1
|
Chang Y, Wu S, Li J, Bao H, Wu C. Identification of Candidate Genes for Red-Eyed (Albinism) Domestic Guppies Using Genomic and Transcriptomic Analyses. Int J Mol Sci 2024; 25:2175. [PMID: 38396851 PMCID: PMC10888696 DOI: 10.3390/ijms25042175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The main object of this study was to identify candidate genes for the red-eyed phenotype in domestic guppies. We hope to provide molecular genetic information for the development of new domestic guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified. Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes. Through GO and KEGG enrichment, we identified some important terms or pathways mainly related to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.
Collapse
Affiliation(s)
| | | | | | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.W.); (J.L.); (C.W.)
| | | |
Collapse
|
2
|
Tian X, Pang X, Wang L, Li M, Dong C, Ma X, Wang L, Song D, Feng J, Xu P, Li X. Dynamic regulation of mRNA and miRNA associated with the developmental stages of skin pigmentation in Japanese ornamental carp. Gene 2018; 666:32-43. [PMID: 29684491 DOI: 10.1016/j.gene.2018.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/24/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
The Japanese ornamental carp (Cyprinus carpio var. Koi) is famous for multifarious colors and patterns, making it commonly culture and trade across the world. Although functional genes and inheritance of color traits have been commonly studied, seldom attentions were focused on the genetic regulation during the developmental process of pigmentation. To better understand the mechanism of skin color development, we observed the morphogenesis of pigment cells during the post-embryonic stages and analysed the temporal expression pattern of mRNAs/miRNAs profiles in four distinct developmental stages. 59 and 103 differentially expressed genes/miRNAs (DEGs/DEMs) associated with pigmentation and skin were identified, including pax7, mitf, tyr, tyrp1, etc., and the highest DEGs were detected at 11 days post hatching (dph). In addition, the functional characteristics of mRNAs/miRNAs associated with pteridine and carotenoid pathway were also examined. Furthermore, 65 miRNA-mRNA interaction pairs related to pigmentation, pteridines and carotenoids metabolism were detected between different stages. Interestingly, the largest pairs appeared in the transition from 11 dph to 48 dph, which had the similar trend with DEGs further manifesting the importance of 11 dph. This study produced a comprehensive programme of DEGs/DEMs during color development, which will provide resources to understand the regulation mechanism in color formation. The understanding of genetic basis in color formation might promote the production and breeding of the Koi carp.
Collapse
Affiliation(s)
- Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xiaolei Pang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Liangyan Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengrong Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Chuanju Dong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Dongying Song
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou, 410100, PR China
| | - Peng Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
3
|
Zhang XT, Wei KJ, Chen YY, Shi ZC, Liu LK, Li J, Zhang GR, Ji W. Molecular cloning and expression analysis of tyr and tyrp1 genes in normal and albino yellow catfish Tachysurus fulvidraco. JOURNAL OF FISH BIOLOGY 2018; 92:979-998. [PMID: 29460483 DOI: 10.1111/jfb.13556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
The full-length complementary DNA of two genes related to vertebrate albinism, the tyrosinase gene tyr and tyrosinase-related protein 1 gene tyrp1, were cloned and analysed from normal and albino yellow catfish Tachysurus fulvidraco. The open reading frames (ORF) of tyr and tyrp1 encode putative peptides of 533 and 526 amino acids (amino-acid), both of which possess two conserved copper binding sites. The homologous identities of deduced amino-acid sequences showed that both Tyr and Tyrp1 of T. fulvidraco share considerable similarity with that of channel catfish Ictalurus punctatus. Both tyr and tyrp1 were expressed in a wide range of adult tissues. Tyr gene had the highest expression level in the brain of both normal and albino T. fulvidraco. Tyrp1 had the highest expression level in the skin of normal groups, and the fin of albino groups. The messenger (m)RNA expressions of tyr and tyrp1 were detectable at different early developmental stages and varied with embryonic and larval growth. Tyr and tyrp1 mRNA have obvious tissue specificity both in normal and albino T. fulvidraco and higher expression levels were detected in the normal group revealing that tyr and tyrp1 may have an important role in pigmentation. These results will provide useful data for understanding the molecular mechanism of melanin formation and the occurrence of albinism in T. fulvidraco.
