1
|
Calatayud M, Farias SS, de Paredes GS, Olivera M, Carreras NÁ, Giménez MC, Devesa V, Vélez D. Arsenic exposure of child populations in Northern Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:1-6. [PMID: 30877956 DOI: 10.1016/j.scitotenv.2019.02.415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/04/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Chronic exposure to inorganic arsenic (As) is associated with numerous adverse effects. Argentina is one of the countries affected by arsenicism; however, there are few studies that evaluate inorganic As exposure and its effects on child population. The aim of this study is to evaluate exposure to As through water and food in child populations living in the provinces of Santiago del Estero and Chaco (n = 101), and to determine the impact of this exposure analysing biomarkers of exposure (urine and hair As contents) and effect [8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG)]. The populations selected live in three areas with different levels of As in the drinking water (Santa Teresa de Carballo, 0.925 mg/L; Taco Pozo, 0.210 mg/L; Jumi Pozo, 0.016 mg/L). The As intakes through water and food are especially high in the areas with the greatest As exposure (Santa Teresa de Carballo, 1575 ± 8 μg/day; Taco Pozo, 386 ± 8 μg/day; Jumi Pozo, 39 ± 1 μg/day). The total As contents in most of the samples of hair (0.11-13.11 mg/kg) and urine (31-4258 μg/g creatinine) are higher than the reference values (hair: 1 mg/kg; urine: 50 μg/g creatinine). The increase in the level of As exposure alters the profile of metabolites in urine, with a decrease of dimethylarsinic acid (10%) and an increase in the percentages of monomethylarsonic acid (4%) and inorganic As (6%). The results also show high values of 8-OHdG (3.7-37.8 μg/g creatinine), a oxidative DNA damage marker, in the two areas with greater As exposure.
Collapse
Affiliation(s)
- Marta Calatayud
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), C/ Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Silvia Sara Farias
- Investigador Consulto Gerencia Química, Gerencia de Área de Seguridad y Ambiente, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | | | - Mónica Olivera
- Cátedra de Toxicología y Química Legal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), C/ Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), C/ Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
2
|
Suhl J, Leonard S, Weyer P, Rhoads A, Siega-Riz AM, Renée Anthony T, Burns TL, Conway KM, Langlois PH, Romitti PA. Maternal arsenic exposure and nonsyndromic orofacial clefts. Birth Defects Res 2018; 110:1455-1467. [PMID: 30367712 DOI: 10.1002/bdr2.1386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Arsenic is widely distributed in the environment in both inorganic and organic forms. Evidence from animal studies suggests that maternal inorganic arsenic may lead to the development of orofacial clefts (OFC)s in offspring. This evidence, together with the limited epidemiologic data available, supports the need for a comprehensive examination of major sources of arsenic exposure and OFCs in humans. METHODS Using interview data collected in the National Birth Defects Prevention Study, public and well water arsenic sampling data, and dietary arsenic estimates, we compared expert-rater assessed occupational arsenic exposure, individual-level exposure to arsenic through drinking water, and dietary arsenic exposure between mothers of OFC cases (N = 435) and unaffected controls (N = 1267). Associations for each source of exposure were estimated for cleft lip ± palate (CL/P) and cleft palate (CP) using unconditional logistic regression analyses. RESULTS Associations for maternal drinking water arsenic exposure and CL/P were near or below unity, whereas those for dietary arsenic exposure tended to be positive. For CP, positive associations were observed for maternal occupational arsenic and inorganic arsenic exposures, with confidence intervals that excluded the null value, whereas those for drinking water or dietary arsenic exposures tended to be near or below unity. CONCLUSIONS Positive associations were observed for maternal occupational arsenic exposure and CP and for maternal dietary arsenic exposure and CL/P; the remainder of associations estimated tended to be near or below unity. Given the exploratory nature of our study, the results should be interpreted cautiously, and continued research using improved exposure assessment methodologies is recommended.
