1
|
Khzam N, Kujan O, Haubek D, Miranda LA. Occurrence of Aggregatibacter actinomycetemcomitans and Its JP2 Genotype in a Cohort of 220 Western Australians with Unstable Periodontitis. Microorganisms 2024; 12:2354. [PMID: 39597742 PMCID: PMC11596974 DOI: 10.3390/microorganisms12112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
AIM The main purpose of the present study was to investigate the carrier rate of Aggregatibacter actinomycetemcomitans and its JP2 genotype in a cohort of 200 Western Australians diagnosed with periodontitis. MATERIALS AND METHODS In this descriptive cross-sectional study, 220 consecutive patients with periodontitis, aged 18 years and older, were recruited to a specialist periodontal practice in Perth City. Every patient included in this study contributed three different intra-oral samples. Periodontal, radiographical, and microbiological assessments were performed. The samples were analysed using a polymerase chain reaction for the detection of Aggregatibacter actinomycetemcomitans and its JP2 genotype using the primers and conditions described previously. A Chi-square test and logistic regression analysis were performed to evaluate the results. RESULTS The prevalence of Aggregatibacter actinomycetemcomitans was 28.18%. The carrier rates of A. actinomycetemcomitans in the unstimulated saliva, cheek swabs, and pooled subgingival plaque samples were 21.80%, 19.50%, and 17.70%, respectively. There was a significant correlation between the severe form of periodontitis (stage IV, grade C) and younger age (p = 0.004), positive family history of periodontitis (p < 0.001), oral hygiene method (p < 0.001), and irregular dental visit attendance (p < 0.001). The binary logistic regression analysis revealed that having severe periodontitis risk increased almost three times in those who were young (OR: 2.812) and came from a family with a history of periodontal disease (OR: 3.194). However, the risk of severe periodontitis was five times higher in those patients with tooth loss due to periodontal disease (OR: 5.071). The highly leukotoxic JP2 genotype of Aggregatibacter actinomycetemcomitans was not detected. CONCLUSIONS This study of a Western Australian cohort confirmed the low presence of Aggregatibacter actinomycetemcomitans and the complete absence of its JP2 genotype. Young age, family history of periodontal disease, lack of flossing, irregular dental visits, and tooth loss due to periodontitis were identified as potential risk factors for periodontitis stage IV, grade C in this cohort.
Collapse
Affiliation(s)
- Nabil Khzam
- Dental School, The University of Western Australia, Nedlands, WA 6009, Australia;
- NK Periodontics, Specialist Periodontal Private Practice, Applecross, WA 6155, Australia
| | - Omar Kujan
- Dental School, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Skolevej 1, DK-9460 Brovst, Denmark;
| | | |
Collapse
|
2
|
Prevalence of the JP2 genotype of Aggregatibacter actinomycetemcomitans in the world population: a systematic review. Clin Oral Investig 2022; 26:2317-2334. [DOI: 10.1007/s00784-021-04343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
|
3
|
Bunte K, Kuhn C, Walther C, Peters U, Aarabi G, Smeets R, Beikler T. Clinical significance of ragA, ragB, and PG0982 genes in Porphyromonas gingivalis isolates from periodontitis patients. Eur J Oral Sci 2021; 129:e12776. [PMID: 33667038 DOI: 10.1111/eos.12776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Consistent detection of ragA, ragB, and PG0982 in the genome of Porphyromonas gingivalis (P. gingivalis) isolates from periodontitis patients suggests that genotypes containing these genes may influence virulence and P. gingivalis-associated periodontitis progression. This study evaluated the prevalence of these genes in P. gingivalis isolates from periodontitis patients (n = 28) and in isolates from periodontally healthy P. gingivalis carriers (n = 34). The association of these genes with progression of periodontitis, in vitro cell invasiveness, and bacterial survival following periodontal therapy was also assessed. Periodontal charting and microbiological sampling were done at baseline, and at 6, 12, and 24 months following subgingival debridement of the periodontitis patients. Healthy controls were assessed at baseline for comparison. P. gingivalis isolates were analysed by ragA, ragB, and PG0982 specific polymerase chain reaction (PCR) and Sanger sequencing. Primary human gingival fibroblasts were used for invasion experiments. Results showed that 25% of the tested isolates from the periodontitis group had ragB detected, whereas this gene was undetected in isolates from healthy participants. However, none of the selected genes was associated with an increased cell invasiveness in vitro, with bacterial survival, or with significant clinical periodontal parameter changes. Identification of genes that influence P.gingivalis virulence and therapeutic outcome may have a diagnostic or prognostic value.
