of melanophores and exhibit albinism, loss of the capacity to synthesize melanin. Cell tracing, immunolocalization, and neural tube explant cultures show that cavefish have retained a colorless pre-melanophore (melanoblast) lineage derived from the neural crest. Thus, the cavefish neural crest produces melanoblasts that migrate normally but are blocked in differentiation and show defective melanogenesis. Cavefish melanoblasts can convert exogenous L-DOPA into melanin and therefore have active tyrosinase, the key enzyme in melanogenesis. In contrast, cavefish melanoblasts are unable to convert L-tyrosine to L-DOPA (and melanin), although this reaction is also catalyzed by tyrosinase. Thus, cavefish are tyrosinase-positive albinos that have a deficiency in L-tyrosine transport or utilization within the melanosome, the organelle in which melanin is synthesized. At least five different types ofAstyanaxcavefish show the same defect in melanogenesis. Genetic analysis shows that cavefish albinism is caused by loss of function mutations in a single gene,p/oca2, which encodes a large protein that probably spans the melanosome membrane. Different deletions in thep/oca2 protein-coding region are responsible for loss of function in at least two different cavefish populations, suggesting that albinism evolved by convergence. Based on current understanding of the genetic basis of albinism, we discuss potential mechanisms for regressive evolution of cavefish pigmentation.
Collapse
|
23
|
Jeffery WR. Ascidian neural crest-like cells: phylogenetic distribution, relationship to larval complexity, and pigment cell fate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:470-80. [PMID: 16619245 DOI: 10.1002/jez.b.21109] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Migratory neural crest-like cells, which express the cell surface antigen HNK-1 and develop into pigment cells, have recently been identified in the ascidian Ecteinascidia turbinata. Here we use HNK-1 expression as a marker to determine whether neural crest-like cells are responsible for pigment development in diverse ascidian species. We surveyed HNK-1 expression and tyrosinase activity in 12 ascidian species, including those with different adult organizations, developmental modes, and larval sizes and complexities. We observed HNK-1 positive cells in every species, although the timing of HNK-1 expression varied according to the extent of larval complexity. HNK-1 expression was initiated during the late tailbud stage in species in which adult features are formed precociously in large complex larvae. In contrast, HNK-1 positive cells did not appear until the swimming tadpole or juvenile stage in species with small simple larvae in which most adult features appear after metamorphosis. Double labeling experiments indicated that HNK-1 and tyrosinase are expressed in the same subset of pigment-forming mesenchymal cells in species with complex or simple larvae. In addition, the absence of HNK-1 and tyrosinase expression in albino morphs of the colonial ascidian Botryllus schlosseri suggested that the major fate of neural crest-like cells is to become pigment cells. The results suggest that ascidian neural crest-like cells and vertebrate neural crest cells had a common origin during chordate evolution and that their primitive function was to generate body pigmentation.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
24
|
Abstract
Recent studies on the genetics of adaptive coat-color variation in pocket mice (Chaetodipus intermedius) are reviewed in the context of several on-going debates about the genetics of adaptation. Association mapping with candidate genes was used to identify mutations responsible for melanism in four different populations of C. intermedius. Here, I review four main results (i) a single gene, the melanocortin-1-receptor (Mc1r), appears to be responsible for most of the phenotypic variation in color in one population, the Pinacate site; (ii) four or fewer nucleotide changes at Mc1r appear to be responsible for the difference in receptor function; (iii) studies of migration-selection balance suggest that the selection coefficient associated with the dark Mc1r allele at the Pinacate site is large; and (iv) different (unknown) genes underlie the evolution of melanism on three other lava flows. These findings are discussed in light of the evolution of convergent phenotypes, the average size of phenotypic effects underlying adaptation, the evolution of dominance, and the distinction between adaptations caused by changes in gene dosage versus gene structure.