Collapse
Affiliation(s)
- X T Zhang
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - K J Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Y Y Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Z C Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - L K Liu
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - J Li
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - G R Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - W Ji
- Department of Aquatic Animal Medicines, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
4
|
Miura I, Tagami M, Fujitani T, Ogata M. Spontaneous tyrosinase mutations identified in albinos of three wild frog species. Genes Genet Syst 2017; 92:189-196. [PMID: 28674275 DOI: 10.1266/ggs.16-00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present study reports spontaneous tyrosinase gene mutations identified in oculocutaneous albinos of three Japanese wild frog species, Pelophylax nigromaculatus, Glandirana rugosa and Fejervarya kawamurai. This represents the first molecular analyses of albinic phenotypes in frogs. Albinos of P. nigromaculatus collected from two different populations were found to suffer from frameshift mutations. These mutations were caused by the insertion of a thymine residue within each of exons 1 and 4, while albinos in a third population lacked three nucleotides encoding lysine in exon 1. Albinos from the former two P. nigromaculatus populations were also associated with splicing variants of mRNA that lacked either exons 2-4 or exon 4. In the other two frog species examined, missense mutations that resulted in amino acid substitutions from glycine to arginine and glycine to aspartic acid were identified in exons 1 and 3, respectively. The two glycines in F. kawamurai and G. rugosa, and the lysine deleted in one P. nigromaculatus albino, were highly conserved in vertebrates, which suggested that they were situated in regions of critical importance to tyrosinase function. In fact, the glycine of G. rugosa is located within a predicted copper-binding domain. The five mutations identified in the present study are candidates for causing the albinic phenotypes, and, if directly confirmed, they are all unique among vertebrates, which suggests that molecular analysis of albino frogs could contribute to research on albinos in humans and vertebrates by providing new information about tyrosinase structure and transcript processing.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University
| | | | | | | |
Collapse
|
5
|
Shimada Y, Shikano T, Merilä J. A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. Mol Biol Evol 2010; 28:181-93. [PMID: 20660084 DOI: 10.1093/molbev/msq181] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome scan approaches to detect footprints of directional selection in the genomes of wild animal and plant populations have become popular tools to study local adaptation and speciation at the molecular level. Most studies thus far have used random molecular markers and found footprints of directional selection at, on average, 5% (range: 1-15%) of the examined loci. We focused on physiologically important genes that exhibit transcriptional responses to specific environmental or developmental conditions and assessed if these genes have been subject to directional selection and are responsible for local adaptation in the three-spined stickleback (Gasterosteus aculeatus). Using microsatellite markers located within or closely linked to (<6 kb) target genes, we investigated footprints of directional selection for 157 genes with known physiological functions in three marine and six freshwater populations. A high incidence (16.6%) of footprints of directional selection for these genes was revealed by four different outlier tests. In a subset of four populations screened with both physiologically important and random genes, footprints of directional selection were more frequent in physiologically important genes (13.4%) as compared with random genes (2.4%). In general, our findings indicate strong selective pressures on physiologically important genes, suggesting that these genes have significant functions in evolutionary adaptation to environmental heterogeneity.
Collapse
Affiliation(s)
- Yukinori Shimada
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Finland.
| | | | | |
Collapse
|
6
|
Tsutsumi M, Imai S, Kyono-Hamaguchi Y, Hamaguchi S, Koga A, Hori H. Color reversion of the albino medaka fish associated with spontaneous somatic excision of the Tol-1 transposable element from the tyrosinase gene. ACTA ACUST UNITED AC 2006; 19:243-7. [PMID: 16704459 DOI: 10.1111/j.1600-0749.2006.00300.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The medaka fish albino mutant, i(1) is one of the Tomita collection of medaka pigmentation mutants which exhibits a complete albino phenotype, because of inactivation of the tyrosinase gene due to insertion of a transposable element, Tol-1. Recently, mosaic black-pigmented i(1) medaka fish have arisen in one of our laboratory breeding populations. Their pigmented cells have been observed in all of the tissues, including the eye and skin, in which melanin is detectable in the wild type. In this study, we analyzed the tyrosinase gene of revertants and showed Tol-1 to have been precisely excised from the gene, suggesting a causal relationship. Mosaic patterns of pigmentation indicate spontaneous somatic excision of the element from the tyrosinase gene. To our knowledge, this is the first transposable element with somatic excision activity demonstrated phenotypically in vertebrates. The pattern of pigmentation in mosaic revertants indicates frequencies of melanin pigments to be consistent with the numbers of melanophores per unit area of body sites, such as the eyes, head and dorsal trunk.
