1
|
Sasaki Y, Matsuo T, Watanabe Y, Iwatsuki M, Inahashi Y, Nishida S, Naito M, Shoji M. Identification of nanaomycin A and its analogs by a newly established screening method for functional inhibitors of the type IX secretion system in Porphyromonas gingivalis. J Antibiot (Tokyo) 2024:10.1038/s41429-024-00790-8. [PMID: 39578618 DOI: 10.1038/s41429-024-00790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is a key pathogen in chronic periodontitis. P. gingivalis has a type IX secretion system (T9SS) that secretes highly hydrolytic proteinases called gingipains for obtaining peptides as an energy source. Although most T9SS-related proteins have been identified, no specific inhibitor of T9SS has been reported. To screen T9SS inhibitors, we focused on and characterized a minimal liquid medium called mC medium that contains milk casein as the sole protein source. We found that P. gingivalis wild-type strain ATCC 33277 caused cloudiness of mC medium without growth. In mC medium, an alkylating agent, iodoacetamide (IAM) that is an inhibitor of gingipains, and a protonophore, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) that dissipates the proton motive force required for T9SS-mediated secretion, clearly inhibited the increase in turbidity. Moreover, neither the gingipain-null mutant nor the T9SS-deficient mutant caused mC medium cloudiness, suggesting that mC medium cloudiness is dependent on gingipain activity and T9SS. These results indicated that mC medium can be used to assess P. gingivalis gingipain activity and its functional T9SS. Using an assay system with mC medium, we discovered that OM-173αA and OM-173βA in the Ōmura Natural Compound Library and nanaomycin A were probable T9SS inhibitors. The compounds need to be further investigated as tools for analyzing T9SS and as potential therapeutic agents for periodontal disease.
Collapse
Affiliation(s)
- Yuko Sasaki
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Takehiro Matsuo
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuki Inahashi
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan.
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| |
Collapse
|
2
|
Saiki K, Urano-Tashiro Y, Yamanaka Y, Takahashi Y. Calcium ions and vitamin B 12 are growth factors for Porphyromonas gingivalis. J Oral Biosci 2022; 64:445-451. [PMID: 36103977 DOI: 10.1016/j.job.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is a causative agent of chronic periodontitis. Standard strains of P. gingivalis, such as W83 and ATCC 33277, proliferate in minimal medium when protein is added as the energy source and hemin and menadione are added as growth factors. Nevertheless, minimal medium containing bovine serum albumin sometimes fails to support growth. HIGHLIGHTS The proliferation of two W83 strains and seven ATCC 33277 strains in various minimal media was investigated. Previously, we determined that calcium chloride (CaCl2) was a growth factor for W83NM, a W83 strain. In this study, we found that vitamin B12 enhanced the proliferation of W83NM in a minimal medium with cultures from the fourth passage but not from the first to the third passage. Therefore, using fourth-passage cultures, we assessed the proliferation of two W83 and seven ATCC 33277 strains in minimal media and the effects of CaCl2 and vitamin B12. Surprisingly, the nine P. gingivalis strains all differed with respect to their proliferation in minimal media, and protein products used as energy sources showed product-to-product and lot-to-lot heterogeneity. Even though strains or protein products were different, we found CaCl2-dependent growth in nine strains and vitamin B12-dependent growth in seven strains. CONCLUSION These results suggest that calcium ions and vitamin B12 are novel growth factors for P. gingivalis.
Collapse
Affiliation(s)
- Keitarou Saiki
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yumiko Urano-Tashiro
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yuki Yamanaka
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yukihiro Takahashi
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Saiki K, Urano-Tashiro Y, Takahashi Y. Reassessment of minimal media reveals differences in growth among Porphyromonas gingivalis standard strains. J Oral Biosci 2020; 62:315-321. [PMID: 32937181 DOI: 10.1016/j.job.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Porphyromonas gingivalis is one of the etiologic agents of chronic periodontitis. Our previous study showed that the use of minimal media for P. gingivalis allowed to isolate novel inhibitors of P. gingivalis growth. However, growth of P. gingivalis in minimal media was not always reproducible. METHODS To explain this phenomenon, we analyzed the growth of seven wild-type ATCC 33277 strains and two wild-type W83 strains in 10 minimal media and three complex media. RESULTS All nine strains grew in LF (Lactalbumin-Ferric chloride), GC (bovine γ-immunoglobulin G-Calcium chloride), and newly developed mC (milk-Casein) minimal media. Therefore, LF, GC, and mC could be used as minimal media for P. gingivalis. In contrast, other six minimal media containing bovine serum albumin (BSA) supported the growth of several less strains; among these, two media also showed lack of reproducibility in growth among ATCC 33277 strains. On the other hand, four ATCC 33277 strains grew similarly in all 13 media, but two W83 and other three ATCC 33277 strains grew differently in at least one medium. CONCLUSIONS These results suggest that the lack of reproducibility of P. gingivalis growth on minimal media is caused by the presence of BSA, and by differences among the standard strains of P. gingivalis.
