1
|
Carney BC, Oliver MA, Kurup S, Collins M, Keyloun JW, Moffatt LT, Shupp JW, Travis TE. Laser-assisted drug delivery of synthetic alpha melanocyte stimulating hormone and L-tyrosine leads to increased pigmentation area and expression of melanogenesis genes in a porcine hypertrophic scar model. Lasers Surg Med 2023. [PMID: 37051852 DOI: 10.1002/lsm.23663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVES One symptom of hypertrophic scar (HTS) that can develop after burn injury is dyschromia with hyper- and hypopigmentation. There are limited treatments for these conditions. Previously, we showed there is no expression of alpha melanocyte stimulating hormone (α-MSH) in hypopigmented scars, and if these melanocytes are treated with synthetic α-MSH in vitro, they respond by repigmenting. The current study tested the same hypothesis in the in vivo environment using laser-assisted drug delivery (LADD). METHODS HTSs were created in red Duroc pigs. At Day 77 (pre), they were treated with CO2 fractional ablative laser (FLSR). Synthetic α-MSH was delivered as a topical solution dissolved in l-tyrosine (n = 6, treated). Control scars received LADD of l-tyrosine only (n = 2, control). Scars were treated and examined weekly through Week 4. Digital images and punch biopsies of hyper, hypo-, and normally pigmented scar and skin were collected. Digital pictures were analyzed with ImageJ by tracing the area of hyperpigmentation. Epidermal sheets were obtained from punch biopsies through dispase separation and RNA was isolated. qRT-PCR was run for melanogenesis-related genes: tyrosinase (TYR), tyrosinase-related protein-1 (TYRP1), and dopachrome tautomerase (DCT). Two-way ANOVA with multiple comparisons and Dunnett's correction compared the groups. RESULTS The areas of hyperpigmentation were variable before treatment. Therefore, data is represented as fold-change where each scar was normalized to its own pre value. Within the LADD of NDP α-MSH + l-tyrosine group, hyperpigmented areas gradually increased each week, reaching 1.3-fold over pre by Week 4. At each timepoint, area of hyperpigmentation was greater in the treated versus the control (1.04 ± 0.05 vs. 0.89 ± 0.08, 1.21 ± 0.07 vs. 0.98 ± 0.24, 1.21 ± 0.08 vs. 1.04 ± 0.11, 1.28 ± 0.11 vs. 0.94 ± 0.25; fold-change from pre-). Within the treatment group, pretreatment, levels of TYR were decreased -17.76 ± 4.52 below the level of normal skin in hypopigmented scars. After 1 treatment, potentially due to laser fractionation, the levels decreased to -43.49 ± 5.52. After 2, 3, and 4 treatments, there was ever increasing levels of TYR to almost the level of normally pigmented skin (-35.74 ± 15.72, -23.25 ± 6.80, -5.52 ± 2.22 [p < 0.01, Week 4]). This pattern was also observed for TYRP1 (pre = -12.94 ± 1.82, Week 1 = -48.85 ± 13.25 [p < 0.01], Weeks 2, 3, and 4 = -34.45 ± 14.64, -28.19 ± 4.98, -6.93 ± 3.05 [p < 0.01, Week 4]) and DCT (pre = -214.95 ± 89.42, Week 1 = -487.93 ± 126.32 [p < 0.05], Weeks 2, 3, and 4 = -219.06 ± 79.33, -72.91 ± 20.45 [p < 0.001], -76.00 ± 24.26 [p < 0.001]). Similar patterns were observed for scars treated with LADD of l-tyrosine alone without NDP α-MSH. For each gene, in hyperpigmented scar, levels increased at Week 4 of treatment compared to Week 1 (p < 0.01). CONCLUSIONS A clinically-relevant FLSR treatment method can be combined with topical delivery of synthetic α-MSH and l-tyrosine to increase the area of pigmentation and expression of melanogenesis genes in hypopigmented HTS. LADD of l-tyrosine alone leads to increased expression of melanogenesis genes. Future studies will aim to optimize drug delivery, timing, and dosing.
