1
|
Ando Y, Tsukasaki M. [RANKL and periodontitis]. Nihon Yakurigaku Zasshi 2023; 158:263-268. [PMID: 37121710 DOI: 10.1254/fpj.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Periodontal disease is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone. It is one of the most common infectious diseases in humans, being the leading cause of tooth loss in adults. Recently, it has been shown that the receptor activator of NF-κB ligand (RANKL) produced by osteoblasts and periodontal ligament fibroblasts critically contributes to the bone destruction caused by periodontal disease. Activation of the immune system plays an important role in the induction of RANKL during periodontal inflammation. Here we discuss the molecular mechanisms of periodontal bone destruction by focusing on the osteoimmune molecule RANKL.
Collapse
Affiliation(s)
- Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
- Department of Microbiology, Tokyo Dental College
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| |
Collapse
|
2
|
Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 2019; 19:626-642. [PMID: 31186549 DOI: 10.1038/s41577-019-0178-8] [Citation(s) in RCA: 429] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
In terrestrial vertebrates, bone tissue constitutes the 'osteoimmune' system, which functions as a locomotor organ and a mineral reservoir as well as a primary lymphoid organ where haematopoietic stem cells are maintained. Bone and mineral metabolism is maintained by the balanced action of bone cells such as osteoclasts, osteoblasts and osteocytes, yet subverted by aberrant and/or prolonged immune responses under pathological conditions. However, osteoimmune interactions are not restricted to the unidirectional effect of the immune system on bone metabolism. In recent years, we have witnessed the discovery of effects of bone cells on immune regulation, including the function of osteoprogenitor cells in haematopoietic stem cell regulation and osteoblast-mediated suppression of haematopoietic malignancies. Moreover, the dynamic reciprocal interactions between bone and malignancies in remote organs have attracted attention, extending the horizon of osteoimmunology. Here, we discuss emerging concepts in the osteoimmune dialogue in health and disease.
Collapse
|
3
|
Izumi S, Yoshinaga Y, Nakamura H, Takamori A, Takamori Y, Ukai T, Shiraishi C, Hara Y. A histopathologic study of the controlling role of T cells on experimental periodontitis in rats. J Dent Sci 2019; 13:87-96. [PMID: 30895102 PMCID: PMC6388841 DOI: 10.1016/j.jds.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background/purpose The onset and progression of periodontitis involve bacterial infection and the immune response. T cells function in the immune response and reportedly induce bone resorption in inflammatory bone loss. However, the exact role of T cells in periodontal destruction remains unclear. Using our experimental model of periodontitis, we aimed to investigate the influence of T cells on periodontal destruction. Materials and methods Male athymic nude (Nu) and euthymic wild-type (WT) rats were divided into the immunized (I-Nu and I-WT), non-immunized (nI-Nu and nI-WT). The immunized groups were immunized intraperitoneally with lipopolysaccharide (LPS). The non-immunized groups received phosphate-buffered saline (PBS). Nothing was administered to the non-treated groups. LPS was applied to the right palatal gingival sulcus in the immunized and non-immunized groups daily for 20 days. Loss of attachment, numbers of inflammatory cells and osteoclasts, and levels of alveolar bone were investigated histopathologically and histometrically. Osteoclasts were stained with tartrate-resistant acid phosphatase. The numbers of IL-4-positive cells were evaluated immunohistologically. Results Loss of attachment, numbers of inflammatory cells, levels of alveolar bone, and the number of osteoclasts were significantly increased in the nI-WT group compared with the nI-Nu group. However, the parameters were significantly increased in the I-Nu group compared with the I-WT group. The number of IL-4-positive cells was greater in the I-WT group than in the I-Nu group. Conclusion T cells promote inflammation in non-immunized animals; however, they regulate these processes in immunized animals.
Collapse
Affiliation(s)
- Satoshi Izumi
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasunori Yoshinaga
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Hirotaka Nakamura
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akiko Takamori
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuzo Takamori
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Ukai
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chiaki Shiraishi
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshitaka Hara
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
4
|
Kobayashi H, Ukai T, Shiraishi C, Ozaki Y, Yoshimura A, Hara Y. T cell and periosteum cooperation in osteoclastogenesis induced by lipopolysaccharide injection in transplanted mouse tibia. J Dent Sci 2018; 13:226-233. [PMID: 30895125 PMCID: PMC6388806 DOI: 10.1016/j.jds.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/09/2018] [Accepted: 03/13/2018] [Indexed: 11/27/2022] Open
Abstract
Background/purpose We previously reported that injedctions of lipopolysaccharide (LPS) into the gingiva of mice induce inflammatory bone resorption that actively involved T cells. Receptor activator of NF-κB ligand (RANKL), which is an essential factor for osteoclastogenesis, was reportedly produced by osteoblasts, fibroblasts, and T cells in vitro; however, it has not been established which cells affect osteoclastogenesis in vivo. Here we determined the roles of T cells and the periosteum on osteoclastogenesis in LPS-induced inflammatory bone resorption. Materials and methods Thirty-five BALB/c (wild-type: WT) and 10 BALB/c-nu/nu (nude: Nu) mice congenitally lacking T cells were used. Using inbred WT mice, tibias were transplanted with and without the periostea [(+) and (−), respectively, n = 15 per group] into the dorsal subcutaneous connective tissue of WT or Nu mice. Each group received four injections around the transplanted site: experimental groups were injected with LPS, and control groups were injected with phosphate-buffered saline. Isolated tissues were prepared for histopathological observation of the transplanted bone surface. Results Many infiltrating inflammatory cells were present near the surface of the tibias in the LPS-injected groups. Only the WT (+) LPS group showed osteoclasts. The number of mononuclear preosteoclasts and RANKL-positive cells was highest in the WT (+) LPS group, and there were no significant differences among the other three groups. Conclusion T cells and the periosteum are closely involved in osteoclastogenesis in inflammatory bone resorption in vivo.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Department of Periodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Ukai
- Department of Periodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chiaki Shiraishi
- Department of Periodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukio Ozaki
- Department of Periodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshitaka Hara
- Department of Periodontology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Lv YG, Kang L, Wu G. Fluorosis increases the risk of postmenopausal osteoporosis by stimulating interferon γ. Biochem Biophys Res Commun 2016; 479:372-379. [PMID: 27644876 DOI: 10.1016/j.bbrc.2016.09.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Estrogen deficiency in postmenopausal women frequently activates osteoclasts (OC), accelerates bone resorption, and leads to osteoporosis (OP). Previous studies have demonstrated that interferon γ (IFNγ) could increase bone resorption and may be involved in postmenopausal OP. Fluorosis also increased the risk of fractures and dental fluorosis, and fluoride may enhance osteoclast formation and induce osteoclastic bone destruction in postmenopausal women, but the underlying mechanisms are as yet unknown. Here, we show that serum fluoride and IFNγ levels are negatively correlated with bone mineral density (BMD) in postmenopausal women residing in a fluorotic area. Estrogen suppresses IFNγ, which is elevated by fluoride, playing a pivotal role in triggering bone loss in estrogen-deficient conditions. In vitro, IFNγ is inhibited by estrogen treatment and increased by fluoride in Raw264.7 cell, an osteoclast progenitor cell line. In ovariectomized (Ovx) mice, estrogen loss and IFNγ promote OC activation and subsequent bone loss in vivo. However, IFNγ deficiency prevents bone loss in Ovx mice even in fluoride conditions. Interestingly, fluoride fails to increase IFNγ expression in estrogen receptor α (ERα)-deficient conditions, but not in ERβ-deficient conditions. These findings demonstrate that fluorosis increases the bone loss in postmenopausal OP through an IFNγ-dependent mechanism. IFNγ signaling activates OC and aggravates estrogen deficiency inducing OP. Thus, stimulation of IFNγ production is a pivotal ''upstream'' mechanism by which fluoride promotes bone loss. Suppression of IFNγ levels may constitute a therapeutic approach for preventing bone loss.
