1
|
Wang W, Hao Z, Wu Z, Cui J, Liu H. Long-term artificial/natural daytime light affects mood, melatonin, corticosterone, and gut microbiota in rats. Appl Microbiol Biotechnol 2023; 107:2689-2705. [PMID: 36912904 DOI: 10.1007/s00253-023-12446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
The desynchronization of circadian rhythms affected by light may induce physiological and psychological disequilibrium. We aimed to elucidate changes of growth, depression-anxiety like behaviors, melatonin and corticosterone (CORT) secretion, and gut microbiota in rats influenced by long-term light inputs. Thirty male Sprague-Dawley rats were exposed to a 16/8 h light/dark regime for 8 weeks. The light period was set to 13 h of daylight with artificial light (AL group, n = 10), or with natural light (NL group, n = 10), or with mixed artificial-natural light (ANL group, n = 10), and 3 h of artificial night light after sunset. The obtained findings indicated that the highest weight gain and food efficiency were observed in the AL group and the lowest in NL group. In the behavioral tests, the NL and ANL groups showed lower anxiety level than AL group, and ANL groups showed lower depression level than AL group. The NL and ANL groups had delayed acrophases and maintained higher concentrations of melatonin compared to AL group. The circadian rhythm of CORT was only found in ANL group. At the phylum level, the mixed light contributed to a lower abundance of Bacteroidetes. The genus level results recommend a synergistic effect of artificial light and natural light on Lactobacillus abundance and an antagonistic effect on the Lachnospiraceae_NK4A136_group abundance. The study indicated that the mixture of artificial and natural light as well as the alignment of the proportions had beneficial influences on depression-anxiety-like levels, melatonin and corticosterone secretion, and the composition of the gut microbiota. KEY POINTS: • The mixed light can reduce the depression-anxiety level • The mixed light can maintain the secretion rhythm of melatonin and CORT • The mixed light can increase Lactobacillus and decrease Lachnospiraceae_NK4A136_group.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilian-University of Munich, 80336, Munich, Germany
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zizhou Wu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jingwei Cui
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
McCallie KL, Klukowski M. Corticosterone in three species of free-ranging watersnakes: Testing for reproductive suppression and an association with body condition. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111214. [PMID: 35427765 DOI: 10.1016/j.cbpa.2022.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The potentially suppressive effects of the hypothalamic-pituitary-adrenal (HPA) axis on the hypothalamic-pituitary-gonadal (HPG) axis revolve around the central role that glucocorticoids play in mobilizing energy. As an individual's energy balance becomes negative, the HPA axis helps mobilize energy and shifts energy expenditure away from reproduction toward maintenance and survival. While there is evidence in support of these relationships, substantial species variability exists. Studies in a greater diversity of species promise to enhance our understanding of the interactions between these axes. In this field study we tested for relationships among body condition, corticosterone, and sex steroid concentrations in three species of closely related watersnakes: the common watersnake (Nerodia sipedon), the diamondback watersnake (Nerodia rhombifer) and the queen snake (Regina septemvittata). Snakes were sampled before and after a 30 min acute confinement stressor and body condition was estimated using the scaled mass index. All three species exhibited robust elevations of corticosterone in response to acute stress, but only plasma progesterone was elevated by the acute stressor in queen snakes. There was no evidence for a suppression of sex steroid concentrations in any of the species. Body condition was negatively associated with baseline corticosterone in queen snakes and with post-stressor corticosterone in both queen and common watersnakes. Overall we found fairly strong support for the proposed link between corticosterone and energetics in two of the three watersnake species, but no support for the hypothesis that acute stressors are associated with reproductive suppression, at least as measured by steroid concentrations.
