1
|
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and Systemic Effects of Porphyromonas gingivalis Infection. Microorganisms 2023; 11:470. [PMID: 36838435 PMCID: PMC9963840 DOI: 10.3390/microorganisms11020470] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.
Collapse
Affiliation(s)
- William A. Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
2
|
Fleetwood AJ, O'Brien-Simpson NM, Veith PD, Lam RS, Achuthan A, Cook AD, Singleton W, Lund IK, Reynolds EC, Hamilton JA. Porphyromonas gingivalis-derived RgpA-Kgp Complex Activates the Macrophage Urokinase Plasminogen Activator System: IMPLICATIONS FOR PERIODONTITIS. J Biol Chem 2015; 290:16031-42. [PMID: 25979345 PMCID: PMC4481207 DOI: 10.1074/jbc.m115.645572] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Indexed: 01/07/2023] Open
Abstract
Urokinase plasminogen activator (uPA) converts plasminogen to plasmin, resulting in a proteolytic cascade that has been implicated in tissue destruction during inflammation. Periodontitis is a highly prevalent chronic inflammatory disease characterized by destruction of the tissue and bone that support the teeth. We demonstrate that stimulation of macrophages with the arginine- and lysine-specific cysteine protease complex (RgpA-Kgp complex), produced by the keystone pathogen Porphyromonas gingivalis, dramatically increased their ability to degrade matrix in a uPA-dependent manner. We show that the RgpA-Kgp complex cleaves the inactive zymogens, pro-uPA (at consensus sites Lys(158)-Ile(159) and Lys(135)-Lys(136)) and plasminogen, yielding active uPA and plasmin, respectively. These findings are consistent with activation of the uPA proteolytic cascade by P. gingivalis being required for the pathogen to induce alveolar bone loss in a model of periodontitis and reveal a new host-pathogen interaction in which P. gingivalis activates a critical host proteolytic pathway to promote tissue destruction and pathogen virulence.
Collapse
Affiliation(s)
- Andrew J Fleetwood
- From the Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia,
| | - Neil M O'Brien-Simpson
- the Oral Health Cooperative Research Centre, Melbourne Dental School, University of Melbourne, Victoria 3010, Australia, and
| | - Paul D Veith
- the Oral Health Cooperative Research Centre, Melbourne Dental School, University of Melbourne, Victoria 3010, Australia, and
| | - Roselind S Lam
- the Oral Health Cooperative Research Centre, Melbourne Dental School, University of Melbourne, Victoria 3010, Australia, and
| | - Adrian Achuthan
- From the Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Andrew D Cook
- From the Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - William Singleton
- the Oral Health Cooperative Research Centre, Melbourne Dental School, University of Melbourne, Victoria 3010, Australia, and
| | - Ida K Lund
- the Finsen Laboratory, Rigshospitalet and the Biotech Research and Innovation Centre, Copenhagen University, 1165 Copenhagen, Denmark
| | - Eric C Reynolds
- the Oral Health Cooperative Research Centre, Melbourne Dental School, University of Melbourne, Victoria 3010, Australia, and
| | - John A Hamilton
- From the Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| |
Collapse
|
3
|
Nagano K. FimA Fimbriae of the Periodontal Disease-associated Bacterium Porphyromonas gingivalis. YAKUGAKU ZASSHI 2013; 133:963-74. [DOI: 10.1248/yakushi.13-00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
4
|
de Pablo P, Dietrich T, Chapple ILC, Milward M, Chowdhury M, Charles PJ, Buckley CD, Venables PJ. The autoantibody repertoire in periodontitis: a role in the induction of autoimmunity to citrullinated proteins in rheumatoid arthritis? Ann Rheum Dis 2013; 73:580-6. [PMID: 23434568 DOI: 10.1136/annrheumdis-2012-202701] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Studies suggest that periodontitis may be a risk factor for rheumatoid arthritis (RA). The purpose of this study was to determine whether periodontitis is associated with autoantibodies characteristic of RA. METHODS Serum samples were tested for anti-cyclic citrullinated peptide (CCP), anti-mutated citrullinated vimentin (MCV), anti-citrullinated α-enolase peptide-1 (CEP-1), anti-citrullinated vimentin (cit-vim), anti-citrullinated fibrinogen (cit-fib) and their uncitrullinated forms anti-CParg (negative control for anti-CCP), anti-arginine-containing α-enolase peptide-1 (REP-1), anti-vimentin and anti-fibrinogen antibodies in patients with and without periodontitis, none of whom had RA. RESULTS Periodontitis, compared with non-periodontitis, was associated with a normal frequency of anti-CCP and anti-MCV (∼1%) but a higher frequency of positive anti-CEP-1 (12% vs 3%; p=0.02) and its uncitrullinated form anti-REP-1 (16% vs 2%; p<0.001). Positive antibodies against uncitrullinated fibrinogen and CParg were also more common among those with periodontitis compared to non-periodontitis patients (26% vs 3%; p<0.001, and 9% vs 3%; p=0.06). After adjusting for confounders, patients with periodontitis had 43% (p=0.03), 71% (p=0.002) and 114% (p<0.001) higher anti-CEP-1, anti-REP-1 and anti-fibrinogen titres, compared with non-periodontitis. Non-smokers with periodontitis, compared with non-periodontitis, had significantly higher titres of anti-CEP-1 (103%, p<0.001), anti-REP-1 (91%, p=0.001), anti-vimentin (87%, p=0.002), and anti-fibrinogen (124%, p<0.001), independent of confounders, confirming that the autoantibody response in periodontitis was not due to smoking. CONCLUSIONS We have shown that the antibody response in periodontitis is predominantly directed to the uncitrullinated peptides of the RA autoantigens examined in this study. We propose that this loss of tolerance could then lead to epitope spreading to citrullinated epitopes as the autoimmune response in periodontitis evolves into that of presymptomatic RA.