Collapse
Affiliation(s)
- Yun-Gang Lv
- Department of Magnetic Resonance Imaging, Zhongnan Hospital, Wuhan University, No. 185 Donghu Road, Wuhan 430071, PR China.
| | - Li Kang
- Department of Interventional Radiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, PR China.
| | - Guangyao Wu
- Department of Magnetic Resonance Imaging, Zhongnan Hospital, Wuhan University, No. 185 Donghu Road, Wuhan 430071, PR China.
| |
Collapse
|
6
|
Kim KT, Kim DH, Chung JY, Lee S, Joo J, Nah SS, Song HY, Kim HJ. Association ofInterferon GammaPolymorphism with Ossification of the Posterior Longitudinal Ligament in the Korean Population. Immunol Invest 2012; 41:876-87. [DOI: 10.3109/08820139.2012.714437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Chen LL, Lei LH, Ding PH, Tang Q, Wu YM. Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Arch Oral Biol 2011; 56:1655-62. [PMID: 21764032 DOI: 10.1016/j.archoralbio.2011.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/27/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate if Drynariae rhizoma (DR) and its main ingredient Naringin could reduce alveolar bone loss by stimulating the proliferation and differentiation of osteoblasts. MATERIALS AND METHODS The effect of DR water (DRWE), ethanolic extract (DREE), and Naringin on MC3T3-E1 cells was evaluated respectively by MTT method and by measuring the activity of alkaline phosphatase (ALP activity) as well as the level of osteocalcin in medium. Bone mineral density (BMD) detection, osteoclast counting by tartrate resistant acid phosphatase staining, and histopathological analysis were performed in an induced rat model of alveolar bone resorption after gastric perfusion with DR extracts or Naringin. RESULTS DRWE and Naringin effectively increased the proliferation of MC3T3-E1 cells, whilst DREE and Naringin enhanced the differentiation of osteoblastic cells. The in vivo study indicated an elevated BMD value in the tooth-periodontal tissues from DRWE, DREE and Naringin treated groups after 10, 20 and 30 days of perfusion (P<0.05). In DRWE treated group, the number of osteoclasts at days 10, 20 and 30 decreased remarkably as compared to the corresponding negative controls (P<0.05), and no osteoclast could be found at day 30. New non-calcified bone-like matrix attached by osteoblasts at the root furcation was also shown. CONCLUSIONS DR could be a supplementary medicine for periodontal therapy as it could reduce bone resorption in rat model of alveolar bone resorption and exert osteogenic effect on osteoblasts.
Collapse
Affiliation(s)
- Li-Li Chen
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | |
Collapse
|
8
|
Dong L, Huang Z, Cai X, Xiang J, Zhu YA, Wang R, Chen J, Zhang J. Localized delivery of antisense oligonucleotides by cationic hydrogel suppresses TNF-α expression and endotoxin-induced osteolysis. Pharm Res 2010; 28:1349-56. [PMID: 21140285 DOI: 10.1007/s11095-010-0334-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/17/2010] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the possibility of using localized nucleic drug delivery methods for the treatment of osteolysis-related bone disease. METHODS A bio-degradable cationic hydrogel composed of gelatin and chitosan was used to deliver an antisense oligonucleotide (ASO) targeting murine TNF-α for the treatment of endotoxin-induced osteolysis. RESULTS ASO combined with this hydrogel was released when it was digested by adhering cells. The released ASO was efficiently delivered into contacted cells and tissues in vitro and in vivo. When tested in animal models of edotoxin-induced bone resorption, ASO delivered by such means effectively suppressed the expression of TNF-α and subsequently the osteoclastogenesis in vivo. Osteolysis in the edotoxin-induced bone resorption animal models was blocked by the treatment. CONCLUSION This is a successful attempt to apply localized gene delivery method to treat inflammatory diseases in vivo.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Dong L, Xia S, Gao F, Zhang D, Chen J, Zhang J. 3,3'-Diindolylmethane attenuates experimental arthritis and osteoclastogenesis. Biochem Pharmacol 2009; 79:715-21. [PMID: 19854159 DOI: 10.1016/j.bcp.2009.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 09/29/2009] [Accepted: 10/13/2009] [Indexed: 12/11/2022]
Abstract
3,3'-Diindolylmethane (DIM) is a natural compound formed during the autolysis of glucobrassicin present in Brassica food plants. This study aimed to investigate the therapeutic efficacies of DIM on experimental arthritis. The effects of DIM on experimental arthritis were examined on a rat model of adjuvant-induced arthritis (AIA), with daily AIA paw swelling observation and histological/radiographic analysis. To elucidate the possible mechanisms of its action, serum cytokine levels as well as the expression of receptor activator for nuclear factor kappa B ligand (RANKL) in infected tissues were subsequently analyzed. The impact of DIM on osteoclastogenesis was further investigated on a mouse model of endotoxin-induced bone resorption (EIBR) and in vitro cultures of fibroblast-like cells and osteoblasts, with RANKL expression being evaluated with great interest. The administration of DIM was demonstrated to attenuate AIA in animal models, as judged by clinical and histologic indices of inflammation and tissue damage. On the one hand, DIM could reduce the expression of several inflammatory cytokines, which was, however, not adequate to prevent the development of the arthritis. On the other hand, DIM was shown to effectively inhibit the expression of RANKL, leading to the blockade of osteoclastogenesis and consequently an alleviation of experimental arthritis. Further in vitro and in vivo studies confirmed the inhibition of RANKL by DIM. DIM has shown anti-arthritis activity in animal models via inhibiting the expression of RANKL, and thus may offer potential treatments for arthritis and associated disorders.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Nakamura H, Ukai T, Yoshimura A, Kozuka Y, Yoshioka H, Yoshinaga Y, Abe Y, Hara Y. Green tea catechin inhibits lipopolysaccharide-induced bone resorption in vivo. J Periodontal Res 2009; 45:23-30. [PMID: 19602116 DOI: 10.1111/j.1600-0765.2008.01198.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Bone resorption is positively regulated by receptor activator of nuclear factor-kappaB ligand (RANKL). Pro-inflammatory cytokines, such as interleukin (IL)-1beta, promote RANKL expression by stromal cells and osteoblasts. Green tea catechin (GTC) has beneficial effects on human health and has been reported to inhibit osteoclast formation in an in vitro co-culture system. However, there has been no investigation of the effect of GTC on periodontal bone resorption in vivo. We therefore investigated whether GTC has an inhibitory effect on lipopolysaccharide (LPS)-induced bone resorption. MATERIAL AND METHODS Escherichia coli (E. coli) LPS or LPS with GTC was injected a total of 10 times, once every 48 h, into the gingivae of BALB/c mice. Another group of mice, housed with free access to water containing GTC throughout the experimental period, were also injected with LPS in a similar manner. RESULTS The alveolar bone resorption and IL-1beta expression induced by LPS in gingival tissue were significantly decreased by injection or oral administration of GTC. Furthermore, when GTC was added to the medium, decreased responses to LPS were observed in CD14-expressing Chinese hamster ovary (CHO) reporter cells, which express CD25 through LPS-induced nuclear factor-kappaB (NF-kappaB) activation. These findings demonstrated that GTC inhibits nuclear translocation of NF-kappaB activated by LPS. In addition, osteoclasts were generated from mouse bone marrow macrophages cultured in a medium containing RANKL and macrophage colony-stimulating factor with or without GTC. The number of osteoclasts was decreased in dose-dependent manner when GTC was added to the culture medium. CONCLUSION These results suggest that GTC suppresses LPS-induced bone resorption by inhibiting IL-1beta production or by directly inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- H Nakamura
- Department of Periodontology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ozaki Y, Ukai T, Yamaguchi M, Yokoyama M, Haro ERA, Yoshimoto M, Kaneko T, Yoshinaga M, Nakamura H, Shiraishi C, Hara Y. Locally administered T cells from mice immunized with lipopolysaccharide (LPS) accelerate LPS-induced bone resorption. Bone 2009; 44:1169-76. [PMID: 19437611 DOI: 10.1016/j.bone.2009.01.375] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
T cells play important roles in bone destruction and osteoclastogenesis and are found in chronic destructive bone lesions. Lipopolysaccharide (LPS) is one of several pathological factors involved in inflammatory bone destruction. We previously described the importance of T cells in the inflammatory bone resorption that occurs after repeated LPS administration. However, whether local or systemic T cells are important for inflammatory bone resorption and whether immunization of host animals influences bone resorption remain unclear. The present study examines the effects of local extant T cells from LPS-immunized mice on LPS-induced bone resorption. T cells from LPS-immunized or non-immunized mice were injected together with LPS into the gingival tissues of mice with severe combined immunodeficiency disease that lack both T and B cells. We histomorphometrically evaluated bone resorption at sites of T cell injections and examined the influence of T cells from LPS-immunized mice on osteoclastogenesis in vitro. We found that locally administered T cells from LPS-immunized but not non-immunized mice accelerated LPS-induced bone resorption in vivo. Moreover, T cells from LPS-immunized mice increased osteoclastogenesis in vitro induced by receptor activator of NF-kappa B ligand and LPS and anti-tumor necrosis factor (TNF)-alpha antibody inhibited this increase. These results demonstrated that local extant T cells accelerate inflammatory bone resorption. Furthermore, T cells from LPS-immunized mice appear to elevate LPS-induced bone resorption using TNF-alpha.