Collapse
Affiliation(s)
- K Louise McCallie
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA; Natural Resources Institute, Texas A&M University, College Station, TX 77843, USA
| | - Matthew Klukowski
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|
3
|
Zhang N, Sundquist J, Sundquist K, Ji J. Use of Melatonin Is Associated With Lower Risk of Colorectal Cancer in Older Adults. Clin Transl Gastroenterol 2021; 12:e00396. [PMID: 34342302 PMCID: PMC8337060 DOI: 10.14309/ctg.0000000000000396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Preclinical evidence suggests that melatonin may affect cellular pathways involved in colorectal cancer (CRC). We sought to test whether melatonin use was associated with decreased risk of CRC using population-based data. METHODS We performed a nationwide cohort study using a new-user study design. We identified a total of 58,657 incident melatonin users aged 50 years and older from the Prescribed Drug Register, and matched them with 175,971 comparisons who did not use melatonin, on the ratio of 1:3. The Cox regression model was used to calculate hazard ratios and 95% confidence intervals. RESULTS The incidence rate of CRC was 10.40 per 10,000 person-years for melatonin users, whereas the rate was 12.82 per 10,000 person-years in the nonusers. We found a significant negative association between melatonin use and risk of CRC (adjusted hazard ratio, 0.82; 95% confidence interval, 0.72-0.92). A test for trend showed a significant dose-response correlation (P < 0.001). The decrease of CRC risk was independent of tumor location and stage at diagnosis. When stratified by age groups, the inverse association was significant only among individuals aged 60 years and older. DISCUSSION This population-based cohort study suggests that the use of melatonin was associated with a reduced risk of CRC. Further studies are needed to confirm the observed association and to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Naiqi Zhang
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden;
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden;
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden;
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden;
| |
Collapse
|
4
|
Shneider A, Kudriavtsev A, Vakhrusheva A. Can melatonin reduce the severity of COVID-19 pandemic? Int Rev Immunol 2020; 39:153-162. [PMID: 32347747 DOI: 10.1080/08830185.2020.1756284] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current COVID-19 pandemic is one of the most devastating events in recent history. The virus causes relatively minor damage to young, healthy populations, imposing life-threatening danger to the elderly and people with diseases of chronic inflammation. Therefore, if we could reduce the risk for vulnerable populations, it would make the COVID-19 pandemic more similar to other typical outbreaks. Children don't suffer from COVID-19 as much as their grandparents and have a much higher melatonin level. Bats are nocturnal animals possessing high levels of melatonin, which may contribute to their high anti-viral resistance. Viruses induce an explosion of inflammatory cytokines and reactive oxygen species, and melatonin is the best natural antioxidant that is lost with age. The programmed cell death coronaviruses cause, which can result in significant lung damage, is also inhibited by melatonin. Coronavirus causes inflammation in the lungs which requires inflammasome activity. Melatonin blocks these inflammasomes. General immunity is impaired by anxiety and sleep deprivation. Melatonin improves sleep habits, reduces anxiety and stimulates immunity. Fibrosis may be the most dangerous complication after COVID-19. Melatonin is known to prevent fibrosis. Mechanical ventilation may be necessary but yet imposes risks due to oxidative stress, which can be reduced by melatonin. Thus, by using the safe over-the-counter drug melatonin, we may be immediately able to prevent the development of severe disease symptoms in coronavirus patients, reduce the severity of their symptoms, and/or reduce the immuno-pathology of coronavirus infection on patients' health after the active phase of the infection is over.