Collapse
Affiliation(s)
- Jonathan Suhl
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Stephanie Leonard
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Peter Weyer
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, Iowa
| | - Anthony Rhoads
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Anna Maria Siega-Riz
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - T Renée Anthony
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - Trudy L Burns
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Kristin M Conway
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Peter H Langlois
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, Texas
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa
| |
Collapse
|
3
|
Awodele O, Popoola TD, Ogbudu BS, Akinyede A, Coker HAB, Akintonwa A. Occupational hazards and safety measures amongst the paint factory workers in lagos, Nigeria. Saf Health Work 2014; 5:106-11. [PMID: 25180142 PMCID: PMC4147227 DOI: 10.1016/j.shaw.2014.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
Background The manufacture of paint involves a variety of processes that present with medical hazards. Safety initiatives are hence introduced to limit hazard exposures and promote workplace safety. This aim of this study is to assess the use of available control measures/initiatives in selected paint factories in Lagos West Senatorial District, Nigeria. Methods A total of 400 randomly selected paint factory workers were involved in the study. A well-structured World Health Organization standard questionnaire was designed and distributed to the workers to elicit information on awareness to occupational hazards, use of personal protective devices, and commonly experienced adverse symptoms. Urine samples were obtained from 50 workers randomly selected from these 400 participants, and the concentrations of the heavy metals (lead, cadmium, arsenic, and chromium) were determined using atomic absorption spectroscopy. Results The results show that 72.5% of the respondents are aware of the hazards associated with their jobs; 30% have had formal training on hazards and safety measures; 40% do not use personal protective devices, and 90% of the respondents reported symptoms relating to hazard exposure. There was a statistically significant (p < 0.05) increase in the mean heavy metal concentrations in the urine samples obtained from paint factory workers as compared with nonfactory workers. Conclusion The need to develop effective frameworks that will initiate the integration and ensure implementation of safety regulations in paint factories is evident. Where these exist, there is a need to promote adherence to these practice guidelines.
Collapse
Affiliation(s)
- Olufunsho Awodele
- Department of Pharmacology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Temidayo D Popoola
- Department of Pharmacology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Bawo S Ogbudu
- Department of Pharmacology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Akin Akinyede
- Department of Pharmacology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Herbert A B Coker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Alade Akintonwa
- Department of Pharmacology, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
4
|
Xie R, Johnson W, Spayd S, Hall GS, Buckley B. Arsenic speciation analysis of human urine using ion exchange chromatography coupled to inductively coupled plasma mass spectrometry. Anal Chim Acta 2006; 578:186-94. [PMID: 17723711 DOI: 10.1016/j.aca.2006.06.076] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/28/2006] [Accepted: 06/29/2006] [Indexed: 11/19/2022]
Abstract
A sensitive and robust method for the determination of seven inorganic and organic arsenic species was developed using ion exchange chromatography combined with inductively coupled plasma mass spectrometry (IC-ICP-MS). Both anion and cation exchange columns were used in a complementary fashion. Arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) were selectively separated by an anion exchange column using sodium hydroxide (NaOH) gradient elution, while monomethylarsonous acid (MMA(III)), dimethylarsinous acid (DMA(III)) and arsenobetaine (AsB) were separated by a cation exchange column using 70 mM nitric acid as the mobile phase. Baseline separation, high repeatability and low detection limits (0.10-0.75 ng mL(-1)) were achieved. The spiked urine samples were analyzed with this method to evaluate the matrix effect on the method. The results suggest 1-10 dilutions should be made to urine samples before sample injection for the anion exchange analysis to minimize the matrix effect. To validate the method, a new standard reference material (NIST SRM-2670a) was also analyzed. The arsenic species in NIST SRM-2670a were determined by this method, and the sum of their concentrations agreed well with the total arsenic content certified for NIST SRM-2670a. Moreover, this method was applied to measure arsenic species in urine samples from one subject living in New Jersey who drank well water contaminated with arsenic. By this method, two key arsenic metabolites, MMA(III) and DMA(III), were found to be present in these urine samples, which has previously been rarely reported.