Collapse
Affiliation(s)
- Yukio Ozaki
- Department of Periodontology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamaguchi M, Ukai T, Kaneko T, Yoshinaga M, Yokoyama M, Ozaki Y, Hara Y. T cells are able to promote lipopolysaccharide-induced bone resorption in mice in the absence of B cells. J Periodontal Res 2008; 43:549-55. [PMID: 18624940 DOI: 10.1111/j.1600-0765.2008.01083.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE T cells and their cytokines are believed to be key factors in periodontal disease and bone resorption. We previously showed that T cells transferred to nude mice were related to inflammatory bone resorption in vivo. However, it has not been clarified whether T cells can induce bone resorption in the absence of B cells. In this study, we therefore investigated the ability of T cells to induce bone resorption without B cells, using both T cell- and B cell-deficient mice with severe combined immune deficiency (SCID). MATERIAL AND METHODS Escherichia coli lipopolysaccharide (LPS) was injected into the gingivae of SCID mice reconstituted by T cells (SCID + T mice). Wild-type C.B-17 mice and SCID mice were used as control animals. Alveolar bone resorption and production of cytokines in the gingivae were then compared histopathologically and immunohistologically. RESULTS The degree of bone resorption in SCID + T mice was significantly greater than that in SCID mice but less than that in wild-type mice. The same tendency was found for expression of receptor activator of nuclear factor kappaB ligand. The number of interferon-gamma-positive cells in SCID + T mice was the highest of the three groups. In contrast, interleukin-4-positive cells were detected in wild-type mice but not in SCID + T and SCID mice. CONCLUSION The results suggest that T cells are able to promote LPS-induced bone resorption in the absence of B cells. The expressions of cytokines in the presence of B cells are quite different.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Periodontology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Yoshinaga Y, Ukai T, Abe Y, Hara Y. Expression of receptor activator of nuclear factor kappa B ligand relates to inflammatory bone resorption, with or without occlusal trauma, in rats. J Periodontal Res 2007; 42:402-9. [PMID: 17760817 DOI: 10.1111/j.1600-0765.2007.00960.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Receptor activator of nuclear factor kappa B ligand (RANKL) is an important factor in osteoclast differentiation, activation and survival; however, its involvement in inflammatory bone resorption, with or without occlusal trauma, is unclear. The purpose of the present study was to investigate the distribution of RANKL-expressing cells in rat periodontium during lipopolysaccharide-induced inflammation with or without occlusal trauma. MATERIAL AND METHODS Lipopolysaccharide was injected into rat gingiva of the lower left first molar to induce inflammation. In addition, the occlusal surface of the upper left first molar of rat was raised by placing a gold inlay to induce occlusal trauma in the lower left first molars. The distribution of RANKL-expressing cells was immunohistochemically observed. RESULTS In the inflammatory model, many osteoclasts were observed at the apical inter-radicular septum on day 5 and they were reduced by day 10. On the other hand, in the inflammatory model with occlusal trauma, many osteoclasts were still observed on day 10. RANKL expression was similar to the changes in osteoclast number. The expression of RANKL increased in endothelial cells, inflammatory cells and periodontal ligament cells. CONCLUSION These findings clearly demonstrated that RANKL expression on endothelial cells, inflammatory cells and periodontal ligament cells is involved in inflammatory bone resorption and the expression is enhanced by traumatic occlusion. These results suggest that RANKL expression on these cells is closely involved in the increase of osteoclasts induced by occlusal trauma.
Collapse
Affiliation(s)
- Y Yoshinaga
- Department of Periodontology, Unit of Translational Medicine, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | |
Collapse
|
14
|
Gemmell E, Yamazaki K, Seymour GJ. Destructive periodontitis lesions are determined by the nature of the lymphocytic response. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2007; 13:17-34. [PMID: 12097235 DOI: 10.1177/154411130201300104] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is now 35 years since Brandtzaeg and Kraus (1965) published their seminal work entitled "Autoimmunity and periodontal disease". Initially, this work led to the concept that destructive periodontitis was a localized hypersensitivity reaction involving immune complex formation within the tissues. In 1970, Ivanyi and Lehner highlighted a possible role for cell-mediated immunity, which stimulated a flurry of activity centered on the role of lymphokines such as osteoclast-activating factor (OAF), macrophage-activating factor (MAF), macrophage migration inhibition factor (MIF), and myriad others. In the late 1970s and early 1980s, attention focused on the role of polymorphonuclear neutrophils, and it was thought that periodontal destruction occurred as a series of acute exacerbations. As well, at this stage doubt was being cast on the concept that there was a neutrophil chemotactic defect in periodontitis patients. Once it was realized that neutrophils were primarily protective and that severe periodontal destruction occurred in the absence of these cells, attention swung back to the role of lymphocytes and in particular the regulatory role of T-cells. By this time in the early 1990s, while the roles of interleukin (IL)-1, prostaglandin (PG) E(2), and metalloproteinases as the destructive mediators in periodontal disease were largely understood, the control and regulation of these cytokines remained controversial. With the widespread acceptance of the Th1/Th2 paradigm, the regulatory role of T-cells became the main focus of attention. Two apparently conflicting theories have emerged. One is based on direct observations of human lesions, while the other is based on animal model experiments and the inability to demonstrate IL-4 mRNA in gingival extracts. As part of the "Controversy" series, this review is intended to stimulate debate and hence may appear in some places provocative. In this context, this review will present the case that destructive periodontitis is due to the nature of the lymphocytic infiltrate and is not due to periodic acute exacerbations, nor is it due to the so-called virulence factors of putative periodontal pathogens.
Collapse
Affiliation(s)
- E Gemmell
- School of Dentistry, The University of Queensland, Brisbane, Australia.
| | | | | |
Collapse
|
15
|
Altundal H, Sayrak H, Yurtsever E, Göker K. Inhibitory Effect of Alendronate on Bone Resorption of Autogenous Free Bone Grafts in Rats. J Oral Maxillofac Surg 2007; 65:508-16. [PMID: 17307600 DOI: 10.1016/j.joms.2005.11.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE This study was designed to investigate the effect of alendronate on the resorption of autogenous free bone grafts by biochemical and histopathologic methods. Alendronate is a potent inhibitor of osteoclast-mediated bone resorption with no adverse effect on the mineralization of bone. MATERIALS AND METHODS In this experimental study, 56 male Wistar rats were used. Autogenous free bone grafts were prepared with standard trephine bur in the right femur of each rat. The animals were then divided into 2 groups. In the first group, rats were treated with a daily subcutaneous injection of alendronate (0.25 mg/kg/day) for 2, 4, and 12 weeks, respectively. In the second group, rats were treated with saline solution injection for the same time periods. At the end of these periods, serum and overnight fasting urine samples were collected from all animals. In serum, the level of calcium, phosphate, parathyroid hormone, and 25 dihydroxyvitamin D were measured. In urine, pyridinoline, deoxypyridinoline, calcium, and creatinine were analyzed. The rats were sacrificed at 2, 4, and 12 weeks postsurgery. The number of osteoclasts and the number and size of resorptive lacunae were evaluated histopathologically. RESULTS Alendronate caused significant reduction in urinary pyridinoline, deoxypyridinoline levels biochemically, and the number of osteoclasts and resorptive lacunae histopathologically. CONCLUSION Suppression of the graft resorption occurred in the alendronate-treated group.
Collapse
Affiliation(s)
- Hatice Altundal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Yeditepe University, Istanbul, Turkey.
| | | | | | | |
Collapse
|
16
|
Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. ACTA ACUST UNITED AC 2006; 203:2673-82. [PMID: 17088434 PMCID: PMC2118166 DOI: 10.1084/jem.20061775] [Citation(s) in RCA: 1141] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In autoimmune arthritis, traditionally classified as a T helper (Th) type 1 disease, the activation of T cells results in bone destruction mediated by osteoclasts, but how T cells enhance osteoclastogenesis despite the anti-osteoclastogenic effect of interferon (IFN)-γ remains to be elucidated. Here, we examine the effect of various Th cell subsets on osteoclastogenesis and identify Th17, a specialized inflammatory subset, as an osteoclastogenic Th cell subset that links T cell activation and bone resorption. The interleukin (IL)-23–IL-17 axis, rather than the IL-12–IFN-γ axis, is critical not only for the onset phase, but also for the bone destruction phase of autoimmune arthritis. Thus, Th17 is a powerful therapeutic target for the bone destruction associated with T cell activation.