Collapse
Affiliation(s)
- Makiko Tsutsumi
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Zebrafish is an excellent model animal to study vertebrate development by genetic approaches. Hundreds of mutations affecting various processes of development have been isolated by chemical mutagenesis and insertional mutagenesis using a pseudotyped retrovirus. However, useful transposon tools and methods had not been available in zebrafish. This is mainly because no active transposable element has been found from the zebrafish genome. Recently, efficient transgenesis, gene trap, and enhancer trap methods have been developed in zebrafish by using the Tol2 and the Sleeping Beauty transposon systems. These methods should increase the usefulness of zebrafish as a model vertebrate and facilitate the study of developmental biology, genetics, and genomics.
Collapse
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan.
| |
Collapse
|
8
|
Obata H, Ishida H, Hata Y, Kawato A, Abe Y, Akao T, Akita O, Ichishima E. Cloning of a novel tyrosinase-encoding gene (melB) from Aspergillus oryzae and its overexpression in solid-state culture (Rice Koji). J Biosci Bioeng 2005; 97:400-5. [PMID: 16233650 DOI: 10.1016/s1389-1723(04)70226-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 03/23/2004] [Indexed: 11/25/2022]
Abstract
We have cloned a novel tyrosinase-encoding gene (melB) specifically expressed in solid-state culture of Aspergillus oryzae. A tyrosinase-encoding gene (melO) from A. oryzae was already cloned and the protein structures of its catalytic and copper binding domains were investigated. However, our recent results revealed that the melO gene was highly expressed in submerged culture but not in solid-state culture. Because tyrosinase activity was also detected in solid-state culture, we assumed that another tyrosinase gene other than melO is expressed in solid-state culture. Another tyrosinase gene was screened using the expressed sequence tag (EST) library. One redundant cDNA clone homologous with the tyrosinase gene was found in the collection of wheat bran culture. Northern blot analysis revealed that the gene corresponding to the cDNA clone was specifically expressed in solid-state culture (koji making), but not in submerged culture. Molecular cloning showed that the gene carried six exons interrupted by five introns and had an open reading frame encoding 616 amino acid residues. This gene was designated as melB. The deduced amino acid sequence of the gene had weak homology (24%-33%) with MelO and other fungal tyrosinases but the sequences of the copper binding domains were highly conserved. When the melB gene was expressed under the control of the glaB promoter in solid-state culture, tyrosinase activity was markedly enhanced and the culture mass was browned with the melanization by MelB tyrosinase. These results indicated that the melB gene encodes a novel tyrosinase associated with melanization in solid-state culture.
Collapse
Affiliation(s)
- Hiroshi Obata
- Research Institute, Gekkeikan Sake Co. Ltd., 24 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8361, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Page-McCaw PS, Chung SC, Muto A, Roeser T, Staub W, Finger-Baier KC, Korenbrot JI, Baier H. Retinal network adaptation to bright light requires tyrosinase. Nat Neurosci 2004; 7:1329-36. [PMID: 15516923 DOI: 10.1038/nn1344] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/26/2004] [Indexed: 11/08/2022]
Abstract
The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.