Collapse
Affiliation(s)
- Keitarou Saiki
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yumiko Urano-Tashiro
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yukihiro Takahashi
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Saiki K, Urano-Tashiro Y, Konishi K, Takahashi Y. A screening system using minimal media identifies a flavin-competing inhibitor of Porphyromonas gingivalis growth. FEMS Microbiol Lett 2019; 366:5580286. [PMID: 31578552 DOI: 10.1093/femsle/fnz204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic periodontitis is caused by dysbiosis of human oral commensals and especially by increase in Porphyromonas gingivalis. Inhibitors of P. gingivalis growth are expected to serve as effective drugs for the periodontal therapy. In the present study, we isolated new growth inhibitors of P. gingivalis using minimal media for P. gingivalis. The minimal media included the previously reported Globulin-Albumin (GA) and the newly developed Lactalbumin-Ferric chloride (LF) and Globulin-Calcium chloride (GC); all supported growth of the wild-type strain of P. gingivalis but did not support the growth of a mutant defective for a type IX secretion system. GC contains CaCl2, indicating that P. gingivalis requires a calcium ion for growth. Using LF and GA, we screened about 100 000 compounds and identified 73 that strongly inhibited the growth of P. gingivalis. More than half of these candidates would not have been obtained if these minimal media had not been used in our screen. One of our candidate inhibitors was diphenyleneiodonium chloride (DPIC), which showed strong bactericidal activity against P. gingivalis. Excess amounts of flavin adenine dinucleotide or flavin mononucleotide suppressed the inhibitory activity of DPIC, suggesting that DPIC would be a novel potent growth inhibitor.
Collapse
Affiliation(s)
- Keitarou Saiki
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Yumiko Urano-Tashiro
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Kiyoshi Konishi
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Yukihiro Takahashi
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| |
Collapse
|
5
|
Rea D, Van Elzen R, De Winter H, Van Goethem S, Landuyt B, Luyten W, Schoofs L, Van Der Veken P, Augustyns K, De Meester I, Fülöp V, Lambeir AM. Crystal structure of Porphyromonas gingivalis dipeptidyl peptidase 4 and structure-activity relationships based on inhibitor profiling. Eur J Med Chem 2017; 139:482-491. [PMID: 28826083 DOI: 10.1016/j.ejmech.2017.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
The Gram-negative anaerobe Porphyromonas gingivalis is associated with chronic periodontitis. Clinical isolates of P. gingivalis strains with high dipeptidyl peptidase 4 (DPP4) expression also had a high capacity for biofilm formation and were more infective. The X-ray crystal structure of P. gingivalis DPP4 was solved at 2.2 Å resolution. Despite a sequence identity of 32%, the overall structure of the dimer was conserved between P. gingivalis DPP4 and mammalian orthologues. The structures of the substrate binding sites were also conserved, except for the region called S2-extensive, which is exploited by specific human DPP4 inhibitors currently used as antidiabetic drugs. Screening of a collection of 450 compounds as inhibitors revealed a structure-activity relationship that mimics in part that of mammalian DPP9. The functional similarity between human and bacterial DPP4 was confirmed using 124 potential peptide substrates.
Collapse
Affiliation(s)
- Dean Rea
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Sebastiaan Van Goethem
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Bart Landuyt
- Animal Physiology and Neurobiology Section, Department of Biology, KULeuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Walter Luyten
- Animal Physiology and Neurobiology Section, Department of Biology, KULeuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Liliane Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology, KULeuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| |
Collapse
|
6
|
Saiki K, Konishi K. Assembly and function of PG27/LptO, PG0026, and HagA in the secretion and modification system of C-terminal domain proteins. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Li N, Collyer CA. Gingipains from Porphyromonas gingivalis - Complex domain structures confer diverse functions. Eur J Microbiol Immunol (Bp) 2014; 1:41-58. [PMID: 24466435 DOI: 10.1556/eujmi.1.2011.1.7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gingipains, a group of arginine or lysine specific cysteine proteinases (also known as RgpA, RgpB and Kgp), have been recognized as major virulence factors in Porphyromonas gingivalis. This bacterium is one of a handful of pathogens that cause chronic periodontitis. Gingipains are involved in adherence to and colonization of epithelial cells, haemagglutination and haemolysis of erythrocytes, disruption and manipulation of the inflammatory response, and the degradation of host proteins and tissues. RgpA and Kgp are multi-domain proteins composed of catalytic domains and haemagglutinin/adhesin (HA) regions. The structure of the HA regions have previously been defined by a gingipain domain structure hypothesis which is a set of putative domain boundaries derived from the sequences of fragments of these proteins extracted from the cell surface. However, multiple sequence alignments and hidden Markov models predict an alternative domain architecture for the HA regions of gingipains. In this alternate model, two or three repeats of the so-called "cleaved adhesin" domains (and one other undefined domain in some strains) are the modules which constitute the substructure of the HA regions. Recombinant forms of these putative cleaved adhesin domains are indeed stable folded protein modules and recently determined crystal structures support the hypothesis of a modular organisation of the HA region. Based on the observed K2 and K3 structures as well as multiple sequence alignments, it is proposed that all the cleaved adhesin domains in gingipains will share the same β-sandwich jelly roll fold. The new domain model of the structure for gingipains and the haemagglutinin (HagA) proteins of P. gingivalis will guide future functional studies of these virulence factors.