Collapse
Affiliation(s)
- Kojiro Sato
- Department of Cell Signaling, Graduate School, and COE Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kozuka Y, Ozaki Y, Ukai T, Kaneko T, Hara Y. B cells play an important role in lipopolysaccharide-induced bone resorption. Calcif Tissue Int 2006; 78:125-32. [PMID: 16467977 DOI: 10.1007/s00223-005-0149-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
The host immune system, especially activated T cells, plays a crucial role in inflammatory bone resorption and osteoclastogenesis. Previously, we showed that T cells are involved in inflammatory bone resorption in vivo. However, little is known about whether B cells are involved in inflammatory bone resorption and how B cells take part in osteoclastogenesis. Therefore, the aim of this study was to examine whether B c ells truly influence inflammatory bone resorption in vivo. Alveolar bone resorption in normal mice, in SCID mice that lack both B and T cells, and in B cell-reconstituted SCID mice was compared histopathologically after repeated injections of lipopolysaccharide (LPS) into the gingiva. Furthermore, we examined whether the B cells that are stimulated by LPS are involved in osteoclastogenesis in vitro. As a result, the B cell-reconstituted SCID mice showed stronger inflammatory bone resorption than the SCID mice. Also, in vitro, LPS-stimulated B cells enhanced osteoclastogenesis and anti-tumor necrosis factor (TNF)-alpha antibody completely blocked osteoclastogenesis induced by LPS-stimulated B cells. These results suggest that B cells promote inflammatory bone resorption through TNF-alpha.
Collapse
Affiliation(s)
- Y Kozuka
- Division of Periodontology, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | |
Collapse
|
18
|
Takayanagi H, Sato K, Takaoka A, Taniguchi T. Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev 2005; 208:181-93. [PMID: 16313349 DOI: 10.1111/j.0105-2896.2005.00337.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interferons (IFNs) play crucial roles in the regulation of a wide variety of innate and adaptive immune responses. Type I interferons (IFN-alpha/beta) are central to the host defense against pathogens such as viruses, whereas type II interferon (IFN-gamma) mainly contributes to the T-cell-mediated regulation of the immune responses. Studies of bone destruction associated with rheumatoid arthritis have highlighted the importance of the interaction between the immune and skeletal systems. Recently, a new research area, termed osteoimmunology, has been spawned by a series of studies focusing on the signaling networks between IFN and other cytokines in bone metabolisms. It has been revealed that IFN-gamma interferes with the osteoclast differentiation induced by receptor activator of nuclear factor-kappaB ligand (RANKL), and this mechanism is critical for the suppression of pathological bone resorption associated with inflammation. In addition, RANKL induces the IFN-beta gene in osteoclast precursor cells, and this induction constitutes a critical aspect of the negative feedback regulation mechanisms of RANKL signaling to suppress excessive osteoclastogenesis. Furthermore, a novel function of signal transducer and activator of transcription 1 (Stat1), the essential transcription factor for both type I and type II IFN responses, was revealed in the regulation of osteoblast differentiation. Collectively, these studies unveil novel aspects of the IFN system and indicate the operation of the intricate signaling network among IFN and other cytokine systems in bone remodeling, which might offer a molecular basis for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
19
|
Marriott I, Gray DL, Rati DM, Fowler VG, Stryjewski ME, Levin LS, Hudson MC, Bost KL. Osteoblasts produce monocyte chemoattractant protein-1 in a murine model of Staphylococcus aureus osteomyelitis and infected human bone tissue. Bone 2005; 37:504-12. [PMID: 16027056 DOI: 10.1016/j.bone.2005.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 05/17/2005] [Accepted: 05/17/2005] [Indexed: 11/17/2022]
Abstract
Incidences of osteomyelitis caused by Staphylococcus aureus have increased dramatically in recent years, in part, due to the appearance of community-acquired antibiotic-resistant strains. Therefore, understanding the pathogenesis of this organism has become imperative. Recently, we have described the surprising ability of bone-forming osteoblasts to secrete a number of important immune mediators when exposed to S. aureus in vitro. In the present study, we provide the first evidence for the in vivo production of the pivotal inflammatory chemokine, monocyte chemoattractant protein-1 (MCP-1), by osteoblasts during S. aureus-associated bone infection. Quantitative real-time PCR was employed to determine levels of mRNA encoding MCP-1 in vivo using a mouse model that closely resembles the pathology of trauma-induced staphylococcal osteomyelitis. Expression of this inflammatory chemokine and osteoblast-specific markers was investigated by confocal laser scanning microscopy in bone tissue from organ cultures of neonatal mouse calvaria and from the in vivo mouse model. Furthermore, the clinical relevancy of these findings was investigated by performing similar studies on infected human bone tissue from patients with S. aureus-associated osteomyelitis. Here, we confirm that expression of mRNA encoding MCP-1 is elevated in bacterially infected murine bone tissue. Importantly, we show that these increases translate into marked elevations in the expression of MCP-1 protein that co-localizes with osteoblast markers in infected bone tissue. Such increases could not be attributed solely to mechanical damage as a similar response was observed in infected but otherwise undamaged organ cultures. Finally, we have demonstrated the in vivo production of MCP-1 by osteoblasts in bone specimens from patients with S. aureus-associated osteomyelitis. As such, these studies demonstrate that bacterial challenge of osteoblasts during bone diseases such as staphylococcal osteomyelitis induces cells to produce a key inflammatory chemokine that can direct appropriate host responses or may contribute to progressive inflammatory damage.
Collapse
Affiliation(s)
- Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dai SM, Nishioka K, Yudoh K. Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. Ann Rheum Dis 2004; 63:1379-86. [PMID: 15479886 PMCID: PMC1754791 DOI: 10.1136/ard.2003.018481] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine whether IL18 has any indirect effects on osteoclastogenesis mediated by T cells in RA synovium, and compare its effects with those of IL1 beta and TNF alpha. METHODS Resting T cells were isolated from peripheral blood of healthy donors, and stimulated with 2 microg/ml phytohaemagglutinin (PHA) and 0.5 ng/ml IL2 for 24 hours. Synovial T cells were isolated from RA synovial tissue. The levels of soluble receptor activator of the NF-kappa B ligand (RANKL), osteoprotegerin (OPG), IFN gamma, M-CSF, and GM-CSF were determined by ELISA. Membrane bound RANKL expression was analysed by flow cytometry. Commercially available human osteoclast precursors were cocultured with T cells to induce osteoclast formation, which was determined with tartrate resistant acid phosphatase staining and pit formation assay. RESULTS In PHA prestimulated T cells or RA synovial T cells, IL18, IL1 beta, or TNFalpha increased soluble RANKL production and membrane bound RANKL expression in a dose dependent manner. IL18, IL1 beta, and TNF alpha did not induce M-CSF, GM-CSF, IFN gamma, or OPG production in PHA prestimulated T cells or RA synovial T cells. IL18 increased the number of osteoclasts and bone resorption area on dentine slices in the coculture of human osteoclast precursors with PHA prestimulated T cells or RA synovial T cells; its ability was equivalent to that of IL1 beta, but less potent than that of TNF alpha. In the coculture system, OPG completely blocked osteoclast induction by IL18 or IL1 beta, and greatly inhibited induction by TNF alpha. CONCLUSION IL18, IL1 beta, or TNF alpha can indirectly stimulate osteoclast formation through up regulation of RANKL production from T cells in RA synovitis; IL18 is as effective as IL1 beta, but less potent than TNF alpha.