Collapse
Affiliation(s)
- Patrick S Page-McCaw
- University of California, San Francisco, Department of Physiology, Program in Neuroscience, 513 Parnassus Ave., San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Iida A, Inagaki H, Suzuki M, Wakamatsu Y, Hori H, Koga A. The tyrosinase gene of the i(b) albino mutant of the medaka fish carries a transposable element insertion in the promoter region. ACTA ACUST UNITED AC 2004; 17:158-64. [PMID: 15016305 DOI: 10.1046/j.1600-0749.2003.00122.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The i locus of the medaka fish contains the tyrosinase gene whose product is the key enzyme required for melanin biosynthesis. The i(b) allele at this locus, also denoted as i( 5), causes oculocutaneous albinism in homozygous carriers. Its albino phenotype is very weak, characterized mainly by small and varying sized melanophores in juveniles. Cloning and sequencing analyses of the tyrosinase gene for the i (b) allele revealed the presence of a 4.7-kb extra DNA fragment in the 5' untranslated region, this being Tol2, a DNA-based transposable element of the hobo Activator Tam3 (hAT) family which had previously been identified as a cause of another mutant allele i(4). Its insertion point was 85 bp upstream of the main transcription initiation site and 50 bp downstream of the CATGTG motif that has been suggested to be essential for the promoter function of the tyrosinase gene. The transcription level of the tyrosinase gene was decreased in i(b)/i(b) fish, compared with wild-type fish. The insertion is thus a likely cause of the weak albino phenotype. The Tol2 element transposes in a cut-and-paste fashion, and its excision is mostly imprecise, leaving some nucleotides and/or removing excess nucleotides. The i (b) mutant strain can thus be expected to serve as a source from which various other mutations in the promoter region can be derived.
Collapse
Affiliation(s)
- Atsuo Iida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Regales L, Giraldo P, García-Díaz A, Lavado A, Montoliu L. Identification and functional validation of a 5' upstream regulatory sequence in the human tyrosinase gene homologous to the locus control region of the mouse tyrosinase gene. ACTA ACUST UNITED AC 2004; 16:685-92. [PMID: 14629727 DOI: 10.1046/j.1600-0749.2003.00100.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non-coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5' upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at -15 kb. We detected several stretches of homology within the first 30 kb 5' tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5' upstream regulatory sequence found between -8 and -10 kb of the human tyrosinase locus (termed h5'URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at -9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue-specific enhancer in the h5'URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5'URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.
Collapse
Affiliation(s)
- Lucía Regales
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Howard RD, DeWoody JA, Muir WM. Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish. Proc Natl Acad Sci U S A 2004; 101:2934-8. [PMID: 14976259 PMCID: PMC365723 DOI: 10.1073/pnas.0306285101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically modified (GM) strains now exist for many organisms, producing significant promise for agricultural production. However, if these organisms have some fitness advantage, they may also pose an environmental harm when released. High mating success of GM males relative to WT males provides such an important fitness advantage. Here, we provide documentation that GM male medaka fish modified with salmon growth hormone possess an overwhelming mating advantage. GM medaka offspring possess a survival disadvantage relative to WT, however. When both of these fitness components are included in our model, the transgene is predicted to spread if GM individuals enter wild populations (because of the mating advantage) and ultimately lead to population extinction (because of the viability disadvantage). Mating trials indicate that WT males use alternative mating tactics in an effort to counter the mating advantage of GM males, and we use genetic markers to ascertain the success of these alternative strategies. Finally, we model the impact of alternative mating tactics by WT males on transgene spread. Such tactics may reduce the rate of transgene spread, but not the outcome.