Collapse
Affiliation(s)
- Ruimin Xie
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
5
|
Hsueh YM, Ko YF, Huang YK, Chen HW, Chiou HY, Huang YL, Yang MH, Chen CJ. Determinants of inorganic arsenic methylation capability among residents of the Lanyang Basin, Taiwan: arsenic and selenium exposure and alcohol consumption. Toxicol Lett 2003; 137:49-63. [PMID: 12505432 DOI: 10.1016/s0378-4274(02)00380-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to assess individual variation in inorganic arsenic methylation capability and the association between selenium levels in urine and blood, and inorganic arsenic methylation capability among residents of the Lanyang Basin who drank groundwater and were exposed to high concentrations of inorganic arsenic. According to the arsenic concentration of their drinking water, they were equally and randomly classified into four groups of 252 persons. It turned out that the higher the concentration of arsenic in well water was and thus the cumulative arsenic exposure, the higher the total inorganic arsenic metabolites in urine (total As(i)) and the overall inorganic and organic arsenic in urine (overall As(i+o)) were. The percentage of inorganic arsenic significantly decreased and the DMA percentage significantly increased as the concentration of urinary selenium and serum alpha-tocopherol increased. It appeared that urinary selenium levels increased the metabolism by methylation of arsenic, a finding that requires further investigation.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Public Health, School of Medicine, Taipei Medical University, No. 250, Wu Hsin Street, 110, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hsueh YM, Hsu MK, Chiou HY, Yang MH, Huang CC, Chen CJ. Urinary arsenic speciation in subjects with or without restriction from seafood dietary intake. Toxicol Lett 2002; 133:83-91. [PMID: 12076513 DOI: 10.1016/s0378-4274(02)00087-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to understand whether ingestion of seafood affects the urinary arsenic metabolites. About 42 women and 36 men were recruited from the students, parents and teachers in Taipei Medical University and National Taiwan University. The study subjects were interviewed about dietary habits, cigarette smoking habits, drug and vitamin intake, and consumption of seafood. Urine samples were collected from study subjects before and after refraining from eating seafood for 3 days, respectively. The urine samples were frozen at -20 degrees C separated by high-performance liquid chromatography (HPLC), and on line linked to hydride generator atomic absorption spectrometry (HGAAS) to quantify the levels of various species of inorganic arsenic and its metabolites. The levels of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), total inorganic arsenic metabolites, inorganic arsenic percent, MMA percent and DMA percent were similar before and after refraining from eating seafood for 3 days. The frequencies of fish, shellfish and seaweed dietary intake were not significantly correlated with urinary arsenic species.
Collapse
Affiliation(s)
- Yu Mei Hsueh
- Department of Public Health, School of Medicine, Taipei Medical University, No. 250, Wu Hsin Street, 110, Taipei, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
7
|
Pott WA, Benjamin SA, Yang RS. Pharmacokinetics, metabolism, and carcinogenicity of arsenic. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2001; 169:165-214. [PMID: 11330077 DOI: 10.1007/978-1-4613-0107-3_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The carcinogenicity of arsenic in humans has been unambiguously demonstrated in a variety of epidemiological studies encompassing geographically diverse study populations and multiple exposure scenarios. Despite the abundance of human data, our knowledge of the mechanism(s) responsible for the carcinogenic effects of arsenic remains incomplete. A deeper understanding of these mechanisms is highly dependent on the development of appropriate experimental models, both in vitro and in vivo, for future mechanistic investigations. Suitable in vitro models would facilitate further investigation of the critical chemical species (arsenate/arsenite/MMA/DMA) involved in the carcinogenic process, as well as the evaluation of the generation and role of ROS. Mechanisms underlying the clastogenic effects of arsenic, its role in modulating DNA methylation, and the phenomenon of inducible tolerance could all be more completely investigated using in vitro models. The mechanisms involved in arsenic's inhibition of ubiquitin-mediated proteolysis demand further attention, particularly with respect to its effects on cell proliferation and DNA repair. Exploration of the mechanisms responsible for the protective or anticarcinogenic effects of arsenic could also enhance our understanding of the cellular and molecular interactions that influence its carcinogenicity. In addition, appropriate in vivo models must be developed that consider the action of arsenic as a promoter and/or progressor. In vivo models that allow further investigation of the comutagenic effects of arsenic are also especially necessary. Such models may employ initiation-promotion-progression bioassays or transgenic animals. Both in vitro and in vivo models have the potential to greatly enhance our current understanding of the cellular and molecular interactions of arsenic and its metabolites in target tissues. However, refinement of our knowledge of the mechanistic aspects of arsenic carcinogenicity is not alone sufficient; an understanding of the pharmacokinetics and target tissue doses of the critical chemical species is essential. Additionally, a more thorough characterization of species differences in the tissue kinetics of arsenic and its methylated metabolites would facilitate the development of more accurate and relevant PBPK models. Improved models could be used to further investigate the existence of a methylation threshold for arsenic and its relevance to arsenic carcinogenicity in humans. The significance of alterations in relative tissue concentrations of SAM and SAH deserves further attention, particularly with respect to their role in modulating methyltransferases involved in arsenic metabolism and DNA methylation. The importance of genetic polymorphisms and nutrition in influencing methyltransferase activities must not be overlooked. In vivo models are necessary to evaluate these factors; transgenic or knockout models would be particularly useful in the investigation of methylation polymorphisms. Further evaluation of methylation polymorphisms in human populations is also warranted. Other in vivo models incorporating dietary manipulation could provide valuable insight into the role of nutrition in the carcinogenicity of arsenic. With more complete knowledge of the pharmacokinetics of arsenic metabolism and the mechanisms associated with its carcinogenic effects, development of more reliable risk assessment strategies are possible. Integration of data, both pharmacokinetic and mechanistic in nature, will lead to more accurate descriptions of the interactions that occur between the active chemical species and cellular constituents which lead to the development of cancer. This knowledge, in turn, will facilitate the development of more accurate and reliable risk assessment strategies for arsenic.