Collapse
Affiliation(s)
- S-M Dai
- Department of Bioregulation, Institute of Medical Science, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan
| | | | | |
Collapse
|
21
|
Urushibara M, Takayanagi H, Koga T, Kim S, Isobe M, Morishita Y, Nakagawa T, Löeffler M, Kodama T, Kurosawa H, Taniguchi T. The antirheumatic drug leflunomide inhibits osteoclastogenesis by interfering with receptor activator of NF-κB ligand-stimulated induction of nuclear factor of activated T cells c1. ACTA ACUST UNITED AC 2004; 50:794-804. [PMID: 15022321 DOI: 10.1002/art.20206] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Suppression of bone destruction is required as part of an effective therapeutic strategy for autoimmune arthritis. Although numerous antirheumatic drugs are in clinical use, little is known about whether they inhibit bone destruction by acting on activated T cells or other cell types, such as bone-resorbing osteoclasts. This study was undertaken to determine whether leflunomide has a direct action on the osteoclast lineage and to gain insights into the molecular basis for the bone-protective effect of leflunomide. METHODS The direct effect of leflunomide on osteoclast differentiation was investigated using an in vitro culture system of bone marrow monocyte/macrophages stimulated with receptor activator of NF-kappa B ligand (RANKL) and macrophage colony-stimulating factor. The molecular mechanism of the inhibition was analyzed by genome-wide screening. The T cell-independent effect of leflunomide was examined in rag-2(-/-) mice. RESULTS Leflunomide blocked de novo pyrimidine synthesis and RANKL-induced calcium signaling in osteoclast precursor cells in vitro; hence, the induction of nuclear factor of activated T cells c1 (NF-ATc1) was strongly inhibited. The inhibition of this pathway is central to the action of leflunomide, since the inhibition was overcome by ectopic expression of NF-ATc1 in the precursor cells. Leflunomide suppressed endotoxin-induced inflammatory bone destruction even in rag-2(-/-) mice. CONCLUSION Leflunomide has a direct inhibitory effect on RANKL-mediated osteoclast differentiation by inhibiting the induction of NF-ATc1, the master switch regulator for osteoclast differentiation. Our study suggests that the direct inhibitory action of leflunomide on osteoclast differentiation constitutes an important aspect in the amelioration of bone destruction, and that the RANKL-dependent NF-ATc1 induction pathway is a promising target for pharmacologic intervention in arthritic bone destruction.
Collapse
|
22
|
Valverde P, Kawai T, Taubman MA. Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res 2004; 19:155-64. [PMID: 14753747 DOI: 10.1359/jbmr.0301213] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The effects of the potassium channel (Kv1.3) blocker kaliotoxin on T-cell-mediated periodontal bone resorption were examined in rats. Systemic administration of kaliotoxin abrogated the bone resorption in conjunction with decreased RANKL mRNA expression by T-cells in gingival tissue. This study suggests a plausible therapeutic approach for inflammatory bone resorption by targeting Kv1.3. INTRODUCTION Kv1.3 is a critical potassium channel to counterbalance calcium influx at T-cell receptor activation. It is not known if Kv1.3 also regulates RANKL expression by antigen-activated T-cells, and consequently affects in vivo bone resorption mediated by activated T-cells. MATERIALS AND METHODS Actinobacillus actinomycetemcomitans 29-kDa outer membrane protein-specific Th1-clone cells were used to evaluate the expression of Kv1.3 (using reverse transcriptase-polymerase chain reaction [RT-PCR] and Western blot analyses) and the effects of the potassium channel blocker kaliotoxin (0-100 nM) on T-cell activation parameters ([3H]thymidine incorporation assays and ELISA) and expression of RANKL and osteoprotegerin (OPG; flow cytometry, Western blot, and RT-PCR analyses). A rat periodontal disease model based on the adoptive transfer of activated 29-kDa outer membrane protein-specific Th1 clone cells was used to analyze the effects of kaliotoxin in T-cell-mediated alveolar bone resorption and RANKL and OPG mRNA expression by gingival T-cells. Stimulated 29-kDa outer membrane protein-specific Th1 clone cells were transferred intravenously on day 0 to all animals used in the study (n = 7 animals per group). Ten micrograms of kaliotoxin were injected subcutaneously twice per day on days 0, 1, 2, and 3, after adoptive transfer of the T-cells. The control group of rats was injected with saline as placebo on the same days as injections for the kaliotoxin-treated group. The MOCP-5 osteoclast precursor cell line was used in co-culture studies with fixed 29-kDa outer membrane protein-specific Th1-clone cells to measure T-cell-derived RANKL-mediated effects on osteoclastogenesis and resorption pit formation assays in vitro. Statistical significance was evaluated by Student's t-test. RESULTS Kaliotoxin decreased T-cell activation parameters of 29-kDa outer membrane protein-specific Th1 clone cells in vitro and in vivo. Most importantly, kaliotoxin administration resulted in an 84% decrease of the bone resorption induced in the saline-treated control group. T-cells recovered from the gingival tissue of kaliotoxin-treated rats displayed lower ratios of RANKL and OPG mRNA expression than those recovered from the control group. The ratio of RANKL and osteoprotegerin protein expression and induction of RANKL-dependent osteoclastogenesis by the activated T-cells were also markedly decreased after kaliotoxin treatments in vitro. CONCLUSION The use of kaliotoxin or other means to block Kv1.3 may constitute a potential intervention therapy to prevent alveolar bone loss in periodontal disease.
Collapse
Affiliation(s)
- Paloma Valverde
- Department of Oral and Developmental Biology, Harvard Medical School and Harvard School of Dental Medicine, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
23
|
Schrum LW, Marriott I, Butler BR, Thomas EK, Hudson MC, Bost KL. Functional CD40 expression induced following bacterial infection of mouse and human osteoblasts. Infect Immun 2003; 71:1209-16. [PMID: 12595434 PMCID: PMC148834 DOI: 10.1128/iai.71.3.1209-1216.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterially induced bone infections often result in significant local inflammatory responses which are coupled with loss of bone. However, the mechanisms necessary for the protective host response, or those responsible for pathogen-induced bone loss, are not clear. Recent evidence demonstrates that bacterially infected osteoblasts secrete chemokines and cytokines, suggesting that these cells may have an unappreciated role in supporting localized inflammation. In this study, mouse and human osteoblasts were investigated for their ability to express functional CD40 upon exposure to two important pathogens of bone, Staphylococcus aureus and Salmonella enterica serovar Dublin. Bacterial infection of cultured mouse or human osteoblasts resulted in increased CD40 mRNA and CD40 protein expression induced by either pathogen. Importantly, CD40 expression by osteoblasts was functional, as assessed by ligation of this molecule with recombinant, soluble CD154. CD40 activity was assessed by induction of interleukin-6 and granulocyte-macrophage colony-stimulating factor in osteoblasts following ligation. Cocultures of activated CD4(+) T lymphocytes and osteoblasts could interact via CD40 and CD154, since an antibody against CD40 could block macrophage inflammatory protein-1alpha secretion. Taken together, these studies conclusively demonstrate that infected osteoblasts can upregulate expression of functional CD40 molecules which mediate cytokine secretion. This surprising result further supports the notion that bone-forming osteoblasts can directly interact with CD154-expressing cells (i.e., T lymphocytes) and can contribute to the host response during bone infection.
Collapse
Affiliation(s)
- Laura W Schrum
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Toraldo G, Roggia C, Qian WP, Pacifici R, Weitzmann MN. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc Natl Acad Sci U S A 2003; 100:125-30. [PMID: 12490655 PMCID: PMC140902 DOI: 10.1073/pnas.0136772100] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IL-7, a powerful lymphopoietic cytokine, is elevated in rheumatoid arthritis (RA) and known to induce bone loss when administered in vivo. IL-7 has been suggested to induce bone loss, in part, by stimulating the proliferation of B220(+) cells, a population capable of acting as early osteoclast (OC) precursors. However, the mechanism by which IL-7 leads to differentiation of precursors into mature OCs remains unknown. We previously reported that, in vitro, IL-7 up-regulated T cell cytokines including receptor activator of nuclear factor kappaB ligand (RANKL). To demonstrate the importance of T cells to the bone-wasting effect of IL-7 in vivo, we have now examined IL-7-induced bone loss in T cell-deficient nude mice. We show that T cell-replete mice undergo significant osteoclastic bone loss after IL-7 administration, concurrent with induction of RANKL and tumor necrosis factor alpha (TNF-alpha) secretion by splenic T cells. In contrast, nude mice were resistant to IL-7-induced bone loss and showed no detectable increase in either RANKL or TNF-alpha, despite an up-regulation of B220(+) cells. Importantly, T cell adoptive transfer into nude mice restored IL-7-induced bone loss, and RANKL and TNF-alpha secretion, demonstrating that T cells are essential mediators of IL-7-induced bone loss in vivo.