Collapse
Affiliation(s)
- Richard D Howard
- Departments of Biological Sciences, Forestry and Natural Resources, and Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
13
|
Delfgaauw J, Duschl J, Wellbrock C, Froschauer C, Schartl M, Altschmied J. MITF-M plays an essential role in transcriptional activation and signal transduction in Xiphophorus melanoma. Gene 2004; 320:117-26. [PMID: 14597395 DOI: 10.1016/s0378-1119(03)00817-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The teleost Xiphophorus provides a genetically well-described model system to study the molecular processes underlying melanoma formation. As transcriptional deregulation is a widespread phenomenon in many tumors, we have studied the regulation of melanoma-specific gene expression in this fish. A central regulator of melanocyte specific gene expression, which is also a marker for melanomas, is the transcription factor microphthalmia-associated transcription factor (MITF). One of its targets, the tyrosinase gene, codes for a key enzyme in the melanin synthesis pathway. We could show that the promoter of the medaka tyrosinase gene is highly active in the Xiphophorus melanoma cell line PSM (platyfish-swordtail melanoma) but not in non-melanoma cells. Functional dissection of the promoter revealed that three E-boxes are essential for its pigment cell-specific activity. These binding sites for basic helix-loop-helix transcription factors are recognized by a nuclear protein from the melanoma cell line PSM, most likely MITF, as its exogenous delivery could activate the promoter in non-melanoma cells. The use of specific signalling inhibitors demonstrated that the activity of the tyrosinase promoter is negatively regulated by the melanoma-inducing receptor tyrosine kinase Xmrk in PSM cells. This repression is mediated by MAPkinase and dependent on E-box integrity, again implicating the involvement of MITF. The cumulative evidence indicates that in Xiphophorus, Xmrk suppresses differentiation signals relayed by MITF as part of the transformation process finally resulting in melanoma formation.
Collapse
Affiliation(s)
- Jacqueline Delfgaauw
- Department of Physiological Chemistry I, Biocenter (Theodor-Boveri Institute), University of Würzburg, D-97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Inoue K, Takei Y. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol B Biochem Mol Biol 2003; 136:635-45. [PMID: 14662290 DOI: 10.1016/s1096-4959(03)00204-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Japanese medaka (Oryzias latipes) is a freshwater (FW) teleost that is popular throughout the world for laboratory use. In this paper, we discuss the utility of Japanese medaka and related species for studying mechanisms of seawater (SW) adaptation. In addition to general advantages as an experimental animal such as their daily spawning activity, transparency of embryos, short generation time and established transgenic techniques, Japanese medaka have some adaptability to SW unlike the strictly stenohaline zebrafish (Danio rerio). Since other species in the genus Oryzias exhibit different degrees of adaptability to SW, comparative studies between Japanese medaka, where molecular-biological and genetic information is abundant, and other Oryzias species are expected to present varying approaches to solving the problems of SW adaptation. We introduce some examples of interspecies comparison for SW adaptabilities both in adult fish and in embryos. Oryzias species are good models for evolutionary, ecological and zoogeographical studies and a relationship between SW adaptability and geographic distribution has been suggested. Medaka fishes may thus deliver new insights into our understanding of how fish have expanded their distribution to a wide variety of osmotic environments.
Collapse
Affiliation(s)
- Koji Inoue
- Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | |
Collapse
|
15
|
Camacho-Hübner A, Richard C, Beermann F. Genomic structure and evolutionary conservation of the tyrosinase gene family from Fugu. Gene 2002; 285:59-68. [PMID: 12039032 DOI: 10.1016/s0378-1119(02)00411-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tyrosinase gene family encompasses three members, tyrosinase, tyrosinase-related protein 1 (Tyrp1) and dopachrome tautomerase (Dct), which encode for proteins implicated in melanin synthesis. In human and mouse, genomic organization is known for all three genes, revealing common features of regulatory elements and of exon/intron structure. We have set out to identify the complete family from a more primitive vertebrate, the pufferfish Fugu (Takifugu rubripes), which is characterized by a compact genome. We had recently isolated and characterized the Fugu tyrosinase gene (Genesis 28 (2000) 99-105). We now report the isolation and characterization of the two other members of the family, Tyrp1 and Dct. Regulatory sequences from these genes function in mouse pigment cells and are able to mediate reporter gene expression. Our results demonstrate the existence of all three tyrosinase family members in teleosts and underline the evolutionary conservation of the pigmentary system.
Collapse
Affiliation(s)
- Agnès Camacho-Hübner
- ISREC (Swiss Institute for Experimental Cancer Research), Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | | | | |
Collapse
|
16
|
Abstract
DNA-based transposable elements appear to have been nearly or completely inactivated in vertebrates. Therefore the elements of the medaka fish Oryzias latipes that still have transposition activity provide precious materials for studying transposition mechanisms, as well as the evolution, of transposable elements in vertebrates. Fortunately, the medaka fish has a strong background for genetic and evolutionary studies. The advantages of this host species and their elements, together with results so far obtained, are here described.