Collapse
Affiliation(s)
- Michael W Nachman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
25
|
Jeffery WR, Strickler AG, Yamamoto Y. Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 2004; 431:696-9. [PMID: 15470430 DOI: 10.1038/nature02975] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 08/25/2004] [Indexed: 11/08/2022]
Abstract
The neural crest, a source of many different cell types in vertebrate embryos, has not been identified in other chordates. Current opinion therefore holds that neural crest cells were a vertebrate innovation. Here we describe a migratory cell population resembling neural crest cells in the ascidian urochordate Ecteinascidia turbinata. Labelling of embryos and larvae with the vital lipophilic dye DiI enabled us to detect cells that emerge from the neural tube, migrate into the body wall and siphon primordia, and subsequently differentiate as pigment cells. These cells express HNK-1 antigen and Zic gene markers of vertebrate neural crest cells. The results suggest that migratory cells with some of the features of neural crest cells are present in the urochordates. Thus, we propose a hypothesis for neural crest evolution beginning with the release of migratory cells from the CNS to produce body pigmentation in the common ancestor of the urochordates and vertebrates. These cells may have gained additional functions or were joined by other cell types to generate the variety of derivatives typical of the vertebrate neural crest.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
26
|
McCauley DW, Hixon E, Jeffery WR. Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis. Evol Dev 2004; 6:209-18. [PMID: 15230961 DOI: 10.1111/j.1525-142x.2004.04026.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pigmentation and eyes are often lost in cave-adapted animals. Although the mechanisms of eye degeneration are beginning to be understood, little is known about the evolutionary and developmental processes involved in pigment cell regression. In teleost embryos, a population of neural crest cells migrates into the body wall and differentiates into melanophores, xanthophores, and iridophores. All three pigment cell types are present in the eyed surface-dwelling form (surface fish) of the teleost Astyanax mexicanus. However, melanophores are absent or substantially reduced in number in various derived populations of the conspecific blind cave-dwelling form (cavefish). We show here that tyrosinase-positive melanoblasts are present in cavefish. DiI labeling revealed a population of trunk neural crest cells in cavefish embryos that migrate to locations normally occupied by differentiated melanophores. We also discovered a cell population in cavefish embryos and adults resembling melanoblasts in several features, including the ability to synthesize melanin when supplied with the tyrosinase substrate l-dopa. DiI-tyrosinase double-labeling and neural keel explant experiments showed that the tyrosinase-positive cells are derived from the neural crest. The number of melanoblasts varies in different adult cavefish populations relative to the extent of melanophore reduction. Although cavefish melanoblasts can synthesize melanin from exogenous l-dopa, they are unable to convert exogenous l-tyrosine to l-dopa and melanin. We conclude that pigment cell regression in cavefish is mediated by an evolutionary change late in melanogenesis that may involve an impediment in the ability to convert l-tyrosine to l-dopa and melanin.
Collapse
Affiliation(s)
- David W McCauley
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
27
|
Kumasaka M, Sato S, Yajima I, Yamamoto H. Isolation and developmental expression of tyrosinase family genes in Xenopus laevis. PIGMENT CELL RESEARCH 2003; 16:455-62. [PMID: 12950720 DOI: 10.1034/j.1600-0749.2003.00064.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tyrosinase family of genes in vertebrates consists of three related members encoding melanogenic enzymes, tyrosinase (Tyr), tyrosinase-related protein-1 (TRP-1, Tyrp1) and tyrosinase-related protein-2 (Dct, TRP-2, Tyrp2). These proteins catalyze melanin production in pigment cells and play important roles in determining vertebrate coloration. This is the first report examining melanogenic gene expression in pigment cells during embryonic development of amphibians. Xenopus provides a useful experimental system for analyzing molecular mechanisms of pigment cells. However, in this animal little information is available not only about the developmental expression but also about the isolation of pigmentation genes. In this study, we isolated homologues of Tyr, Tyrp1 and Dct in Xenopus laevis (XlTyr, XlTyrp1, and XlDct). We studied their expression during development using in situ hybridization and found that all of them are expressed in neural crest-derived melanophores, most of which migrate through the medial pathway, and in the developing diencephalon-derived retinal pigment epithelium (RPE). Further, XlDct was expressed earlier than XlTyr and XlTyrp1, which suggests that XlDct is the most suitable marker gene for melanin-producing cells among them. XlDct expression was detected in migratory melanoblasts and in the unpigmented RPE. In addition, the expression of XlDct was detected in the pineal organ. The sum of these studies suggests that expression of the tyrosinase family of genes is conserved in pigment cells of amphibians and that using XlDct as a marker gene for pigment cells will allow further study of the developmental mechanisms of pigment cell differentiation using Xenopus.
Collapse
Affiliation(s)
- Mayuko Kumasaka
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
28
|
Oliveira IOD, Almeida Junior HLD. Conhecimentos atuais sobre a biologia dos melanócitos no folículo piloso humano. An Bras Dermatol 2003. [DOI: 10.1590/s0365-05962003000300010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Os processos de crescimento e pigmentação do cabelo não são completamente conhecidos. Da mesma forma, o papel que os melanócitos foliculares desempenham nesses processos ainda não foi esclarecido. A identificação do destino dos melanócitos foliculares ao final da fase de crescimento do folículo piloso e a localização do reservatório dessas células, que voltam a povoar a porção inferior do novo folículo ao final da fase telógena do ciclo de crescimento do cabelo, constituem objeto de estudo. Investigações têm sido realizadas visando identificar se os melanócitos são responsáveis por algum sinal molecular de comunicação envolvido com as mudanças observadas na estrutura do folículo piloso durante o ciclo do cabelo. Alguns fatores têm sido descritos como participantes dos processos essenciais para a biologia dos melanócitos. A importância da proteína antiapoptótica, Bcl-2, para a manutenção dos melanócitos já foi demonstrada. A via SCF/kit foi mencionada como um mecanismo primário para a regulação dos processos de proliferação e diferenciação dos melanócitos. Por outro lado, o mecanismo de ação dos androgênios sobre as células do folículo piloso tem sido objeto de muitos estudos que tentam explicar como esses hormônios participam da regulação dos processos de crescimento e pigmentação do cabelo. Portanto, o objetivo dessa revisão é apresentar os atuais conhecimentos envolvendo a biologia dos melanócitos foliculares.