Collapse
Affiliation(s)
- Paola de Pablo
- Rheumatology Research Group, School of Immunity & Infection, College of Medical & Dental Sciences, University of Birmingham, , Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Ruggiero S, Cosgarea R, Potempa J, Potempa B, Eick S, Chiquet M. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C. Biochim Biophys Acta Mol Basis Dis 2013; 1832:517-26. [PMID: 23313574 DOI: 10.1016/j.bbadis.2013.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 01/06/2023]
Abstract
Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease.
Collapse
Affiliation(s)
- Sabrina Ruggiero
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Cogoni V, Morgan-Smith A, Fenno JC, Jenkinson HF, Dymock D. Treponema denticola chymotrypsin-like proteinase (CTLP) integrates spirochaetes within oral microbial communities. MICROBIOLOGY-SGM 2012; 158:759-770. [PMID: 22313692 DOI: 10.1099/mic.0.055939-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Treponema denticola is found ubiquitously in the human oral cavity and is mainly associated with bacterial communities implicated in the establishment and development of periodontal disease. The ability to become integrated within biofilm communities is crucial to the growth and survival of oral bacteria, and involves inter-bacterial coaggregation, metabolic cooperation, and synergy against host defences. In this article we show that the chymotrypsin-like proteinase (CTLP), found within a high-molecular-mass complex on the cell surface, mediates adherence of T. denticola to other potential periodontal pathogens, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia and Parvimonas micra. Proteolytic activity per se did not appear to be required for the interactions, and expression of the major outer-sheath protein (Msp) was not necessary, except for binding Parv. micra. Biofilms of densely packed cells and matrix, up to 40 µm in depth, were formed between T. denticola and P. gingivalis on salivary pellicle, with T. denticola cells enriched in the upper layers. Expression of CTLP, but not Msp, was critical for dual-species biofilm formation with P. gingivalis. T. denticola did not form dual-species biofilms with any of the other three periodontal bacterial species under various conditions. Synergy between T. denticola and P. gingivalis was also shown by increased inhibition of blood clotting, which was CTLP-dependent. The results demonstrate the critical role of CTLP in interactions of T. denticola with other oral micro-organisms, leading to synergy in microbial community development and host tissue pathogenesis.
Collapse
Affiliation(s)
- Valentina Cogoni
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Alex Morgan-Smith
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - David Dymock
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
7
|
Griffiths NJ, Hill DJ, Borodina E, Sessions RB, Devos NI, Feron CM, Poolman JT, Virji M. Meningococcal surface fibril (Msf) binds to activated vitronectin and inhibits the terminal complement pathway to increase serum resistance. Mol Microbiol 2011; 82:1129-49. [PMID: 22050461 DOI: 10.1111/j.1365-2958.2011.07876.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Complement evasion is an important survival strategy of Neisseria meningitidis (Nm) during colonization and infection. Previously, we have shown that Nm Opc binds to serum vitronectin to inhibit complement-mediated killing. In this study, we demonstrate meningococcal interactions with vitronectin via a novel adhesin, Msf (meningococcal surface fibril, previously NhhA or Hsf). As with Opc, Msf binds preferentially to activated vitronectin (aVn), engaging at its N-terminal region but the C-terminal heparin binding domain may also participate. However, unlike Opc, the latter binding is not heparin-mediated. By binding to aVn, Msf or Opc can impart serum resistance, which is further increased in coexpressers, a phenomenon dependent on serum aVn concentrations. The survival fitness of aVn-binding derivatives was evident from mixed population studies, in which msf/opc mutants were preferentially depleted. In addition, using vitronectin peptides to block Msf-aVn interactions, aVn-induced inhibition of lytic C5b-9 formation and of serum killing could be reversed. As Msf-encoding gene is ubiquitous in the meningococcal strains examined and is expressed in vivo, serum resistance via Msf may be of significance to meningococcal pathogenesis. The data imply that vitronectin binding may be an important strategy for the in vivo survival of Nm for which the bacterium has evolved redundant mechanisms.
Collapse
Affiliation(s)
- Natalie J Griffiths
- Schools of Cellular & Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000 2010; 54:15-44. [PMID: 20712631 DOI: 10.1111/j.1600-0757.2010.00377.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Singh B, Su YC, Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol 2010; 78:545-60. [DOI: 10.1111/j.1365-2958.2010.07373.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Osbourne DO, Aruni W, Roy F, Perry C, Sandberg L, Muthiah A, Fletcher HM. Role of vimA in cell surface biogenesis in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2010; 156:2180-2193. [PMID: 20378652 PMCID: PMC3068682 DOI: 10.1099/mic.0.038331-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins.
Collapse
Affiliation(s)
- Devon O Osbourne
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Francis Roy
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Christopher Perry
- Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lawrence Sandberg
- Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Arun Muthiah
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
11
|
Lysine gingipain (kgp) biovars of Porphyromonas gingivalis exhibit differential distribution on oral mucosal sites. J Clin Microbiol 2009; 47:3350-2. [PMID: 19675219 DOI: 10.1128/jcm.00753-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A predominant kgp biovar colonized subgingival sites and buccal and tongue mucosa in 45 of 56 adults in an isolated community. The presence of biovars 381, W83, and W83v, but not HG66, correlated with the Porphyromonas gingivalis load at diseased sites. Biovars W83 and W83v poorly colonized tongue and buccal mucosa.
Collapse
|