Collapse
Affiliation(s)
- Alex Shneider
- CureLab Oncology, Inc, Dedham, Massachusetts, USA.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Aleksandr Kudriavtsev
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Phisics, RAS, Moscow, Russia
| | - Anna Vakhrusheva
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Yang L, Wang J, Wang D, Hu G, Liu Z, Yan D, Serikuly N, Alpyshov ET, Demin KA, Strekalova T, de Abreu MS, Song C, Kalueff AV. Delayed behavioral and genomic responses to acute combined stress in zebrafish, potentially relevant to PTSD and other stress-related disorders: Focus on neuroglia, neuroinflammation, apoptosis and epigenetic modulation. Behav Brain Res 2020; 389:112644. [PMID: 32344037 DOI: 10.1016/j.bbr.2020.112644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/22/2020] [Accepted: 04/05/2020] [Indexed: 12/30/2022]
Abstract
Stress is a common trigger of stress-related illnesses, such as anxiety, phobias, depression and post-traumatic stress disorder (PTSD). Various animal models successfully reproduce core behaviors of these clinical conditions. Here, we develop a novel zebrafish model of stress (potentially relevant to human stress-related disorders), based on delayed persistent behavioral, endocrine and genomic responses to an acute severe 'combined' stressor. Specifically, one week after adult zebrafish were exposed to a complex combined 90-min stress, we assessed their behaviors in the novel tank and the light-dark box tests, as well as whole-body cortisol and brain gene expression, focusing on genomic biomarkers of microglia, astrocytes, neuroinflammation, apoptosis and epigenetic modulation. Overall, stressed fish displayed persistent anxiety-like behavior, elevated whole-body cortisol, as well as upregulated brain mRNA expression of genes encoding the glucocorticoid receptor, neurotrophin BDNF and its receptors (TrkB and P75), CD11b (a general microglial biomarker), COX-2 (an M1-microglial biomarker), CD206 (an M2-microglial biomarker), GFAP (a general astrocytal biomarker), C3 (an A1-astrocytal biomarker), S100α10 (an A2-astrocytal biomarker), as well as pro-inflammatory cytokines IL-6, IL-1β, IFN-γ and TNF-α. Stress exposure also persistently upregulated the brain expression of several key apoptotic (Bax, Caspase-3, Bcl-2) and epigenetic genes (DNMT3a, DNMT3b, HAT1, HDAC4) in these fish. Collectively, the present model not only successfully recapitulates lasting behavioral and endocrine symptoms of clinical stress-related disorders, but also implicates changes in neuroglia, neuroinflammation, apoptosis and epigenetic modulation in long-term effects of stress pathogenesis in vivo.
Collapse
Affiliation(s)
- LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik T Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China; Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministy of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
6
|
Grunst ML, Raap T, Grunst AS, Pinxten R, Parenteau C, Angelier F, Eens M. Early-life exposure to artificial light at night elevates physiological stress in free-living songbirds ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113895. [PMID: 31926393 DOI: 10.1016/j.envpol.2019.113895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Artificial light at night (ALAN) can disrupt adaptive patterns of physiology and behavior that promote high fitness, resulting in physiological stress and elevation of steroid glucocorticoids (corticosterone, CORT in birds). Elevated CORT may have particularly profound effects early in life, with the potential for enduring effects that persist into adulthood. Research on the consequences of early-life exposure to ALAN remains limited, especially outside of the laboratory, and whether light exposure affects CORT concentrations in wild nestling birds particularly remains to be elucidated. We used an experimental setup to test the hypothesis that ALAN elevates CORT concentrations in developing free-living birds, by exposing nestling great tits (Parus major) to ALAN inside nest boxes. We measured CORT in feathers grown over the timeframe of the experiment (7 nights), such that CORT concentrations represent an integrative metric of hormone release over the period of nocturnal light exposure, and of development. We also assessed the relationships between feather CORT concentrations, body condition, nestling size rank and fledging success. In addition, we evaluated the relationship between feather CORT concentrations and telomere length. Nestlings exposed to ALAN had higher feather CORT concentrations than control nestlings, and nestlings in poorer body condition and smaller brood members also had higher CORT. On the other hand, telomere length, fledging success, and recruitment rate were not significantly associated with light exposure or feather CORT concentrations. Results indicate that exposure to ALAN elevates CORT concentrations in nestlings, which may reflect physiological stress. In addition, the organizational effects of CORT are known to be substantial. Thus, despite the lack of an effect on telomere length and survivorship, elevated CORT concentrations in nestlings exposed to ALAN may have subsequent impacts on later-life fitness and stress sensitivity.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Didactica Research Group, University of Antwerp, 2000, Antwerp, Belgium