Collapse
Affiliation(s)
- Kübra Bunte
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carolin Walther
- Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghazal Aarabi
- Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Ishikawa KH, Bueno MR, Kawamoto D, Simionato MRL, Mayer MPA. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2021; 36:92-102. [PMID: 33372378 DOI: 10.1111/omi.12330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Periodontitis is characterized by a dysbiotic microbial community and treatment strategies include the reestablishment of symbiosis by reducing pathogens abundance. Aggregatibacter actinomycetemcomitans (Aa) is frequently associated with rapidly progressing periodontitis. Since the oral ecosystem may be affected by metabolic end-products of bacteria, we evaluated the effect of soluble compounds released by probiotic lactobacilli, known as postbiotics, on Aa biofilm and expression of virulence-associated genes. Cell-free pH-neutralized supernatants (CFS) of Lactobacillus rhamnosus Lr32, L. rhamnosus HN001, Lactobacillus acidophilus LA5, and L. acidophilus NCFM were tested against a fimbriated clinical isolate of Aa JP2 genotype (1 × 107 CFU/well) on biofilm formation for 24 hr, and early and mature preformed biofilms (2 and 24 hr). Lactobacilli CFS partially reduced Aa viable counts and biofilms biomass, but did not affect the number of viable non-adherent bacteria, except for LA5 CFS. Furthermore, LA5 CFS and, in a lesser extent HN001 CFS, influenced Aa preformed biofilms. Lactobacilli postbiotics altered expression profile of Aa in a strain-specific fashion. Transcription of cytolethal distending toxin (cdtB) and leukotoxin (ltxA) was downregulated by CFS of LA5 and LR32 CFS. Although all probiotics produced detectable peroxide, transcription of katA was downregulated by lactobacilli CFS. Transcription of dspB was abrogated by LR32 and NCFM CFS, but increased by HN001, whereas expression of pgA was not affected by any postbiotic. Our data indicated the potential of postbiotics from lactobacilli, especially LA5, to reduce colonization levels of Aa and to modulate the expression of virulence factors implicated in evasion of host defenses.
Collapse
Affiliation(s)
- Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manuela R Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria R L Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Rebeis ES, Albuquerque-Souza E, Paulino da Silva M, Giudicissi M, Mayer MPA, Saraiva L. Effect of periodontal treatment onAggregatibacter actinomycetemcomitanscolonization and serum IgG levels againstA. actinomycetemcomitansserotypes and Omp29 of aggressive periodontitis patients. Oral Dis 2018; 25:569-579. [DOI: 10.1111/odi.13010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/04/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Estela Sanches Rebeis
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Emmanuel Albuquerque-Souza
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Maike Paulino da Silva
- Department of Microbiology, Institute of Biomedical Sciences; University of São Paulo; Sao Paulo Brazil
| | - Marcela Giudicissi
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Marcia P. A. Mayer
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
- Department of Microbiology, Institute of Biomedical Sciences; University of São Paulo; Sao Paulo Brazil
| | - Luciana Saraiva
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
6
|
Obradović D, Gašperšič R, Caserman S, Leonardi A, Jamnik M, Podlesek Z, Seme K, Anderluh G, Križaj I, Maček P, Butala M. A Cytolethal Distending Toxin Variant from Aggregatibacter actinomycetemcomitans with an Aberrant CdtB That Lacks the Conserved Catalytic Histidine 160. PLoS One 2016; 11:e0159231. [PMID: 27414641 PMCID: PMC4945079 DOI: 10.1371/journal.pone.0159231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
The periodontopathogen Aggregatibacter actinomycetemcomitans synthesizes several virulence factors, including cytolethal distending toxin (CDT). The active CDT holoenzyme is an AB-type tripartite genotoxin that affects eukaryotic cells. Subunits CdtA and CdtC (B-components) allow binding and intracellular translocation of the active CdtB (A-component), which elicits nuclear DNA damage. Different strains of A. actinomycetemcomitans have diverse virulence genotypes, which results in varied pathogenic potential and disease progression. Here, we identified an A. actinomycetemcomitans strain isolated from two patients with advance chronic periodontitis that has a regular cdtABC operon, which, however, codes for a unique, shorter, variant of the CdtB subunit. We describe the characteristics of this CdtBΔ116–188, which lacks the intact nuclear localisation signal and the catalytic histidine 160. We show that the A. actinomycetemcomitans DO15 isolate secretes CdtBΔ116–188, and that this subunit cannot form a holotoxin and is also not genotoxic if expressed ectopically in HeLa cells. Furthermore, the A. actinomycetemcomitans DO15 isolate is not toxic, nor does it induce cellular distention upon infection of co-cultivated HeLa cells. Biological significance of this deletion in the cdtB remains to be explained.