Collapse
|
29
|
Tosney KW. Long-distance cue from emerging dermis stimulates neural crest melanoblast migration. Dev Dyn 2003; 229:99-108. [PMID: 14699581 DOI: 10.1002/dvdy.10492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neural crest melanoblasts display unique navigational abilities enabling them to colonize the dorsal path between ectoderm and somite. One signal shown here to elicit melanoblast migration is a chemotactic cue supplied by the emerging dermis. Until dermis emerges, melanoblasts fail to enter the dorsal path. The dermis emerges from a site that is too distant to stimulate migration by cell contact. Instead, surgeries show that dermis elicits migration from a distance. When dermis is grafted distally, neural crest cells enter the path precociously. Moreover, large grafts recruit melanoblasts from the control sides (without increasing crest cell numbers) as well as a few crest cells from ventral somite. Because other grafted tissues fail to stimulate migration, the dermis stimulus is specific. This report is the first documentation that trunk neural crest cells can be guided chemotactically. It also extends evidence that migration is exquisitely sensitive to temporal-spatial patterns of somite morphogenesis. Developmental Dynamics 229:99-108, 2004.
Collapse
Affiliation(s)
- Kathryn W Tosney
- Molecular, Cellular and Developmental Biology Department and The Neuroscience Program, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
30
|
Abstract
Because of subtle differences between mouse and human skin, mice have traditionally not been an ideal model to study melanoma development. Understanding of the molecular mechanisms of melanoma predisposition, however, has been greatly improved by modeling various pathway defects in the mouse. This review analyzes the latest developments in mouse models of melanoma, and summarizes what these may indicate about the development of this neoplasm in humans. Mutations of genes involved in human melanoma have been recapitulated with some unexpected results, particularly with respect to the role of the two transcripts (Ink4a and Arf) encoded by the Cdkn2a locus. Both the Ink4a/pRb and Arf/p53 pathways are involved in melanoma development in mice, and possible mechanisms of cross-talk between the two pathways are discussed. We also know from mouse models that Ras/mitogen-activated protein kinase pathway activation is very important in melanoma development, either through direct activation of Ras (e.g., Hras G12V), or via activation of Ras-effector pathways by other oncogenes (e.g., Ret, Hgf/Sf). Ras can cooperate with the Arf/p53 pathway, and probably the Ink4a/Rb pathway, to induce melanoma. These three growth regulation pathways (Ink4a/pRb, Arf/p53, and Ras/mitogen-activated protein kinase) seem to represent three major "axes" of melanoma development in mice. Finally, we summarize experiments using genetically modified mice that have given indications of the intensity and timing of ultraviolet radiation exposure that may be most responsible for melanoma development.
Collapse
Affiliation(s)
- Graeme J Walker
- Queensland Cancer Fund Research Unit, Joint Experimental Oncology Program, Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Brisbane, 4029, QLD, Australia
| | | |
Collapse
|
31
|
Alhaidari, Olivry, Ortonne. Melanocytogenesis and melanogenesis: genetic regulation and comparative clinical diseases. Vet Dermatol 2002; 10:3-16. [DOI: 10.1046/j.1365-3164.1999.00132.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Alhaidari
- Clinique Vétérinaire, Cidex 248, R. N. 85, 06330‐Roquefort les Pins, France,
| | - Olivry
- College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough street, Raleigh, NC 27606, USA,
| | - Ortonne
- Hopital de l’Archet II‐Service de Dermatologie, 151, route Saint Antoine de Ginestière‐BP 79, 06202 Nice Cedex 3, France
| |
Collapse
|
32
|
Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 2001; 90:105-56. [PMID: 11578655 DOI: 10.1016/s0163-7258(01)00132-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current cancer therapies are highly toxic and often nonspecific. A potentially less toxic approach to treating this prevalent disease employs agents that modify cancer cell differentiation, termed 'differentiation therapy.' This approach is based on the tacit assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment, results in tumor reprogramming and a concomitant loss in proliferative capacity and induction of terminal differentiation or apoptosis (programmed cell death). Laboratory studies that focus on elucidating mechanisms of action are demonstrating the effectiveness of 'differentiation therapy,' which is now beginning to show translational promise in the clinical setting.
Collapse
Affiliation(s)
- M Leszczyniecka
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
33
|
Models for Pigment Pattern Formation in the Skin of Fishes. MATHEMATICAL MODELS FOR BIOLOGICAL PATTERN FORMATION 2001. [DOI: 10.1007/978-1-4613-0133-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Parichy DM, Rawls JF, Pratt SJ, Whitfield TT, Johnson SL. Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 1999; 126:3425-36. [PMID: 10393121 DOI: 10.1242/dev.126.15.3425] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The relative roles of the Kit receptor in promoting the migration and survival of amniote melanocytes are unresolved. We show that, in the zebrafish, Danio rerio, the pigment pattern mutation sparse corresponds to an orthologue of c-kit. This finding allows us to further elucidate morphogenetic roles for this c-kit-related gene in melanocyte morphogenesis. Our analyses of zebrafish melanocyte development demonstrate that the c-kit orthologue identified in this study is required both for normal migration and for survival of embryonic melanocytes. We also find that, in contrast to mouse, the zebrafish c-kit gene that we have identified is not essential for hematopoiesis or primordial germ cell development. These unexpected differences may reflect evolutionary divergence in c-kit functions following gene duplication events in teleosts.