Collapse
Affiliation(s)
- Gianluca Toraldo
- Division of Bone and Mineral Diseases, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
25
|
Baker PJ, Howe L, Garneau J, Roopenian DC. T cell knockout mice have diminished alveolar bone loss after oral infection with Porphyromonas gingivalis. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 34:45-50. [PMID: 12208605 DOI: 10.1111/j.1574-695x.2002.tb00601.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Periodontal diseases are chronic inflammatory diseases that can result in resorption of the alveolar bone of the jaw. We have developed a murine model in which alveolar bone loss is induced by oral infection with Porphyromonas gingivalis, an oral anaerobic bacterium associated with periodontal disease in humans. Here we compared a strain of immunocompetent mice (C57BL/6J) to the same strain of mice made T cell deficient by genetic deletion of the alpha chain of their T cell receptors (C57BL/6J-Tcra). T cell deficiency did not affect the ability of P. gingivalis to implant in the oral cavity. The two strains of mice had equal percentages of P. gingivalis among their cultivable anaerobes 7 weeks after infection. The same bacterial load led to much less bone resorption in the T cell deficient mice than in the immune normal mice, measured as either the number of sites with significant loss, or as the total amount of bone resorbed. T cell deficient mice lost bone at only three out of 14 measurement sites, compared with eight out of 14 sites in the wild-type mice. The total amount of bone lost was 70% less in the T cell deficient mice. T cell deficient mice had lower titers of P. gingivalis-specific IgG than the wild-type mice after oral infection did, but the same titers of specific IgA. Lower titers did not correlate with greater bone loss. Antigen-activated T lymphocytes are known to induce osteoclastogenesis; here we demonstrate that T cell deletion decreases the amount of alveolar bone loss induced by infection of the murine oral cavity.
Collapse
Affiliation(s)
- Pamela J Baker
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| | | | | | | |
Collapse
|
26
|
Jonarta AL, Pudyani PS, Sosroseno W. Effect of high-density lipoprotein on lipopolysaccharide-induced alveolar bone resorption in rats. Oral Dis 2002; 8:261-7. [PMID: 12363111 DOI: 10.1034/j.1601-0825.2002.01797.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine whether treatments with high-density lipoprotein (HDL) may alter the lipopolysaccharide (LPS)-induced alveolar bone resorption in rats. MATERIALS AND METHODS Rats were injected with 500 microg of LPS from Escherichia coli at the alveolar mucosa of lower right first molar once every 2 days for 8 days. The negative and positive control were injected with phosphate buffered saline (PBS) and LPS alone, respectively. In HDL-treated animals various concentration of HDL were injected immediately before, after the third or the final LPS injection. The bone sections were stained with tartrate-resistant acid phosphatase (TRAP) and the numbers of both osteoclasts and preosteoclasts and the levels of alveolar bone resorption were assessed. RESULTS The numbers of both osteoclasts and preosteoclasts and the levels of alveolar bone resorption in animals treated with HDL before or during LPS injections were lower than those in the positive control, but higher than those in the negative control, regardless of HDL doses. Similar results were also observed in animals treated with 250 and 500 microg of HDL after the final LPS injection. Only treatments with 1000 microg of HDL after LPS injections completely reduced the number of both osteoclasts and preosteoclasts, but only partially decreased the alveolar bone resorption. CONCLUSION HDL treatments partially reduced the LPS-induced alveolar bone resorption in vivo in rats, suggesting that HDL may neutralize the ability of LPS to induce alveolar bone resorption.
Collapse
Affiliation(s)
- A L Jonarta
- Department of Oral Biology, Faculty of Dentistry, Gadjah Mada University, Yogyakarta, Indonesia
| | | | | |
Collapse
|
27
|
Gasper NA, Petty CC, Schrum LW, Marriott I, Bost KL. Bacterium-induced CXCL10 secretion by osteoblasts can be mediated in part through toll-like receptor 4. Infect Immun 2002; 70:4075-82. [PMID: 12117914 PMCID: PMC128159 DOI: 10.1128/iai.70.8.4075-4082.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two common pathogens known to cause bone infection, Salmonella and Staphylococcus aureus, were investigated to determine their abilities to induce chemokine expression in cultured mouse and human osteoblasts. While these cells are responsible for bone formation, we were surprised to find that they could respond to bacterial infection by upregulating expression of the chemokine CXCL10 (IP-10). However, there were significant differences in the abilities of the gram-negative bacterium Salmonella and the gram-positive bacterium S. aureus to induce expression of CXCL10. Reverse transcription-PCR and enzyme-linked immunosorbent assay analyses showed high levels of Salmonella-induced CXCL10 mRNA and protein expression, respectively, whereas the osteoblast response to S. aureus was significantly less. Consistent with these findings, Salmonella-derived lipopolysaccharide (LPS), but not S. aureus-derived peptidoglycan, could induce expression of CXCL10. An antibody against toll-like receptor 4 (TLR4) could block the LPS-induced CXCL10 production, demonstrating the functional expression of TLR4 by osteoblasts. Despite the inducible nature of TLR2 mRNA expression by bacterium-infected osteoblasts, peptidoglycan failed to stimulate CXCL10 secretion. Immunofluorescent staining of bacterium-infected calvaria (i.e., skull bone) demonstrated the presence of CXCL10 in osteoblasts. The fact that osteoblasts did not express CXCR3 mRNA, whereas T lymphocytes can express high levels of this receptor, suggests that osteoblast-derived CXCL10 may recruit T lymphocytes to the sites of bone infections.
Collapse
Affiliation(s)
- Nancy A Gasper
- Department of Biology, University of North Carolina at Charlotte, 28223, USA
| | | | | | | | | |
Collapse
|
28
|
Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 2002; 30:340-6. [PMID: 11856640 DOI: 10.1016/s8756-3282(01)00682-2] [Citation(s) in RCA: 322] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone loss represents a major unsolved problem in rheumatoid arthritis (RA). The skeletal complications of RA consist of focal bone erosions and periarticular osteoporosis at sites of active inflammation, and generalized bone loss with reduced bone mass. New evidence indicates that osteoclasts are key mediators of all forms of bone loss in RA. TNF-alpha is one of the most potent osteoclastogenic cytokines produced in inflammation and is pivotal in the pathogenesis of RA. Production of tumor necrosis factor-alpha (TNF-alpha) and other proinflammatory cytokines in RA is largely CD4(+) T-cell dependent and mostly a result of interferon-gamma (IFN-gamma) secretion. Synovial T cells contribute to synovitis by secreting IFN-gamma and interleukin (IL)-17 as well as directly interacting with macrophages and fibroblasts through cell-to-cell contact mechanisms. Activated synovial T cells express both membrane-bound and soluble forms of receptor activator of NF-kappaB ligand (RANKL). In rheumatoid synovium, fibroblasts also provide an abundant source of RANKL. Furthermore, TNF-alpha and IL-1 target stromal-osteoblastic cells to increase IL-6, IL-11, and parathyroid hormone-related protein (PTHrP) production as well as expression of RANKL. In the presence of permissive levels of RANKL, TNF-alpha acts directly to stimulate osteoclast differentiation of macrophages and myeloid progenitor cells. In addition, TNF-alpha induces IL-1 release by synovial fibroblasts and macrophages, and IL-1, together with RANKL, is a major survival and activation signal for nascent osteoclasts. Consequently, TNF-alpha and IL-1, acting in concert with RANKL, can powerfully promote osteoclast recruitment, activation, and osteolysis in RA. The most convincing support for this hypothesis has come from in vivo studies of animal models. Protection of bone in the presence of continued inflammation in arthritic rats treated with osteoprotegerin (OPG) supports the concept that osteoclasts mediate bone loss, providing further evidence that OPG protects bone integrity by downregulating osteoclastogenesis and promoting osteoclast apoptosis. Modulation of the RANKL/OPG equilibrium in arthritis may provide additional skeletal benefits, such as chondroprotection. The nexus between T-cell activation, TNF-alpha overproduction, and the RANKL/OPG/RANK ligand-receptor system points to a unifying paradigm for the entire spectrum of skeletal pathology in RA. Strategies that address osteoclastic bone resorption will represent an important new facet of therapy for RA.