Collapse
Affiliation(s)
- Akihiko Koga
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | |
Collapse
|
17
|
Sato S, Tanaka M, Miura H, Ikeo K, Gojobori T, Takeuchi T, Yamamoto H. Functional conservation of the promoter regions of vertebrate tyrosinase genes. J Investig Dermatol Symp Proc 2001; 6:10-8. [PMID: 11764277 DOI: 10.1046/j.0022-202x.2001.00008.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosinase is the key enzyme for synthesizing melanin pigments, which primarily determine mammalian skin coloration. Considering the important roles of pigments in the evolution and the adaptation of vertebrates, phylogenetic changes in the coding and flanking regulatory sequences of the tyrosinase gene are particularly intriguing. We have now cloned cDNA encoding tyrosinase from Japanese quail and snapping turtle. These nonmammalian cDNA are highly homologous to those of the mouse and human tyrosinases, whereas the 5' flanking sequences are far less conserved except for a few short sequence motifs. Nevertheless, we demonstrate that the 5' flanking sequences from the quail or turtle tyrosinase genes are capable of directing the expression of a fused mouse tyrosinase cDNA when introduced into cultured mouse albino melanocytes. This experimental method, which reveals the functional conservation of regulatory sequences in one cell type (the melanocyte), may be utilized to evaluate phylogenetic differences in mechanisms controlling specific gene expression in many other types of cells. We also provide evidence that the 5' flanking sequences from these nonmammalian genes are functional in vivo by producing transgenic mice. Phylogenetic changes of vertebrate tyrosinase promoters and the possible involvement of conserved sequence motifs in melanocyte-specific expression of tyrosinase are discussed.
Collapse
Affiliation(s)
- S Sato
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Koga A, Hori H. The Tol2 transposable element of the medaka fish: an active DNA-based element naturally occurring in a vertebrate genome. Genes Genet Syst 2001; 76:1-8. [PMID: 11376546 DOI: 10.1266/ggs.76.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several DNA-based transposable elements are known to be present in vertebrate genomes, but few of them have been demonstrated to be active. The Tol2 element of the medaka fish is one such element and, therefore, is potentially useful for developing a gene tagging system and other molecular biological tools applicable to vertebrates. Towards this goal, analyses of the element at the molecular, cellular and population levels are in progress. Results so far obtained are described here.
Collapse
Affiliation(s)
- A Koga
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Japan
| | | |
Collapse
|
19
|
Mackintosh JA. The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Biol 2001; 211:101-13. [PMID: 11419954 DOI: 10.1006/jtbi.2001.2331] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A biological issue that has not been satisfactorily resolved is the role of melanin in skin and other animal tissues. A hypothesis is outlined here to account for the evolution of black skin and the ubiquity of melanin in vertebrate tissues. Evidence is presented that melanization of skin and other tissues forms an important component of the innate immune defense system. A major function of melanocytes, melanosomes and melanin in skin is to inhibit the proliferation of bacterial, fungal and other parasitic infections of the dermis and epidermis. This function can potentially explain (a) the latitudinal gradient in melanization of human skin; (b) the fact that melanocyte and melanization patterns among different parts of the vertebrate body do not reflect exposure to radiation; (c) provide a theoretical framework for recent empirical findings concerning the antimicrobial activity of melanocytes and melanosomes and their regulation by known mediators of inflammatory responses.
