1
|
Rahman M, Peng XL, Zhao XH, Gong HL, Sun XD, Wu Q, Wei DX. 3D bioactive cell-free-scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration. Bioact Mater 2021; 6:4083-4095. [PMID: 33997495 PMCID: PMC8091180 DOI: 10.1016/j.bioactmat.2021.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/21/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
Hydrophilic bone morphogenetic protein 2 (BMP2) is easily degraded and difficult to load onto hydrophobic carrier materials, which limits the application of polyester materials in bone tissue engineering. Based on soybean-lecithin as an adjuvant biosurfactant, we designed a novel cell-free-scaffold of polymer of poly(ε-caprolactone) and poly(lactide-co-glycolide)-co-polyetherimide with abundant entrapped and continuously released BMP2 for in vivo stem cell-capture and in situ osteogenic induction, avoiding the use of exogenous cells. The optimized bioactive osteo-polyester scaffold (BOPSC), i.e. SBMP-10SC, had a high BMP2 entrapment efficiency of 95.35%. Due to its higher porosity of 83.42%, higher water uptake ratio of 850%, and sustained BMP2 release with polymer degradation, BOPSCs were demonstrated to support excellent in vitro capture, proliferation, migration and osteogenic differentiation of mouse adipose derived mesenchymal stem cells (mADSCs), and performed much better than traditional BMP-10SCs with unmodified BMP2 and single polyester scaffolds (10SCs). Furthermore, in vivo capture and migration of stem cells and differentiation into osteoblasts was observed in mice implanted with BOPSCs without exogenous cells, which enabled allogeneic bone formation with a high bone mineral density and ratios of new bone volume to existing tissue volume after 6 months. The BOPSC is an advanced 3D cell-free platform with sustained BMP2 supply for in situ stem cell capture and osteoinduction in bone tissue engineering with potential for clinical translation.
Collapse
Affiliation(s)
- Mamatali Rahman
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xiao-Dan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| |
Collapse
|
2
|
Su YW, Zhou XF, Foster BK, Grills BL, Xu J, Xian CJ. Roles of neurotrophins in skeletal tissue formation and healing. J Cell Physiol 2017; 233:2133-2145. [PMID: 28370021 DOI: 10.1002/jcp.25936] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
Neurotrophins and their receptors are key molecules that are known to be critical in regulating nervous system development and maintenance and have been recognized to be also involved in regulating tissue formation and healing in skeletal tissues. Studies have shown that neurotrophins and their receptors are widely expressed in skeletal tissues, implicated in chondrogenesis, osteoblastogenesis, and osteoclastogenesis, and are also involved in regulating tissue formation and healing events in skeletal tissue. Increased mRNA expression for neurotrophins NGF, BDNF, NT-3, and NT-4, and their Trk receptors has been observed in injured bone tissues, and NT-3 and its receptor, TrkC, have been identified to have the highest induction at the injury site in a drill-hole injury repair model in both bone and the growth plate. In addition, NT-3 has also recently been shown to be both an osteogenic and angiogenic factor, and this neurotrophin can also enhance expression of the key osteogenic factor, BMP-2, as well as the major angiogenic factor, VEGF, to promote bone formation, vascularization, and healing of the injury site. Further studies, however, are needed to investigate if different neurotrophins have differential roles in skeletal repair, and if NT-3 can be a potential target of intervention for promoting bone fracture healing.
Collapse
Affiliation(s)
- Yu-Wen Su
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xin-Fu Zhou
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Brian L Grills
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cory J Xian
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Ramchandani D, Weber GF. Interactions between osteopontin and vascular endothelial growth factor: Implications for skeletal disorders. Bone 2015; 81:7-15. [PMID: 26123594 DOI: 10.1016/j.bone.2015.05.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/09/2015] [Accepted: 05/08/2015] [Indexed: 11/28/2022]
Abstract
Osteopontin (OPN) and vascular endothelial growth factor (VEGF) are characterized by a convergence in function for maintaining the homeostasis of the skeletal and renal systems (the bone-renal-vascular axis regulates bone metabolism). The two cytokines contribute to bone remodeling, dental healing, kidney function, and the adjustment to microgravity. Often, they are co-expressed or one molecule induces the other, however, in some settings OPN-associated pathways and VEGF-associated pathways are distinct. In bone remodeling, OPN and VEGF are regulated under the influence of growth factors and hormones, hypoxia and inflammation, the micro-environment, and various physical forces. Their abundance can be affected by drug treatment. OPN and VEGF are variably associated with kidney disease. Their balanced levels are critical for restoring endothelial cell function and ameliorating the adverse effects of microgravity. Here, we review the relevant 83 papers of 257 articles published, and listed in PubMed under the key words OPN and VEGF.
Collapse
Affiliation(s)
| | - Georg F Weber
- James L. Winkle College of Pharmacy, University of Cincinnati, USA.
| |
Collapse
|
4
|
Biomechanical force induces the growth factor production in human periodontal ligament-derived cells. Odontology 2015; 104:27-34. [PMID: 25957627 DOI: 10.1007/s10266-015-0206-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.