Collapse
Affiliation(s)
- D M Parichy
- Department of Genetics, Washington University School of Medicine, Box 8232, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
35
|
Painter KJ, Maini PK, Othmer HG. Stripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis. Proc Natl Acad Sci U S A 1999; 96:5549-54. [PMID: 10318921 PMCID: PMC21897 DOI: 10.1073/pnas.96.10.5549] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1998] [Accepted: 02/23/1999] [Indexed: 11/18/2022] Open
Abstract
Current interest in pattern formation can be traced to a seminal paper by Turing, who demonstrated that a system of reacting and diffusing chemicals, called morphogens, can interact so as to produce stable nonuniform concentration patterns in space. Recently, a Turing model has been suggested to explain the development of pigmentation patterns on species of growing angelfish such as Pomacanthus semicirculatus, which exhibit readily observed changes in the number, size, and orientation of colored stripes during development of juvenile and adult stages, but the model fails to predict key features of the observations on stripe formation. Here we develop a generalized Turing model incorporating cell growth and movement, we analyze the effects of these processes on patterning, and we demonstrate that the model can explain important features of pattern formation in a growing system such as Pomacanthus. The applicability of classical Turing models to biological pattern formation is limited by virtue of the sensitivity of patterns to model parameters, but here we show that the incorporation of growth results in robustly generated patterns without strict parameter control. In the model, chemotaxis in response to gradients in a morphogen distribution leads to aggregation of one type of pigment cell into a striped spatial pattern.
Collapse
Affiliation(s)
- K J Painter
- Centre for Mathematical Biology, Mathematical Institute Oxford, OX1 3LB, United Kingdom.
| | | | | |
Collapse
|
36
|
Hou L. Effects of local tissue environment on the differentiation of neural crest cells in turtle, with special reference to understanding the spatial distribution of pigment cells. PIGMENT CELL RESEARCH 1999; 12:81-8. [PMID: 10231195 DOI: 10.1111/j.1600-0749.1999.tb00747.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The spatial distribution of neural crest-derived pigment cells in turtles differs markedly from those found in chickens and mice. One hypothesis to explain such differences in the spatial distribution of pigment cells is that local tissue factors interact with neural crest cells, thereby determining their differentiation into pigment-synthesizing cells. It is reported here that local tissue factors in the soft-shell turtle (Trionyx sinensis japonicus) play a critical role in the development of melanophores from neural crest cells during embryogenesis. Undifferentiated neural crest cells derived from trunk neural tubes were co-cultured in vitro with homochronous somites, or with heterochronous dermis, lung or liver for 14 days. Melanophore differentiation from neural crest cells was significantly promoted when co-cultured with cells from lung, somites or dermis, but not when co-cultured with liver cells. These results suggest that local tissue factors stimulate the differentiation of pluripotent neural crest derivatives toward pigment cells. It is proposed that specific environmental cues play an important role in the spatial distribution of pigment cells in a variety of vertebrate species.
Collapse
Affiliation(s)
- L Hou
- Biological Institute, Tohoku University, Aoba-yama, Sendai, Japan.
| |
Collapse
|
37
|
Guo Z, Heydari A, Richardson A. Nucleotide excision repair of actively transcribed versus nontranscribed DNA in rat hepatocytes: effect of age and dietary restriction. Exp Cell Res 1998; 245:228-38. [PMID: 9828120 DOI: 10.1006/excr.1998.4269] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of primary cultures of rat hepatocytes to remove cyclobutane pyrimidine dimers (CPDs) from DNA fragments containing the transcriptionally active albumin gene and the transcriptionally inactive embryonic myosin heavy chain (MHCemb) and H-ras fragments as well as the genome overall was measured. At all UV doses studied, more CPDs were observed in the three DNA fragments and the genome overall in hepatocytes isolated from old (24-month-old) rats fed ad libitum than in young (6-month-old) rats fed ad libitum or old rats fed a calorie-restricted diet. The cultured hepatocytes preferentially removed CPDs from the albumin fragment compared to the genome overall or the MHCemb and H-ras fragments. The rate of repair (12 h after UV irradiation) of the albumin fragment was approximately 40% less in hepatocytes isolated from old rats than from young rats; this was due to a decrease in repair of the transcribed strand of this fragment, and dietary restriction prevented this decrease. The extent of repair (24 h after UV irradiation) of the MHCemb and H-ras fragments as well as the genome overall was reduced approximately 40% with age, and this decrease was reversed by dietary restriction.