Collapse
Affiliation(s)
- W A Pott
- Center for Environment Toxicology and Technology, Department of Environmental Health, Colorado State University, Fort Collins, CO 80523-1680, USA
| | | | | |
Collapse
|
8
|
Abstract
Thousands of people in different parts of the world are exposed to arsenic via drinking water or contaminated soil or food. The high general toxic of arsenic has been known for centuries, and research during the last decades has shown that arsenic is a potent human carcinogen. However, most experimental cancer studies have failed to demonstrate carcinogenicity in experimental animals, indicating marked variation in sensitivity towards arsenic toxicity between species. It has also been suggested that there is a variation in susceptibility among human individuals. One reason for such variability in toxic response may be variation in metabolism. Inorganic arsenic is methylated in humans as well as animals and micro-organisms, but there are considerable differences between species and individuals. In many, but not all, mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are more rapidly excreted in urine than is the inorganic arsenic, especially the trivalent form (AsIII, arsenite) which is highly reactive with tissue components. Absorbed arsenate (AsV) is reduced to trivalent arsenic (AsIII) before the methyl groups are attached. It has been estimated that as much as 50-70% of absorbed AsV is rapidly reduced to AsIII, a reaction which seems to be common for most species. In most experimental animal species, DMA is the main metabolite excreted in urine. Compared to human subjects, very little MMA is produced. However, the rate of methylation varies considerably between species, and several species, e.g. the marmoset monkey and the chimpanzee have been shown not to methylate inorganic arsenic at all. In addition, the marmoset monkey accumulates arsenic in the liver. The rat, on the other hand, has an efficient methylation of arsenic but the formed DMA is to a large extent accumulated in the red blood cells. As a result, the rat shows a low rate of excretion of arsenic. In both human subjects and rodents exposed to DMA, about 5% of the dose is excreted in the urine as trimethylarsine oxide. It is obvious from studies on human volunteers exposed to specified doses of inorganic arsenic that the rate of excretion increases with the methylation efficiency, and there are large inter-individual variations in the methylation of arsenic. Recent studies on people exposed to arsenic via drinking water in northern Argentina have shown unusually low urinary excretion of MMA. Furthermore, children had a lower degree of methylation of arsenic than adults. Some studies indicate a lower degree of arsenic methylation in men than in women, especially during pregnancy. Whether the observed differences in methylation of arsenic are associated with variations in the susceptibility of arsenic remains to be investigated.
Collapse
|
9
|
Wyatt CJ, Lopez Quiroga V, Olivas Acosta RT, Olivia Méndez R. Excretion of arsenic (As) in urine of children, 7-11 years, exposed to elevated levels of As in the city water supply in Hermosillo, Sonora, México. ENVIRONMENTAL RESEARCH 1998; 78:19-24. [PMID: 9630441 DOI: 10.1006/enrs.1998.3844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, México, showed high levels of As (> 0.05 ppm) in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7-11 years of age, that had been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included. As was determined by an atomic absorption-hydride generator, verified with the use of NBS certified standards (SRM 1643a and SRM 2670). None of the water samples exceeded the limit established for drinking water; however, there was a significant difference between the intake of As and the As in drinking water among the three areas of the study. Average As in water was 0.009 +/- 0.002 and 0.030 +/- 0.011 micrograms/ml between the control and high areas. Intake (in micrograms/day) was 15 +/- 3 and 54 +/- 18. In the group consuming water with high levels of As, 65% of the children exceeded the recommended dose of < 1 micrograms/kg/day (EPA, 1988). Several children in this study also had high levels of As in their urine. Even though As levels in the drinking water are within the norms, it appears that children exposed to high levels of As in their drinking water may have a health risk.