Collapse
|
5
|
Ramchandani D, Weber GF. Interactions between osteopontin and vascular endothelial growth factor: Implications for cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:202-22. [PMID: 25732057 DOI: 10.1016/j.bbcan.2015.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 02/22/2015] [Indexed: 12/12/2022]
Abstract
For this comprehensive review, 257 publications with the keywords "osteopontin" or "OPN" and "vascular endothelial growth factor" or "VEGF" in PubMed were screened (time frame from year 1996 to year 2014). 37 articles were excluded because they were not focused on the interactions between these molecules, and papers relevant for transformation-related phenomena were selected. Osteopontin (OPN) and vascular endothelial growth factor (VEGF) are characterized by a convergence in function for regulating cell motility and angiogenesis, the response to hypoxia, and apoptosis. Often, they are co-expressed or one molecule induces the other, however, in some settings OPN-associated pathways and VEGF-associated pathways are distinct. Their relationships affect the pathogenesis in cancer, where they contribute to progression and angiogenesis and serve as markers for poor prognosis. The inhibition of OPN may reduce VEGF levels and suppress tumor progression. In vascular pathologies, these two cytokines mediate remodeling, but may also perpetuate inflammation and narrowing of the arteries. OPN and VEGF are elevated and contribute to vascularization in inflammatory diseases.
Collapse
Affiliation(s)
| | - Georg F Weber
- James L. Winkle College of Pharmacy, University of Cincinnati, USA.
| |
Collapse
|
6
|
Teramatsu Y, Maeda H, Sugii H, Tomokiyo A, Hamano S, Wada N, Yuda A, Yamamoto N, Koori K, Akamine A. Expression and effects of epidermal growth factor on human periodontal ligament cells. Cell Tissue Res 2014; 357:633-43. [PMID: 24850273 DOI: 10.1007/s00441-014-1877-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
Abstract
Repair of damaged periodontal ligament (PDL) tissue is an essential challenge in tooth preservation. Various researchers have attempted to develop efficient therapies for healing and regenerating PDL tissue based on tissue engineering methods focused on targeting signaling molecules in PDL stem cells and other mesenchymal stem cells. In this context, we investigated the expression of epidermal growth factor (EGF) in normal and surgically wounded PDL tissues and its effect on chemotaxis and expression of osteoinductive and angiogenic factors in human PDL cells (HPDLCs). EGF as well as EGF receptor (EGFR) expression was observed in HPDLCs and entire PDL tissue. In a PDL tissue-injured model of rat, EGF and IL-1β were found to be upregulated in a perilesional pattern. Interleukin-1β induced EGF expression in HPDLCs but not EGFR. It also increased transforming growth factor-α (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) expression. Transwell assays demonstrated the chemotactic activity of EGF on HPDLCs. In addition, EGF treatment significantly induced secretion of bone morphogenetic protein 2 and vascular endothelial growth factor, and gene expression of interleukin-8 (IL-8), and early growth response-1 and -2 (EGR-1/2). Human umbilical vein endothelial cells developed well-formed tube networks when cultured with the supernatant of EGF-treated HPDLCs. These results indicated that EGF upregulated under inflammatory conditions plays roles in the repair of wounded PDL tissue, suggesting its function as a prospective agent to allow the healing and regeneration of this tissue.
Collapse
Affiliation(s)
- Yoko Teramatsu
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Feng L, Wu H, E L, Wang D, Feng F, Dong Y, Liu H, Wang L. Effects of vascular endothelial growth factor 165 on bone tissue engineering. PLoS One 2013; 8:e82945. [PMID: 24376611 PMCID: PMC3869747 DOI: 10.1371/journal.pone.0082945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022] Open
Abstract
To study the relationship between vascular endothelial growth factor (VEGF) and formation and repair of engineering bone, second-generation bone marrow stromal cells (BMSCs) of New Zealand white rabbits that were separated in vitro were transfected with VEGF 165 gene vectors by adenovirus to detect gene expressions. Transfected BMSCs and β-tricalcium phosphate material were complexed and implanted at the femoral injury sites of the study group (n = 12), and the control group (n = 12) were implanted with engineering bones that were not transfected with VEGF. Femoral recoveries of the two groups were observed on the 15th, 30th, 45th and 60th days, and their vascularization and ossification statuses were observed by immunohistochemical methods. The BMSCs transfected with VEGF highly expressed VEGF genes and excreted VEGF. The two groups both experienced increased vascularization and bone volume after implantation (t = 7.92, P<0.05), and the increases of the study group were significantly higher than those of the control group (t = 6.92, P<0.05). VEGF is clinically applicable because it can accelerate the formation and repair of engineering bone by promoting vascularization and ossification.
Collapse
Affiliation(s)
- Lin Feng
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
- * E-mail:
| | - Hao Wu
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Lingling E
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Dongsheng Wang
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Fukui Feng
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Yuwan Dong
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Hongchen Liu
- Oral Medical Research Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Lili Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of LMU, Jinzhou, P. R. China
| |
Collapse
|
8
|
Nezu T, Matsuzaka K, Nishii Y, Sueishi K, Inoue T. The effect of aging on the functions of epithelial rest cells of Malassez in vitro: immunofluorescence, DNA microarray and RT-PCR analyses. ACTA ACUST UNITED AC 2011. [DOI: 10.3353/omp.15.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|