Collapse
Affiliation(s)
- Z Guo
- Education and Clinical Center, South Texas Veterans Health Care System,University of Texas Health Care Center, San Antonio, TX 78284, USA
| | | | | |
Collapse
|
38
|
Erickson CA, Reedy MV. Neural crest development: the interplay between morphogenesis and cell differentiation. Curr Top Dev Biol 1998; 40:177-209. [PMID: 9673851 DOI: 10.1016/s0070-2153(08)60367-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The final pattern of tissues established during embryogenesis reflects the outcome of two developmental processes: differentiation and morphogenesis. Avian neural crest cells are an excellent system in which to study this interaction. In the first phase of neural crest cell migration, neural crest cells separate from the neural epithelium via an epithelial-mesenchymal transformation. We present three models to account for this process: (1) separation by asymmetric mitosis, (2) separation by generating tractional force in order to rupture cell adhesions and (3) loss of expression or function of cell-cell adhesion molecules that keep the presumptive neural crest cells tethered to the neural epithelium. Evidence is presented that the segregation of the neural crest lineage apart from the neural epithelium is caused by the epithelial-mesenchymal transformation. Once they have detached from the neural tube, neural crest cells take two pathways in the trunk of the chick embryo: (1) the ventral path between the neural tube and somite, where neural crest cells give rise to neurons and glial cells of the peripheral nervous systems, and (2) the dorsolateral path between the ectoderm and dermamyotome of the somite, where they differentiate into pigment cells of the skin. We present data to suggest that the migration and differentiation along the ventral path is controlled primarily by environmental cues, which we refer to as the environment-directed model of neural crest morphogenesis. Conversely, only melanoblasts can migrate into the dorsolateral space, and the ability to invade that path is dependent upon their early specification as melanoblasts. We call this the phenotype-directed model for neural crest cell migration and suggest that this latter model for the positioning of neural crest derivatives in the embryo may be more common than previously suspected. These observations invite a re-examination of patterning of other crest derivates, which previously were believed to be controlled by environmental cues.
Collapse
Affiliation(s)
- C A Erickson
- Section of Molecular and Cellular Biology, University of California-Davis 95616, USA
| | | |
Collapse
|
39
|
Parichy DM. Experimental analysis of character coupling across a complex life cycle: pigment pattern metamorphosis in the tiger salamander, Ambystoma tigrinum tigrinum. J Morphol 1998; 237:53-67. [PMID: 9642792 DOI: 10.1002/(sici)1097-4687(199807)237:1<53::aid-jmor5>3.0.co;2-p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Developmental relationships among characters are expected to bias patterns of morphological variation at the population level. Studies of character development thus can provide insights into processes of adaptation and the evolutionary diversification of morphologies. Here I use experimental manipulations to test whether larval and adult pigment patterns are coupled across metamorphosis in the tiger salamander, Ambystoma tigrinum tigrinum (Ambystomatidae). Previous investigations showed that the early larval pigment pattern depends on interactions between pigment cells and the lateral line sensory system. In contrast, the results of this study demonstrate that the major features of the adult pigment pattern develop largely independently of both the early larval pattern and the lateral lines. These results suggest that ontogenetic changes that occur across metamorphosis decouple larval and adult pigment patterns and could thereby facilitate independent evolutionary modifications to the patterns during different stages of the life cycle.
Collapse
Affiliation(s)
- D M Parichy
- Section of Evolution and Ecology, University of California at Davis, CA 95616, USA.
| |
Collapse
|
40
|
Gutsmann-Conrad A, Heydari AR, You S, Richardson A. The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp Cell Res 1998; 241:404-13. [PMID: 9637782 DOI: 10.1006/excr.1998.4069] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because heat shock proteins have been shown to play a critical role in protecting cells from hyperthermia and other types of stresses, it was of interest to determine what effect cellular senescence in vitro and cells cultured in vitro from young and old human donors have on the ability of cells to regulate the expression of heat shock protein 70 (hsp70), the most prominent and most evolutionary conserved of the heat shock proteins. The ability of early and late passage IMR-90 lung fibroblasts and epidermal melanocytes and skin fibroblasts obtained from young and old human donors to express hsp70 was determined after a brief heat shock. We found that the levels of hsp70 protein and mRNA were lower in late passage cells and cells from old donors than in early passage cells and cells from young donors. The binding activity of the heat shock transcription factor HSF1, as measured by a gel shift assay, was significantly higher in early passage cells and cells from young donors in comparison to late passage cells and cells from old donors. In addition, the levels of HSF1 decreased significantly in late passage cells and cells from old donors in comparison to early passage cells and cells from young donors. Thus, our study demonstrates that the induction of hsp70 by hyperthermia in fibroblasts is significantly lower in late passage fibroblasts and in fibroblasts from old donors. In addition, our study shows that the decline in hsp70 expression during cellular senescence in vitro and in cells derived from old human subjects is paralleled by a decrease in the levels of HSF1.