Collapse
Affiliation(s)
- E Romas
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| | | | | |
Collapse
|
29
|
Takayanagi H, Kim S, Taniguchi T. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S227-32. [PMID: 12110142 PMCID: PMC3240156 DOI: 10.1186/ar581] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Accepted: 03/20/2002] [Indexed: 12/23/2022]
Abstract
Regulation of osteoclast differentiation is an aspect central to the understanding of the pathogenesis and the treatment of bone diseases such as autoimmune arthritis and osteoporosis. In fact, excessive signaling by RANKL (receptor activator of nuclear factor kappaB ligand), a member of the tumor necrosis factor (TNF) family essential for osteoclastogenesis, may contribute to such pathological conditions. Here we summarize our current work on the negative regulation of osteoclastogenesis by unique signaling crosstalk between RANKL and interferons (IFNs). First, activated T cells maintain bone homeostasis by counterbalancing the action of RANKL through production of IFN-gamma. This cytokine induces rapid degradation of the RANK (receptor activator of nuclear factor kappaB) adapter protein TRAF6 (TNF-receptor-associated factor 6), resulting in strong inhibition of the RANKL-induced activation of NF-kappaB and JNK (c-Jun N-terminal kinase). Second, RANKL induces the IFN-beta gene but not IFN-alpha genes, in osteoclast precursor cells, and that IFN-beta strongly inhibits the osteoclast differentiation by interfering with the RANKL-induced expression of c-Fos. The series of in vivo experiments revealed that these two distinct IFN-mediated regulatory mechanisms are both important to maintain homeostasis of bone resorption. Collectively, these studies revealed novel aspects of the two types of IFN, beyond their original roles in the immune response, and may offer a molecular basis for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Department of Immunology, Faculty of Medicine and Graduate School of Medicine, University of Tokyo, Japan.
| | | | | |
Collapse
|
30
|
Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, Pacifici R. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 2001; 98:13960-5. [PMID: 11717453 PMCID: PMC61149 DOI: 10.1073/pnas.251534698] [Citation(s) in RCA: 369] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Accepted: 10/09/2001] [Indexed: 11/18/2022] Open
Abstract
In vivo studies have shown T cells to be central to the mechanism by which estrogen deficiency induces bone loss, but the mechanism involved remains, in part, undefined. In vitro, T cells from ovariectomized mice produce increased amounts of tumor necrosis factor (TNF), which augments receptor activator of NF-kappa B ligand (RANKL)-induced osteoclastogenesis. However, both the mechanism and the relevance of this phenomenon in vivo remain to be established. In this study, we found that ovariectomy increased the number of bone marrow T cell-producing TNF without altering production of TNF per T cell. Attesting to the essential contribution of TNF, ovariectomy induced rapid bone loss in wild type (wt) mice but failed to do so in TNF-deficient (TNF(-/-)) mice. Furthermore, ovariectomy induced bone loss, which was absent in T cell-deficient nude mice, was restored by adoptive transfer of wt T cells, but not by reconstitution with T cells from TNF(-/-) mice. These findings demonstrate the key causal role of T cell-produced TNF in the bone loss after estrogen withdrawal. Finally, ovariectomy caused bone loss in wt mice and in mice lacking p75 TNF receptor but failed to do so in mice lacking the p55 TNF receptor. These findings demonstrate that enhanced T cell production of TNF resulting from increased bone marrow T cell number is a key mechanism by which estrogen deficiency induces bone loss in vivo. The data also demonstrate that the bone-wasting effect of TNF in vivo is mediated by the p55 TNF receptor.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/metabolism
- Cells, Cultured
- Estrogens/metabolism
- Estrogens/physiology
- Female
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Osteoporosis/metabolism
- Ovariectomy
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/physiology
- Up-Regulation
Collapse
Affiliation(s)
- C Roggia
- Division of Bone and Mineral Diseases, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bost KL, Bento JL, Petty CC, Schrum LW, Hudson MC, Marriott I. Monocyte chemoattractant protein-1 expression by osteoblasts following infection with Staphylococcus aureus or Salmonella. J Interferon Cytokine Res 2001; 21:297-304. [PMID: 11429160 DOI: 10.1089/107999001300177484] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two common pathogens of bone, Staphylococcus aureus and Salmonella, were investigated for their ability to induce chemokine expression in bone-forming osteoblasts. Cultured mouse or human osteoblasts could rapidly respond to bacterial infection by upregulating the mRNA encoding the chemokine, monocyte chemoattractant protein-1 (MCP-1). This rapid induction occurred on infection with either the gram-positive pathogen, S. aureus, or the gram-negative pathogen, Salmonella. Increased mRNA expression translated into MCP-1 secretion by cultured mouse or human osteoblasts in response to viable bacteria, whereas UV-killed bacteria were less effective in stimulating chemokine secretion. There was a dose-response relationship observed between the amount of input bacteria and increases in MCP-1 secretion. Immunohistochemical staining of infected osteoblasts indicated that the majority of cells could express MCP-1, with some osteoblasts having a higher intensity of staining than others. Organ cultures of mouse calvaria (skullcap) bone showed increases in MCP-1 immunostaining following bacterial infection. The immunoreactive MCP-1 in infected calvaria localized to areas containing active osteoblasts. Taken together, these studies demonstrate a conserved osteoblast-derived MCP-1 response to two very different pathogens of bone.
Collapse
Affiliation(s)
- K L Bost
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223-0001, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Weitzmann MN, Cenci S, Rifas L, Haug J, Dipersio J, Pacifici R. T cell activation induces human osteoclast formation via receptor activator of nuclear factor kappaB ligand-dependent and -independent mechanisms. J Bone Miner Res 2001; 16:328-37. [PMID: 11204433 DOI: 10.1359/jbmr.2001.16.2.328] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In unstimulated conditions, osteoclast (OC) formation is regulated by stromal cell production of the key osteoclastogenic factors receptor activator of nuclear factor kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the mechanisms of accelerated osteoclastogenesis and bone loss characteristic of inflammatory conditions are poorly understood but appear to involve T cells. In addition, the mechanism by which OCs arise spontaneously in cultures of peripheral blood mononuclear cells in the absence of stromal cells or added cytokines remains unclear. Using a stromal cell free human osteoclast generating system, we investigated the ability of activated T cells to support osteoclastogenesis. We show that when activated by phytohemagglutinin-P (PHA), T cells (both CD4+ and CD8+) stimulate human OC formation in vitro. Although both soluble M-CSF and RANKL were detected in activated T cell supernatants, the presence of M-CSF was not essential for macrophage survival or RANKL-dependent osteoclast formation, suggesting that other soluble T cell-derived factors were capable of substituting for this cytokine. We also found that saturating concentrations of osteoprotegerin (OPG) failed to neutralize 30% of the observed OC formation and that T cell conditioned medium (CM) could superinduce osteoclastogenesis in cultures of purified monocytes maximally stimulated by RANKL and M-CSF. Together, these data suggest that activated T cells support osteoclastogenesis via RANKL-dependent and -independent mechanisms. Although not relevant for T cell-induced osteoclastogenesis, secretion of soluble M-CSF is a previously undescribed property of activated T cells.
Collapse
Affiliation(s)
- M N Weitzmann
- Division of Bone and Mineral Diseases, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
33
|
Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000; 408:600-5. [PMID: 11117749 DOI: 10.1038/35046102] [Citation(s) in RCA: 977] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone resorption is regulated by the immune system, where T-cell expression of RANKL (receptor activator of nuclear factor (NF)-kappaB ligand), a member of the tumour-necrosis factor family that is essential for osteoclastogenesis, may contribute to pathological conditions, such as autoimmune arthritis. However, whether activated T cells maintain bone homeostasis by counterbalancing the action of RANKL remains unknown. Here we show that T-cell production of interferon (IFN)-gamma strongly suppresses osteoclastogenesis by interfering with the RANKL-RANK signalling pathway. IFN-gamma induces rapid degradation of the RANK adapter protein, TRAF6 (tumour necrosis factor receptor-associated factor 6), which results in strong inhibition of the RANKL-induced activation of the transcription factor NF-kappaB and JNK. This inhibition of osteoclastogenesis is rescued by overexpressing TRAF6 in precursor cells, which indicates that TRAF6 is the target critical for the IFN-gamma action. Furthermore, we provide evidence that the accelerated degradation of TRAF6 requires both its ubiquitination, which is initiated by RANKL, and IFN-gamma-induced activation of the ubiquitin-proteasome system. Our study shows that there is cross-talk between the tumour necrosis factor and IFN families of cytokines, through which IFN-gamma provides a negative link between T-cell activation and bone resorption. Our results may offer a therapeutic approach to treat the inflammation-induced tissue breakdown.