Collapse
Affiliation(s)
- N Li
- School of Molecular Bioscience, University of Sydney NSW Australia
| | - C A Collyer
- School of Molecular Bioscience, University of Sydney NSW Australia
| |
Collapse
|
8
|
Saiki K, Konishi K. Porphyromonas gingivalisC-terminal signal peptidase PG0026 and HagA interact with outer membrane protein PG27/LptO. Mol Oral Microbiol 2014; 29:32-44. [DOI: 10.1111/omi.12043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Affiliation(s)
- K. Saiki
- Department of Microbiology; Nippon Dental University School of Life Dentistry at Tokyo; Tokyo Japan
| | | |
Collapse
|
9
|
Huq NL, Seers CA, Toh ECY, Dashper SG, Slakeski N, Zhang L, Ward BR, Meuric V, Chen D, Cross KJ, Reynolds EC. Propeptide-mediated inhibition of cognate gingipain proteinases. PLoS One 2013; 8:e65447. [PMID: 23762374 PMCID: PMC3677877 DOI: 10.1371/journal.pone.0065447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism’s cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with Ki values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.
Collapse
Affiliation(s)
- N. Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Elena C. Y. Toh
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Brent R. Ward
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Vincent Meuric
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Keith J. Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
10
|
Saiki K, Konishi K. Strategies for targeting the gingipain secretion system of Porphyromonas gingivalis. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Ishiguro I, Saiki K, Konishi K. Analysis of Porphyromonas gingivalis PG27 by deletion and intragenic suppressor mutation analyses. Mol Oral Microbiol 2011; 26:321-35. [DOI: 10.1111/j.2041-1014.2011.00620.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000 2010; 54:15-44. [PMID: 20712631 DOI: 10.1111/j.1600-0757.2010.00377.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Saiki K, Konishi K. Identification of a novel Porphyromonas gingivalis outer membrane protein, PG534, required for the production of active gingipains. FEMS Microbiol Lett 2010; 310:168-74. [DOI: 10.1111/j.1574-6968.2010.02059.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Saiki K, Konishi K. The role of Sov protein in the secretion of gingipain protease virulence factors of Porphyromonas gingivalis. FEMS Microbiol Lett 2010; 302:166-74. [DOI: 10.1111/j.1574-6968.2009.01848.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Ishiguro I, Saiki K, Konishi K. PG27 is a novel membrane protein essential for aPorphyromonas gingivalisprotease secretion system. FEMS Microbiol Lett 2009; 292:261-7. [DOI: 10.1111/j.1574-6968.2009.01489.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Oda H, Saiki K, Tonosaki M, Yajima A, Konishi K. Participation of the secreted dipeptidyl and tripeptidyl aminopeptidases in asaccharolytic growth of Porphyromonas gingivalis. J Periodontal Res 2008; 44:362-7. [PMID: 19076991 DOI: 10.1111/j.1600-0765.2008.01117.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Porphyromonas gingivalis secretes gingipains, endopeptidases essential for the asaccharolytic growth of this bacterium. P. gingivalis also secretes dipeptidyl aminopeptidases (DPPIV and DPP-7) and a tripeptidyl aminopeptidase (PTP-A), although their role in asaccharolytic growth is unclear. The present study was carried out to elucidate the role of these dipeptidyl/tripeptidyl aminopeptidases on the asaccharolytic growth of P. gingivalis. MATERIAL AND METHODS Knockout mutants for the DPPIV (dpp), dpp7 and/or PTP-A genes were constructed. Brain-heart infusion medium supplemented with sterile hemin and menadione (BHIHM) was used as a complex medium, and the minimal medium used was GA, in which the sole energy source was a mixture of immunoglobulin G and bovine serum albumin. Growth of P. gingivalis was monitored by measuring the optical density of the culture. RESULTS All knockout mutants for DPPIV, dpp7 and PTP-A grew as well as strain W83 in BHIHM. In GA, growth of single-knockout and double-knockout mutants was similar to that of W83, whereas growth of a triple-knockout mutant (83-47A) was reduced. We purified recombinant DPPIV and recombinant PTP-A from recombinant Escherichia coli overproducers, and purified DPP-7 from the triple-knockout mutant 83-4A. GA supplemented with the three purified dipeptidyl/tripeptidyl aminopeptidases supported the growth of 83-47A. CONCLUSION DPPIV, DPP-7 and PTP-A contribute to the normal growth of P. gingivalis by cleaving substrate peptides into short-chain polypeptides that are efficient energy sources for P. gingivalis.
Collapse
Affiliation(s)
- H Oda
- Department of Periodontology, Nippon Dental University School of Life at Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|