Collapse
Affiliation(s)
- A Gutsmann-Conrad
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, Texas, 78284, USA
| | | | | | | |
Collapse
|
41
|
Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, de Wit D, Emoto N, Hammer RE. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 1998; 125:825-36. [PMID: 9449665 DOI: 10.1242/dev.125.5.825] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent gene targeting studies have revealed unexpected roles for endothelins in the development of neural crest-derived tissues. Endothelin converting enzyme-1 (ECE-1) catalyzes the proteolytic activation of big endothelin-1 to endothelin-1(ET-1) in vitro. However, the importance of ECE-1 cleavage in the multiple endothelin pathways in vivo is unknown. Here we generated a targeted null mutation in the mouse ECE-1 gene. ECE-1−/− term embryos exhibited craniofacial and cardiac abnormalities virtually identical to the defects seen in ET-1 and endothelin A receptor (ETA)-deficient embryos. Epidermal melanocytes as well as enteric neurons of the distal gut were also absent in ECE-1−/− embryos, reproducing the developmental phenotype seen in ET-3−/− and endothelin B receptor (ETB)−/− mice. Surprisingly, large amounts of mature ET-1 peptide are found in ECE-1−/− embryos, indicating that non-ECE-1 protease(s) can activate ET-1 at certain sites. However, these enzymes cannot produce sufficient mature endothelin at the locations crucial for normal embryonic development. These findings reveal that ECE-1 is a bona fide activating protease for both big ET-1 and big ET-3 in vivo, and that the cell-cell communication pathways represented by the ET-1/ECE-1/ETA axis and the ET-3/ECE-1/ETB axis are each involved in the development of distinct subsets of neural crest cell lineages. Mutations in ECE-1 may cause developmental defects in humans, such as Hirschsprung disease, velocardiofacial syndrome and related neurocristopathies.
Collapse
Affiliation(s)
- H Yanagisawa
- Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9050, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fukuzawa T, Okumoto H, Nishioka M. The site and time of expression of MIF in frog development. PIGMENT CELL RESEARCH 1997; 10:401-9. [PMID: 9428008 DOI: 10.1111/j.1600-0749.1997.tb00699.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A ventrally localized melanization-inhibiting factor (MIF) has been suggested to play a role in the expression of dorsal-ventral pigment patterns in amphibia. Here we investigate the onset and localization of MIF appearance in frog development. The expression of MIF was analyzed in the wild-type and gray-eyed mutant (g/g) of Rana japonica by immunoblotting and immunohistochemistry using an anti-MIF neutralizing monoclonal antibody. Western blot analysis revealed that the anti-MIF antibody recognized approximately 51 kDa and approximately 58 kDa bands. The 51 kDa band first appeared at the external gill stage, while 58 kDa band was additionally detected at the hindlimb bud stage. With the use of immunohistochemistry, it was found that the anti-MIF antibody stained the whole epidermis of the embryos at the external gill stage; however, the staining was stronger in lateral and ventral epidermis than in dorsal. Staining with the anti-MIF antibody was observed only in the outer epidermis of the ventral skin, but not in the dorsal skin during and after metamorphosis. The spatial expression of MIF in the wild-type was the same as that in the gray-eyed mutant. The same immunohistochemical result was obtained in the adults of R. nigromaculata. These results suggest that MIF is involved in the formation of the dorsal-ventral pigment pattern.
Collapse
Affiliation(s)
- T Fukuzawa
- Laboratory for Amphibian Biology, Hiroshima University, Japan
| | | | | |
Collapse
|
43
|
Mackenzie MA, Jordan SA, Budd PS, Jackson IJ. Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev Biol 1997; 192:99-107. [PMID: 9405100 DOI: 10.1006/dbio.1997.8738] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of neural crest-derived melanocytes, as well as haematopoietic and germ cells, is affected by mutations of the Kit and Mgf genes, which lead to dominant spotting (W) or steel (Sl) phenotypes. Mgf codes for the ligand of the receptor tyrosine kinase encoded by the Kit locus. KitW-v, a point mutation exerting a dominant negative effect, causes a substantial reduction in tyrosine kinase activity of the Kit receptor and leads to a characteristic pigmentation phenotype, namely dilute coat colour and a white ventral and head spot with reduced pigmentation of the feet and tail in the heterozygous animal, as well as slight anaemia. Homozygous animals lack coat pigmentation and are severely anaemic and infertile. Dct is a marker for cells of the melanoblast lineage. In order to study these cells in detail we have generated transgenic mouse lines carrying the lacZ reporter under the control of the Dct promoter and have used the embryonic expression of the reporter to identify early melanoblasts before they begin to produce pigment. Our transgenic lines have simplified the study of melanoblasts in the mouse embryo, and by crossing our mice with KitW-v mutants we have been able to identify the midgestation stages at which melanoblasts rely critically on Mgf/Kit interactions. We conclude that the survival of immature melanoblasts depends crucially upon Kit signalling up until E11, and later in development Kit plays a vital role in melanoblast proliferation. Our data do not describe a dependence upon Kit for melanoblast migration or differentiation.
Collapse
Affiliation(s)
- M A Mackenzie
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom
| | | | | | | |
Collapse
|
44
|
Stigson M, Löfberg J, Kjellén L. Reduced epidermal expression of a PG-M/versican-like proteoglycan in embryos of the white mutant axolotl. Exp Cell Res 1997; 236:57-65. [PMID: 9344585 DOI: 10.1006/excr.1997.3702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Axolotl embryos have previously been used to study neural crest cell migration. In embryos of the normal wild type, neural crest cells migrate subepidermally to form pigment cells. In the trunk of the white mutant embryo, these cells are unable to migrate, possibly due to an inherited delay in the maturation of the local extracellular matrix. The present investigation reveals a reduced incorporation of [35S]sulfate into PG-M/versican-like proteoglycans synthesized in epidermal explants from the dorsal trunk of white mutant embryos during stages pertinent to migration. This is the major form of proteoglycans in the subepidermal matrix, where they are assembled in large disulfide-stabilized supramolecular complexes. The reduction in [35S]sulfate incorporation is not due to qualitative differences between wild-type and white mutant proteoglycans but is paralleled by a reduced expression of mRNA for the core protein of the PG-M/versican-like proteoglycan. We conclude that a reduced amount of these proteoglycans is produced by the white mutant embryo during the period critical for migration.