Collapse
Affiliation(s)
- H Takayanagi
- Department of Immunology, Faculty of Medicine and Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Grcević D, Lee SK, Marusić A, Lorenzo JA. Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1,25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4231-8. [PMID: 11035056 DOI: 10.4049/jimmunol.165.8.4231] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the role of T lymphocytes in osteoclastogenesis, we performed in vivo depletion of CD4 and/or CD8 T lymphocyte subsets and evaluated in vitro osteoclast-like cell (OCL) formation. T lymphocyte depletion (TLD) with mAbs was confirmed 24 h later by flow cytometry. OCL formation was stimulated with 1, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) in bone marrow and with recombinant mouse (rm) receptor activator of NF-kappaB ligand (RANK-L) and rmM-CSF in bone marrow and spleen cell cultures. OCL formation was up to 2-fold greater in 1,25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice than in those from intact mice. In contrast, TLD did not alter OCL formation in bone marrow or spleen cell cultures that were stimulated with rmRANK-L and rmM-CSF. The effects of TLD seemed to be mediated by enhanced PG synthesis, because the PGE(2) concentration in the medium of 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice was 5-fold higher than that in cultures from intact mice, and indomethacin treatment abolished the stimulatory effect of TLD on OCL formation. There was a 2-fold increase in RANK-L expression and an almost complete suppression of osteoprotegerin expression in 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice compared with those from intact mice. Although there was a small (20%) increase in IL-1alpha expression in 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice, TLD in mice lacking type I IL-1R and wild-type mice produced similar effects on OCL formation. Our data demonstrate that TLD up-regulates OCL formation in vitro by increasing PG production, which, in turn, produces reciprocal changes in RANK-L and osteoprotegerin expression. These results suggest that T lymphocytes influence osteoclastogenesis by altering bone marrow stromal cell function.
Collapse
Affiliation(s)
- D Grcević
- Department of Physiology and Croatian Institute for Brain Research and Basic Medical Sciences, Zagreb University School of Medicine, Zagreb, Croatia
| | | | | | | |
Collapse
|
35
|
Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 2000. [DOI: 10.1182/blood.v96.5.1873] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In unstimulated conditions osteoclast renewal occurs as a result of the stromal cell production of the key osteoclastogenic factors, receptor activator of NFkB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Inflammation is known to cause increased osteoclastogenesis; however, the mechanisms responsible for this phenomenon are poorly understood. We now show that interleukin-1 (IL-1) and tumor necrosis factor alpha (TNFα), cytokines typically produced in inflammatory conditions, increase the stromal cell production of IL-7. This factor, in turn, up-regulates production of osteoclastogenic cytokines by T cells leading to stimulation of osteoclast (OC) formation. Although T cells were found to produce soluble forms of both RANKL and M-CSF, saturating concentrations of osteoprotegerin failed to inhibit approximately 40% of the OC formation, suggesting that IL-7 acts via both RANKL-dependent and RANKL-independent pathways. Despite the identification of T-cell–secreted M-CSF, this cytokine was not essential for either RANKL-dependent or -independent OC formation, suggesting that T cells secrete other cytokines capable of substituting for M-CSF action. On the basis of our data, we propose a novel mechanism for inflammatory bone loss in which induction of IL-7 from stromal cells by IL-1 and TNFα leads to the production of soluble osteoclastogenic cytokines by T cells. Thus, the mechanism by which IL-7 causes bone resorption involves the activation of T cells and the T-cell–dependent augmentation of osteoclastogenesis.
Collapse
|
36
|
Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 2000. [DOI: 10.1182/blood.v96.5.1873.h8001873_1873_1878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In unstimulated conditions osteoclast renewal occurs as a result of the stromal cell production of the key osteoclastogenic factors, receptor activator of NFkB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Inflammation is known to cause increased osteoclastogenesis; however, the mechanisms responsible for this phenomenon are poorly understood. We now show that interleukin-1 (IL-1) and tumor necrosis factor alpha (TNFα), cytokines typically produced in inflammatory conditions, increase the stromal cell production of IL-7. This factor, in turn, up-regulates production of osteoclastogenic cytokines by T cells leading to stimulation of osteoclast (OC) formation. Although T cells were found to produce soluble forms of both RANKL and M-CSF, saturating concentrations of osteoprotegerin failed to inhibit approximately 40% of the OC formation, suggesting that IL-7 acts via both RANKL-dependent and RANKL-independent pathways. Despite the identification of T-cell–secreted M-CSF, this cytokine was not essential for either RANKL-dependent or -independent OC formation, suggesting that T cells secrete other cytokines capable of substituting for M-CSF action. On the basis of our data, we propose a novel mechanism for inflammatory bone loss in which induction of IL-7 from stromal cells by IL-1 and TNFα leads to the production of soluble osteoclastogenic cytokines by T cells. Thus, the mechanism by which IL-7 causes bone resorption involves the activation of T cells and the T-cell–dependent augmentation of osteoclastogenesis.
Collapse
|
37
|
Abstract
A network of cytokines and other soluble mediators unites the immune system and bone; bacterial infections induce immune responses which may perturb this network. Periodontal diseases are Gram-negative infections resulting in bone loss in the jaw. Evidence is presented that immune responses to these infections produces net resorption of bone.
Collapse
Affiliation(s)
- P J Baker
- Biology Department, Bates College, Lewistown, Maine 04240, USA
| |
Collapse
|
38
|
Kawai T, Eisen-Lev R, Seki M, Eastcott JW, Wilson ME, Taubman MA. Requirement of B7 costimulation for Th1-mediated inflammatory bone resorption in experimental periodontal disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2102-9. [PMID: 10657664 DOI: 10.4049/jimmunol.164.4.2102] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD28 costimulation at TCR signaling plays a pivotal role in the regulation of the T cell response. To elucidate the role of T cells in periodontal disease, a system of cell transfer with TCR/CD28-dependent Th1 or Th2 clones was developed in rats. Gingival injection of specific Ag, Actinobacillus actinomycetemcomitans 29-kDa outer membrane protein, and LPS could induce local bone resorption 10 days after the transfer of Ag-specific Th1 clone cells, but not after transfer of Th2 clone cells. Interestingly, the presence of LPS was required not only for the induction of bone resorption but also for Ag-specific IgG2a production. LPS injection elicited the induction of expression of both B7-1 and B7-2 expression on gingival macrophages, which otherwise expressed only MHC class II when animals were injected with Ag alone. The expression of B7 molecules was observed for up to 3 days, which corresponded to the duration of retention of T clone cells in gingival tissues. Either local or systemic administration of CTLA4Ig, a functional antagonist of CD28 binding to B7, could abrogate the bone resorption induced by Th1 clone cells combined with gingival challenge with both Ag and LPS. These results suggest that local Ag-specific activation of Th1-type T cells by B7 costimulation appeared to trigger inflammatory bone resorption, whereas inhibition of B7 expression by CTLA4Ig might be a therapeutic approach for intervention with inflammatory bone resorption.
Collapse
Affiliation(s)
- T Kawai
- Department of Immunology, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
Baker PJ, Dixon M, Evans RT, Dufour L, Johnson E, Roopenian DC. CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 1999; 67:2804-9. [PMID: 10338484 PMCID: PMC96585 DOI: 10.1128/iai.67.6.2804-2809.1999] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/1999] [Accepted: 03/09/1999] [Indexed: 11/20/2022] Open
Abstract
In this study, we used a mouse model to examine the role of the adaptive immune response in alveolar bone loss induced by oral infection with the human gram-negative anaerobic bacterium Porphyromonas gingivalis. Severe combined immunodeficient mice, which lack B and T lymphocytes, exhibited considerably less bone loss than did immunocompetent mice after oral infection, suggesting that lymphocytes contribute to this process. Bone loss after oral infection was decreased in mice deficient in major histocompatibility complex (MHC) class II-responsive CD4(+) T cells, but no change in bone loss was observed in mice deficient in MHC class I-responsive CD8(+) T cells or NK1(+) T cells. Mice lacking the cytokine gamma interferon or interleukin-6 also demonstrated decreased bone loss. These results suggest that the adaptive immune response, and in particular CD4(+) T cells and the proinflammatory cytokines that they secrete, are important effectors of bone loss consequent to P. gingivalis oral infection. The studies also reinforce the utility of the mouse oral infection model in dissecting the pathobiology of periodontal disease.
Collapse
Affiliation(s)
- P J Baker
- Biology Department, Bates College, Lewiston, Maine 04240, USA.
| | | | | | | | | | | |
Collapse
|