Collapse
Affiliation(s)
- Davor Obradović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Gašperšič
- Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Caserman
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Jamnik
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (MB)
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (MB)
| |
Collapse
|
7
|
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been considered the most likely etiologic agent in aggressive periodontitis. Implementation of DNA-based microbiologic methodologies has considerably improved our understanding of the composition of subgingival biofilms, and advanced open-ended molecular techniques even allow for genome mapping of the whole bacterial spectrum in a sample and characterization of both the cultivable and not-yet-cultivable microbiota associated with periodontal health and disease. Currently, A. actinomycetemcomitans is regarded as a minor component of the resident oral microbiota and as an opportunistic pathogen in some individuals. Its specific JP2 clone, however, shows properties of a true exogenous pathogen and has an important role in the development of aggressive periodontitis in certain populations. Still, limited data exist on the impact of other microbes specifically in aggressive periodontitis. Despite a wide heterogeneity of bacteria, especially in subgingival samples collected from patients, bacteria of the red complex in particular, and those of the orange complex, are considered as potential pathogens in generalized aggressive periodontitis. These types of bacterial findings closely resemble those found for chronic periodontitis, representing a mixed polymicrobial infection without a clear association with any specific microorganism. In aggressive periodontitis, the role of novel and not-yet-cultivable bacteria has not yet been elucidated. There are geographic and ethnic differences in the carriage of periodontitis-associated microorganisms, and they need to be taken into account when comparing study reports on periodontal microbiology in different study populations. In the present review, we provide an overview on the colonization of potential periodontal pathogens in childhood and adolescence, and on specific microorganisms that have been suspected for their role in the initiation and progression of aggressive forms of periodontal disease.
Collapse
|
8
|
Umeda JE, Longo PL, Simionato MRL, Mayer MPA. Differential transcription of virulence genes in Aggregatibacter actinomycetemcomitans serotypes. J Oral Microbiol 2013; 5:21473. [PMID: 24159369 PMCID: PMC3807012 DOI: 10.3402/jom.v5i0.21473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 01/25/2023] Open
Abstract
Background Aggregatibacter actinomycetemcomitans serotypes are clearly associated with periodontitis or health, which suggests distinct strategies for survival within the host. Objective We investigated the transcription profile of virulence-associated genes in A. actinomycetemcomitans serotype b (JP2 and SUNY 465) strains associated with disease and serotype a (ATCC 29523) strain associated with health. Design Bacteria were co-cultured with immortalized gingival epithelial cells (OBA-9). The adhesion efficiency after 2 hours and the relative transcription of 13 genes were evaluated after 2 and 24 hours of interaction. Results All strains were able to adhere to OBA-9, and this contact induced transcription of pgA for polysaccharide biosynthesis in all tested strains. Genes encoding virulence factors as Omp29, Omp100, leukotoxin, and CagE (apoptotic protein) were more transcribed by serotype b strains than by serotype a. ltxA and omp29, encoding the leukotoxin and the highly antigenic Omp29, were induced in serotype b by interaction with epithelial cells. Factors related to colonization (aae, flp, apaH, and pgA) and cdtB were upregulated in serotype a strain after prolonged interaction with OBA-9. Conclusion Genes relevant for surface colonization and interaction with the immune system are regulated differently among the strains, which may help explaining their differences in association with disease.
Collapse
Affiliation(s)
- Josely Emiko Umeda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
9
|
Höglund Åberg C, Antonoglou G, Haubek D, Kwamin F, Claesson R, Johansson A. Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression. PLoS One 2013; 8:e65781. [PMID: 23922633 PMCID: PMC3683020 DOI: 10.1371/journal.pone.0065781] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The cytolethal distending toxin (Cdt) is a highly conserved exotoxin that are produced by a number of Gram negative bacteria, including Aggregatibacter actinomycetemcomitans, and affects mammalian cells by inhibiting cell division and causing apoptosis. A complete cdt-operon is present in the majority of A. actinomycetemcomitans, but the proportion of isolates that lack cdt-encoding genes (A, B and C) varies according to the population studied. The objectives of this study were to examine serotype, Cdt-genotype, and Cdt-activity in isolates of A. actinomycetemcomitans collected from an adolescent West African population and to examine the association between the carrier status of A. actinomycetemcomitans and the progression of attachment loss (AL). MATERIALS AND METHODS A total of 249 A. actinomycetemcomitans isolates from 200 Ghanaian adolescents were examined for serotype and cdt-genotype by PCR. The activity of the Cdt-toxin was examined by DNA-staining of exposed cultured cells and documented with flow cytometry. The periodontal status of the participants was examined at baseline and at a two-year follow-up. RESULTS Presence of all three cdt-encoding genes was detected in 79% of the examined A. actinomycetemcomitans isolates. All these isolates showed a substantial Cdt-activity. The two different cdt-genotypes (with and without presence of all three cdt-encoding genes) showed a serotype-dependent distribution pattern. Presence of A. actinomycetemcomitans was significantly associated with progression of AL (OR = 5.126; 95% CI = [2.994-8.779], p<0.001). CONCLUSION A. actinomycetemcomitans isolated from the Ghanaian adolescents showed a distribution of serotype and cdt-genotype in line with results based on other previously studied populations. Presence of A. actinomycetemcomitans was significantly associated with disease progression, in particular the b serotype, whereas the association with disease progression was not particularly related to cdt-genotype, and Cdt-activity.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Georgios Antonoglou
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | | | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|