Collapse
Affiliation(s)
- M Stigson
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | |
Collapse
|
45
|
Boissy RE, Nordlund JJ. Molecular basis of congenital hypopigmentary disorders in humans: a review. PIGMENT CELL RESEARCH 1997; 10:12-24. [PMID: 9170158 DOI: 10.1111/j.1600-0749.1997.tb00461.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many specific gene products are sequentially made and utilized by the melanocyte as it emigrates from its embryonic origin, migrates into specific target sites, synthesizes melanin(s) within a specialized organelle, transfers pigment granules to neighboring cells, and responds to various exogenous cues. A mutation in many of the respective encoding genes can disrupt this process of melanogenesis and can result in hypopigmentary disorders. Following are examples highlighting this scenario. A subset of neural crest derived cells emigrate from the dorsal surface of the neural tube, become committed to the melanoblast lineage, and are targeted along the dorsal lateral pathway. The specific transcription factors PAX3 and MITF (microphthalmia transcription factor) appear to play a regulatory role in early embryonic development of the pigment system and in associated diseases (the Waardenburg syndromes). During the subsequent development and commitment of the melanoblast, concomitant expression of the receptors for fibroblasts growth factor (FGFR2), endothelin-B (EDNRB), and steel factor (cKIT) also appears essential for the continued survival of migrating melanoblasts. Lack or dysfunction of these receptors result in Apert syndrome, Hirschsprung syndrome and piebaldism, respectively. Once the melanocyte resides in its target tissue, a plethora of melanocyte specific enzymes and structural proteins are coordinately expressed to form the melanosome and to convert tyrosine to melanin within it. Mutations in the genes encoding these proteins results in a family of congenital hypopigmentary diseases called oculocutaneous albinism (OCA). The tyrosinase gene family of proteins (tyrosinase, TRP1, and TRP2) regulate the type of eumelanin synthesized and mutations affecting them result in OCA1, OCA3, and slaty (in the murine system), respectively. The P protein, with 12 transmembrane domains localized to the melanosome, has no assigned function as of yet but is responsible for OCA2 when dysfunctional. There are other genetically based syndromes, phenotypically resembling albinism, in which the synthesis of pigmented melanosomes, as well as specialized organelles of other cell types, is compromised. The Hermansky-Pudlak syndrome (HPS) and the Chediak-Higashi syndrome (CHS) are two such disorders. Eventually, the functional melanocyte must be maintained in the tissue throughout life. In some cases it is lost either normally or prematurely. White hair results in the absence of melanocytes repopulating the germinative hair follicle during subsequent anagen stages. Vitiligo, in contrast, results from the destruction and removal of the melanocyte in the epidermis and mucous membranes.
Collapse
Affiliation(s)
- R E Boissy
- Department of Dermatology, University of Cincinnati College of Medicine, Ohio 45267-0592, USA
| | | |
Collapse
|
46
|
Houillon C, Bagnara JT. Insights into pigmentary phenomena provided by grafting and chimera formation in the axolotl. PIGMENT CELL RESEARCH 1996; 9:281-8. [PMID: 9125751 DOI: 10.1111/j.1600-0749.1996.tb00119.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of pigmentation patterns in axolotl pigmentary mutants was observed following three types of experimental manipulations including chimera formation, reciprocal neural crest grafts, of gonadal primordia. Three pigmentary genes were utilized including the wild type (D), white (d), and albino (a). In chimeras between white and albino embryos, melanoblasts from the white half crossed the graft interface to differentiate in albino skin. Neural crest grafts from white embryos to albinos provided melanophores of white origin that were capable of differentiation in albino skin. Grafts of gonadal primordia from albino to white embryos provided albino germ cells that formed unpigmented ovocytes together with dark ovocytes: white ovocytes from the albino grafted ovary, and dark ovocytes from the host ovary. The donor albino white ectoderm included in the graft was able to support the differentiation of melanophores, iridophores, and xanthophores that invaded the graft ectoderm from the neural crest of the white host. It was concluded that manifestation of the white or wild phenotypes may be related to the possible presence or absence of inhibiting or stimulating pigmentary factors in the skin. This possibility was discussed in the light of recent discoveries of such factors as Agouti Signaling Protein (ASP) from mammalian skin.