Collapse
Affiliation(s)
- Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
| | - Sanjana Kurup
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Howard University College of Medicine, Washington, District of Columbia, USA
| | - Monica Collins
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - John W Keyloun
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Taryn E Travis
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Kalegari P, Leme DM, Disner GR, Cestari MM, de Lima Bellan D, Meira WV, Mazepa E, Martinez GR. High Melanin Content in Melanoma Cells Contributes to Enhanced DNA Damage after Rose Bengal Photosensitization. Photochem Photobiol 2022; 98:1355-1364. [PMID: 35398885 DOI: 10.1111/php.13632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
Melanoma is a type of tumor that originates from melanocytes. Irradiation of melanin with UVA and visible light can produce reactive oxygen species (ROS) such as singlet molecular oxygen (1 O2 ). The objective of this study was to examine DNA damage in melanoma cells (B16-F10) with different melanin contents, subjected to 1 O2 generation. To this end, we used the photosensitizer Rose Bengal acetate (RBAc) and irradiation with visible light (526 nm) (RBAc-PDT). We used the modified comet assay with the repair enzymes hOGG1 and T4 endonuclease V to detect the DNA damage associated with 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers lesions, respectively. We observed increased formation of hOGG1- and T4endoV-sensitive DNA lesions after light exposure (with or without RBAc). Furthermore, 18 h after irradiation, hOGG1-sensitive DNA lesions increased compared to that at the initial time point (0 h), which shows that a high melanin content contributes to post-irradiation formation of them, mainly via sustained oxidative stress, as confirmed by the measurement of ROS levels and activity of antioxidant enzymes. Contrastingly, the number of T4endoV-sensitive DNA lesions decreased over time (18 h). Our data indicate that in melanoma cells, a higher amount of melanin may affect DNA damage levels when subjected to RBAc-PDT.
Collapse
Affiliation(s)
- Paloma Kalegari
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Daniela Morais Leme
- Departamento de Genética, Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | | | | | - Daniel de Lima Bellan
- Departamento de Biologia Celular, Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Willian Vanderlei Meira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Ester Mazepa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Glaucia Regina Martinez
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| |
Collapse
|
4
|
Branquinho MS, Silva MB, Silva JC, Sales MC, Barros SB, Maria-Engler SS, Campa A. A 2D and 3D melanogenesis model with human primary cells induced by tyrosine. J Biol Methods 2020; 7:e134. [PMID: 32934966 PMCID: PMC7483082 DOI: 10.14440/jbm.2020.327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Research on melanogenesis, its regulation in health and disease, and the discovery of new molecules with pigmenting and depigmenting activities use different models. Here we standardize a protocol based on previous ones using primary human melanocytes and keratinocytes in co-cultures, in which melanogenesis was induced under mild conditions by the addition of tyrosine plus ammonium chloride (NH4Cl). The expression of MITF, TYR, TYRP1, and Melan-A as well as melanin content were measured. Furthermore, we extended this study to a reconstructed 3D model. Pigmentation was visually observable and melanosomes were identified by Fontana-Masson staining by the addition of tyrosine plus NH4Cl during the stratification phase. The 2D and 3D protocols proposed here circumvent limitations of previous models, using human primary cells and mild conditions for melanogenesis. These protocols offer a viable, robust, simple, and animal-free investigational option for human skin pigmentation studies and screening tests for new compounds that modulate pigmentation.