Collapse
|
20
|
Tanaka M, Kinoshita M. Recent Progress in the Generation of Transgenic Medaka (Oryzias latipes). Zoolog Sci 2001. [DOI: 10.2108/zsj.18.615] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Camacho-Hübner A, Rossier A, Beermann F. The Fugu rubripes tyrosinase gene promoter targets transgene expression to pigment cells in the mouse. Genesis 2000; 28:99-105. [PMID: 11105050 DOI: 10.1002/1526-968x(200011/12)28:3/4<99::aid-gene20>3.0.co;2-d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The regulation of the mouse tyrosinase gene expression is controlled by a highly conserved element at -100 bp, the M-box, and an enhancer at -12 kb. In most vertebrates, the length of intergenic sequences makes it difficult to analyze the whole gene and the complete regulatory region. We took advantage of the compact Fugu genome to identify regulatory regions involved in pigment cell-specific expression. We isolated the Fugu tyrosinase gene, and identified putative cis-acting regulatory elements within the promoter. We then asked whether the Fugu promoter sequence functions in mouse pigment cells. We showed that E11.5 transgenic embryos bearing 6 kb or 3 kb of Fugu tyrosinase 5' sequence fused to the reporter gene lacZ revealed melanoblast and RPE-specific expression. This is the first evidence that the tyrosinase promoter is active at midgestation in melanoblasts, long before the onset of pigmentation.
Collapse
Affiliation(s)
- A Camacho-Hübner
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges, Switzerland
| | | | | |
Collapse
|
22
|
Fu L, Mambrini M, Perrot E, Chourrout D. Stable and full rescue of the pigmentation in a medaka albino mutant by transfer of a 17 kb genomic clone containing the medaka tyrosinase gene. Gene 2000; 241:205-11. [PMID: 10675031 DOI: 10.1016/s0378-1119(99)00473-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the medaka Oryzias latipes, several albino strains have mutations in the tyrosinase gene that have been fully characterized at the molecular level. A genomic clone from wild-type medaka containing the 5 kb tyrosinase gene with its five exons, 10 kb of upstream sequences and 2 kb downstream sequences was introduced into fertilized eggs from a tyrosinase-negative albino strain. We show that the injection of this genomic clone predominantly conferred mosaic expression ending before the hatching stage. A minority of juveniles retained a variable number of pigmented cells, including four individuals keeping one pigmented eye through adulthood. Two of these could be mated, and one of these transmitted the transgene resulting in complete rescue of pigmentation to 16% of its offspring. The resulting transgenic line harbors a single copy of the wild-type tyrosinase gene and all fish are wild-type with respect to pigmentation. These experiments suggest that the tyrosinase genomic clone, or a future shorter version of it, can be used in fish to routinely detect transgenic lines. The apparent faithful and systematic expression of the tyrosinase transgene is most probably due to the presence of a locus control region (LCR) in the injected clone.
Collapse
Affiliation(s)
- L Fu
- Laboratoire de Génétique des Poissons, INRA, Jouy en Josas, France
| | | | | | | |
Collapse
|
23
|
Koga A, Wakamatsu Y, Kurosawa J, Hori H. Oculocutaneous albinism in the i6 mutant of the medaka fish is associated with a deletion in the tyrosinase gene. PIGMENT CELL RESEARCH 1999; 12:252-8. [PMID: 10454293 DOI: 10.1111/j.1600-0749.1999.tb00758.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three mutant alleles (i1, i4, and i5) of the tyrosinase gene in the i locus of the medaka fish Oryzias latipes have hitherto been described, all being associated with transposable element insertion. We have recently identified another allele causing a complete albino phenotype in homozygous carriers and named it i6. Sequence comparison between the tyrosinase gene for the i6 allele (Tyr-i6) and the wild-type gene previously obtained (Tyr-i+) revealed three deletions of 8, 44, and 245 bp. The first two deletions reside in an intron and are differences in the number of tandem tetranucleotide repeats that are polymorphic even among wild-type genes, and, thus, not likely to be responsible for the i6 albino phenotype. The largest deletion spans over the last 180 bp of the second intron and the first 65 bp of the third exon. Because of this deletion, the Tyr-i6 gene lacks the branch point sequence and the acceptor site for the second intron, both being considered to be necessary for normal RNA splicing. Therefore, the 245-bp deletion is likely to be responsible for the albino phenotype. With a mutant gene of this type, unlike ones bearing transposable element insertions, the possibility of reversion mutations to the wild-type would be negligible. Therefore, fish having the i6/i6 genotype should serve as superior recipients for the tyrosinase gene in rescue experiments.