Collapse
Affiliation(s)
- C J Wyatt
- Centro de Investigaciónes en Alimentación y Desarrollo, Hermosillo, Sonora, México.
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- J L Bourrain
- Explorations Allergologiques et Photobiologiques, Service de Dermatologie, CHU de Grenoble, France
| | | | | | | |
Collapse
|
11
|
Ruiz-Navarro ML, Navarro-Alarcón M, Lopez González-de la Serrana H, Pérez-Valero V, López-Martinez MC. Urine arsenic concentrations in healthy adults as indicators of environmental contamination: relation with some pathologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 1998; 216:55-61. [PMID: 9618928 DOI: 10.1016/s0048-9697(98)00136-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arsenic concentrations were determined in 126 urine samples by hydride generation atomic absorption spectrometry. Samples were mineralized with nitric acid in a thermostated mineralization block. This technique was compared with a method that involves mineralization in a microwave digestion bomb. A mean recovery percentage of 100.80 +/- 5.57% was obtained. The relative standard deviation ranged from 1.7 to 10.52%. It was found that subject sex and age did not affect urine As levels (P > 0.05). The mean urine As levels in patients with hepatic injury (4.24 +/- 1.98 micrograms/l), diabetes (3.44 +/- 2.36 micrograms/l) and myocardial infarction (3.64 +/- 1.85 micrograms/l) were not statistically different (P > 0.05) to that found in the control group (healthy subjects) (3.68 +/- 2.27 micrograms/l). This result could be related to the fact that the regulation of As in the human organism is independent of these diseases. Measured As concentrations in the eight basic health zones of the study area were not statistically different (P > 0.01). This fact demonstrates the existence of a similarly low environmental As distribution in coastal and mountainous zones.
Collapse
Affiliation(s)
- M L Ruiz-Navarro
- Department of Nutrition and Bromatology, Faculty of Pharmacy, University of Granada, Spain
| | | | | | | | | |
Collapse
|
12
|
Vahter M, Concha G, Nermell B, Nilsson R, Dulout F, Natarajan AT. A unique metabolism of inorganic arsenic in native Andean women. Eur J Pharmacol 1995; 293:455-62. [PMID: 8748699 DOI: 10.1016/0926-6917(95)90066-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The metabolism of inorganic arsenic (As) in native women in four Andean villages in north-western Argentina with elevated levels of As in the drinking water (2.5, 14, 31, and 200 micrograms/1, respectively) has been investigated. Collected foods contained 9-427 micrograms As/kg wet weight, with the highest concentrations in soup. Total As concentrations in blood were markedly elevated (median 7.6 micrograms/1) only in the village with the highest concentration in the drinking water. Group median concentrations of metabolites of inorganic As (inorganic As, methylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in the urine varied between 14 and 256 micrograms/1. Urinary concentrations of total As were only slightly higher (18-258 micrograms/1), indicating that inorganic As was the main form of As ingested. In contrast to all other populations studied so far, arsenic was excreted in the urine mainly as inorganic As and DMA. There was very little MMA in the urine (overall median 2.2%, range 0.0-11%), which should be compared to 10-20% of the urinary arsenic in all other populations studied. This may indicate the existence of genetic polymorphism in the control of the methyltransferase activity involved in the methylation of As. Furthermore, the percentage of DMA in the urine was significantly higher in the village with 200 micrograms As/1 in the water, indicating an induction of the formation of DMA. Such an effect has not been observed in other studies on human subjects with elevated exposure to arsenic.
Collapse
Affiliation(s)
- M Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Farmer JG, Johnson LR. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic. BRITISH JOURNAL OF INDUSTRIAL MEDICINE 1990; 47:342-348. [PMID: 2357455 PMCID: PMC1035171 DOI: 10.1136/oem.47.5.342] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases.
Collapse
Affiliation(s)
- J G Farmer
- Department of Forensic Medicine and Science, University of Glasgow
| | | |
Collapse
|