Collapse
Affiliation(s)
- Maryana S Branquinho
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Maysa B Silva
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Jacqueline C Silva
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Maria C Sales
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Silvia B Barros
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Silvya S Maria-Engler
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Ana Campa
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, SP 05508-000, Brazil
| |
Collapse
|
5
|
Freitas JV, Junqueira HC, Martins WK, Baptista MS, Gaspar LR. Antioxidant role on the protection of melanocytes against visible light-induced photodamage. Free Radic Biol Med 2019; 131:399-407. [PMID: 30590132 DOI: 10.1016/j.freeradbiomed.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 11/22/2022]
Abstract
Visible light can induce the generation of singlet oxygen and can cause oxidative stress, especially in melanocytes due to melanin photosensitization. Currently, there is no organic UV-filter that provide visible light protection. Previous studies showed that some antioxidants, such as apigenin (API), chrysin (CRI) and beta-carotene (BTC) besides neutralizing radical chain reactions can also quench singlet oxygen via physical or chemical quenching and exhibit potential for use in photoprotection. Therefore, the aim of this study is to evaluate the efficacy of API, CRI and BTC on the protection against cell death induced by melanin photosensitization and understand the underlying mechanisms that are involved in the protection. Precise protocols of melanogenesis and quantification of singlet oxygen generation were developed. Viability of B16-F10 cells with melanin basal levels and after melanogenesis induction was evaluated after visible light exposure in the presence and absence of API, CRI and BTC. Results showed that API and BTC protected cells from photoinduced cell death API exhibiting superior photoprotective effect. We noticed that the efficiency of cell protection and the rate of singlet oxygen suppression are not well correlated, at least for the studied series of antioxidants, indicating that the anti-radical capacity should be playing a major role in protecting cells against the damage induced by melanin photosensitization. In terms of sun care strategies, both API and BTC offer protection against visible light-induced damages and may be effective topical antioxidants to be added to sunscreens.
Collapse
Affiliation(s)
- Juliana Vescovi Freitas
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Helena Couto Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Waleska Kerllen Martins
- Universidade Anhanguera de São Paulo, São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lorena Rigo Gaspar
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
6
|
Meira WV, Heinrich TA, Cadena SMSC, Martinez GR. Melanogenesis inhibits respiration in B16-F10 melanoma cells whereas enhances mitochondrial cell content. Exp Cell Res 2016; 350:62-72. [PMID: 27864061 DOI: 10.1016/j.yexcr.2016.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022]
Abstract
Melanoma is a rare and aggressive skin tumor; the survival of patients diagnosed late is fairly low. This high mortality rate is due to the characteristics of the cells that allow them to be resistant to radiotherapy and conventional chemotherapy, besides of being able to evade the immune system. Melanin, the pigment responsible for skin, hair and eye color, seems to be involved in this resistance. The main function of melanin is to protect the cells against ultraviolet (UV) light by absorbing this radiation and reactive oxygen species (ROS) scavenging. But this pigment may have also a role as photosensitizer, because when it is irradiated with UVA light (320-400 nm), the generation of ROS was detected. Besides, the melanogenesis stimulation on B16-F10 cells resulted in cell cycle arrest, induction of a quiescent state, change in the expression of several proteins and alterations on ADP/ATP ratio. The present study aimed to investigate the influence of melanogenesis stimulation in mitochondrial function of B16-F10 melanoma cells. Therefore, we analyzed cells respiration, mitochondrial membrane potential (Δψm) and mitochondria mass in B16-F10 melanoma cells stimulated with 0.4mML-tyrosine and 10mM NH4Cl. Our results showed that the induction of melanin synthesis was able to reduce significantly the oxygen consumption after 48h of stimulation, without changes of mitochondrial membrane potential when compared to non-stimulated cells. Despite of respiration inhibition, the mitochondria mass was higher in cells with melanogenesis stimulation. We suggest that the stimulation in the melanin synthesis might be promoting the inhibition of electrons transport chain by some intermediate compound from the synthesis of the pigment and this effect could contribute to explain the entry in the quiescent state.
Collapse
Affiliation(s)
- Willian Vanderlei Meira
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tassiele Andréa Heinrich
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Glaucia Regina Martinez
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|