Collapse
Affiliation(s)
- A Koga
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Japan
| | | | | | | |
Collapse
|
24
|
Sato S, Toyoda R, Katsuyama Y, Saiga H, Numakunai T, Ikeo K, Gojobori T, Yajima I, Yamamoto H. Structure and developmental expression of the ascidian TRP gene: insights into the evolution of pigment cell-specific gene expression. Dev Dyn 1999; 215:225-37. [PMID: 10398533 DOI: 10.1002/(sici)1097-0177(199907)215:3<225::aid-aja5>3.0.co;2-s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The tyrosinase family in vertebrates consists of three related melanogenic enzymes: tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2. These proteins control melanin production in pigment cells and play a crucial role in determining vertebrate coloration. We have isolated a gene from the ascidian Halocynthia roretzi which encodes a tyrosinase-related protein (HrTRP) with 45-49% identity with vertebrate TRP-1 and TRP-2. The expression of the HrTRP gene in pigment lineage a8.25 cells starts at the early-mid gastrula stage, which coincides with the stage when these cells are determined as pigment precursor cells; therefore, it provides the earliest pigment lineage-specific marker, which enables us to trace the complete cell lineage leading to two pigment cells in the larval brain. In addition, the expression pattern of the HrTRP gene appears to share similar characteristics with the mouse TRP-2 gene although structurally the HrTRP gene is more closely related to mammalian TRP-1 genes. Based on these observations and on results from molecular phylogenetic and hybridization analyses, we suggest that triplication of the tyrosinase family occurred during the early radiation of chordates. Initially, duplication of an ancestral tyrosinase gene produced a single TRP gene before the urochordate and cephalochordate-vertebrate divergence, and a subsequent duplication of the ancestral TRP gene in the vertebrate lineage gave rise to two TRP genes before the emergence of teleost fishes. Evolution of the melanin synthetic pathway and possible phylogenetic relationships among chordate pigment cells that accommodate the metabolic process are discussed. Dev Dyn 1999;215:225-237.
Collapse
Affiliation(s)
- S Sato
- Biological Institute, Graduate School of Science, Tohoku University, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kawakami K, Koga A, Hori H, Shima A. Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 1998; 225:17-22. [PMID: 9931412 DOI: 10.1016/s0378-1119(98)00537-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Tol2 element is a transposable element in Oryzias latipes (the medaka fish) found in the tyrosinase gene locus of the tyrosinase-deficient mutant medaka fish and has been shown to be excised from the genome during medaka embryogenesis (Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., Hori, H., 1996. Transposon element in fish. Nature 383, 30). It is, however, not known whether the Tol2 element is an autonomous element. To determine whether the cloned Tol2 element is an autonomous element and whether excision can occur also in the other fish species, the plasmid DNA harboring the Tol2 element was injected to fertilized eggs of zebrafish, Danio rerio, and the total DNA extracted from the embryos 9-10h after the injection was analyzed by PCR. When a plasmid with the full-length Tol2 element was used for the microinjection, in 39 out of 43 injected embryos, we found generation of short PCR products indicative of the loss of the Tol2 element from the injected plasmid. Ten of these cases were analyzed at the DNA sequence level, and nine of them showed either precise excision of the Tol2 element (three cases) or nearly precise excision of the element with the addition of a few nucleotides of the target duplication (six cases). When a deletion version of the Tol2 element that retained the terminal inverted repeats but lacked about one-fourth of the open reading frame-coding region was used for the microinjection, such short PCR products could not be amplified from any of the injected embryos (0 out of 30). Thus, the Tol2 element is capable of excision in zebrafish embryos, presumably dependent on a putative transposase encoded by the Tol2 element itself. This transient embryonic excision assay using zebrafish should be useful to analyze the structure and the function of the transposase and cis-elements necessary for excision. Also, this study implies the potential use of the Tol2 element in transgenesis and insertional mutagenesis in both zebrafish and the medaka fish.
Collapse
Affiliation(s)
- K Kawakami
- Department of Tumor Biology, The Institute of Medical Science, The University of Tokyo, Shiroganedai, Tokyo 108-0071, Japan.
| | | | | | | |
Collapse
|