Collapse
Affiliation(s)
- C Houillon
- Laboratoire de Biologie Animale-Embryologie, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
47
|
Abstract
To elucidate the inheritance of deafness in Dalmatian dogs, 825 dogs in 111 litters were evaluated for abnormalities in hearing through the brainstem auditory evoked response (BAER). Recorded along with their quality of hearing (normal, unilaterally deaf, or bilaterally deaf) were the sex, coat color, eye color and the presence or absence of a color patch. The analysis considered deafness an ordered categorical trait in a threshold model. The underlying, unobservable continuous variate of the threshold model was assumed to be a linear function of sex of dog, coat color (black or liver and white), color patch (presence or absence), eye color, the deafness phenotype of the parents and a random family effect. Twenty-six percent of dogs were deaf in at least one ear. Eye color, color patch, sex and the hearing status of the parents were all significant contributions to deafness. The heritability of deafness, on the continuous unobservable scale, was 0.21. This value was computed after correction for eye color, color patch, parental hearing status and sex, implying that significant genetic variation exists beyond the contribution of several single loci.
Collapse
Affiliation(s)
- T R Famula
- Department of Animal Science, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
48
|
Abstract
Genes that control mammalian pigmentation interact with each other in intricate networks that have been studied for decades using mouse coat color mutations. Molecular isolation of the affected genes and the ability to study their effects in a defined genetic background have led to surprising new insights into the potential interaction between tyrosine kinase and G-protein-coupled signaling pathways. Recent developments show that homologous genes in humans are responsible not only for rare diseases, such as albinism and piebaldism, but also for common phenotypic variations, such as red hair and fair skin.
Collapse
Affiliation(s)
- G S Barsh
- Department of Pediatrics, Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305-5428, USA.
| |
Collapse
|
49
|
Takayama H, La Rochelle WJ, Anver M, Bockman DE, Merlino G. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proc Natl Acad Sci U S A 1996; 93:5866-71. [PMID: 8650184 PMCID: PMC39153 DOI: 10.1073/pnas.93.12.5866] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Factors that regulate cellular migration during embryonic development are essential for tissue and organ morphogenesis. Scatter factor/hepatocyte growth factor (SF/HGF) can stimulate motogenic and morphogenetic activities in cultured epithelial cells expressing the Met tyrosine kinase receptor and is essential for development; however, the precise physiological role of SF/HGF is incompletely understood. Here we provide functional evidence that inappropriate expression of SF/HGF in transgenic mice influences the development of two distinct migratory cell lineages, resulting in ectopic skeletal muscle formation and melanosis in the central nervous system, and patterned hyperpigmentation of the skin. Committed TRP-2 positive melanoblasts were found to be situated aberrantly within defined regions of the transgenic embryo, including the neural tube, which overproduced SF/RGF. Our data strongly suggest that SF/HGF possesses physiologically relevant scatter activity, and functions as a true morphogenetic factor by regulating migration and/or differentiation of select populations of premyogenic and neural crest cells during normal mammalian embryogenesis.
Collapse
Affiliation(s)
- H Takayama
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
50
|
Erickson CA, Goins TL. Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development 1995; 121:915-24. [PMID: 7720593 DOI: 10.1242/dev.121.3.915] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural crest cells are conventionally believed to migrate arbitrarily into various pathways and to differentiate according to the environmental cues that they encounter. We present data consistent with the notion that melanocytes are directed, by virtue of their phenotype, into the dorsolateral path, whereas other neural crest derivatives are excluded. In the avian embryo, trunk neural crest cells that migrate ventrally differentiate largely into neurons and glial cells of the peripheral nervous system. Neural crest cells that migrate into the dorsolateral path become melanocytes, the pigment cells of the skin. Neural crest cells destined for the dorsolateral path are delayed in their migration until at least 24 hours after migration commences ventrally. Previous studies have suggested that invasion into the dorsolateral path is dependent upon a change in the migratory environment. A complementary possibility is that as neural crest cells differentiate into melanocytes they acquire the ability to take this pathway. When quail neural crest cells that have been grown in culture for 12 hours are labeled with Fluoro-gold and then grafted into the early migratory pathway at the thoracic level, they migrate only ventrally and are coincident with the host neural crest. When fully differentiated melanocytes (96 hours old) are back-grafted under identical conditions, however, they enter the dorsolateral path and invade the ectoderm at least one day prior to the host neural crest. Likewise, neural crest cells that have been cultured for at least 20 hours and are enriched in melanoblasts immediately migrate in the dorsolateral path, in addition to the ventral path, when back-grafted into the thoracic level. A population of neural crest cells depleted of melanoblasts--crest cells derived from the branchial arches--are not able to invade the dorsolateral path, suggesting that only pigment cells or their precursors are able to take this migratory route. These results suggest that as neural crest cells differentiate into melanocytes they can exploit the dorsolateral path immediately. Even when 12-hour crest cells are grafted into stage 19–21 embryos at an axial level where host crest are invading the dorsolateral path, these young neural crest cells do not migrate dorsolaterally. Conversely, melanoblasts or melanocytes grafted under the same circumstances are found in the ectoderm. These latter results suggest that during normal development neural crest cells must be specified, if not already beginning to differentiate, as melanocytes in order to take this path.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C A Erickson
- Section of Molecular and Cellular Biology, University of California-Davis 95616
| | | |
Collapse
|