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
7
|
Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behav Brain Res 2019; 356:348-357. [DOI: 10.1016/j.bbr.2018.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/12/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
|
8
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|
9
|
Lapmanee S, Charoenphandhu J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats. PLoS One 2017; 12:e0187671. [PMID: 29099859 PMCID: PMC5669450 DOI: 10.1371/journal.pone.0187671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT), forced swimming test (FST), and Morris water maze (MWM). Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jantarima Charoenphandhu
- Physiology Division, Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- * E-mail:
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nateetip Krishnamra
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
10
|
Fontanetti PA, Nervegna MT, Vermouth NT, Mandalunis PM. Prenatal Exposure to Continuous Constant Light Alters Endochondral Ossification of the Tibiae of Rat Pups. Cells Tissues Organs 2015; 200:278-86. [DOI: 10.1159/000433520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 11/19/2022] Open
|
11
|
Ariza Traslaviña GA, de Oliveira FL, Franci CR. Early adolescent stress alters behavior and the HPA axis response in male and female adult rats: the relevance of the nature and duration of the stressor. Physiol Behav 2014; 133:178-89. [DOI: 10.1016/j.physbeh.2014.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/19/2014] [Accepted: 05/07/2014] [Indexed: 01/22/2023]
|
12
|
Bychowski ME, Mena JD, Auger CJ. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone-induced impairment in social recognition. Neuroscience 2013; 246:52-8. [PMID: 23639881 PMCID: PMC3691302 DOI: 10.1016/j.neuroscience.2013.04.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 11/21/2022]
Abstract
It is well established that social recognition memory is mediated, in part, by arginine vasopressin (AVP). AVP cells within the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) send AVP-ergic projections to the lateral septum (LS). We have demonstrated that progesterone treatment decreases AVP immunoreactivity within the BST, the MeA and the LS, and that progesterone treatment impairs social recognition. These data suggested that progesterone may impair social recognition memory by decreasing AVP. In the present experiment, we hypothesized that infusions of AVP into the LS would rescue the progesterone-induced impairment in social recognition within adult male rats. One week after adult male rats underwent cannula surgery, they were given systemic injections of either a physiological dose of progesterone or oil control for 3 days. Four hours after the last injection, we tested social recognition memory using the social discrimination paradigm, a two-trial test that is based on the natural propensity for rats to be highly motivated to investigate novel conspecifics. Immediately after the first exposure to a juvenile, each animal received bilateral infusions of either AVP or artificial cerebrospinal fluid into the LS. Our results show that, as expected, control animals exhibited normal social discrimination. In corroboration with our previous results, animals given progesterone have impaired social discrimination. Interestingly, animals treated with progesterone and AVP exhibited normal social discrimination, suggesting that AVP treatment rescued the impairment in social recognition caused by progesterone. These data also further support a role for progesterone in modulating vasopressin-dependent behavior within the male brain.
Collapse
Affiliation(s)
- M E Bychowski
- University of Wisconsin-Madison, Neuroscience Training Program, 7225 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706-1532, USA
| | | | | |
Collapse
|
13
|
Fonken LK, Haim A, Nelson RJ. Dim Light at Night Increases Immune Function in Nile Grass Rats, a Diurnal Rodent. Chronobiol Int 2012; 29:26-34. [DOI: 10.3109/07420528.2011.635831] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
The melatonin action on stromal stem cells within pericryptal area in colon cancer model under constant light. Biochem Biophys Res Commun 2011; 405:593-8. [DOI: 10.1016/j.bbrc.2011.01.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 11/20/2022]
|
15
|
Hernandez JWR, Reis ER, Nicola EMD, Nicola JH. Monitoring of native fluorescence induced by a glucose diet in Wistar rats. Photomed Laser Surg 2010; 29:255-60. [PMID: 21182454 DOI: 10.1089/pho.2009.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate red fluorescence found in the digestive tract of Wistar rats submitted to stress produced by a liquid diet of 5% glucose and maintenance in darkness. BACKGROUND DATA Protoporphyrin IX (PpIX) is produced by the Harderian gland, located in the inner corner of the eyes of rats. Under stressful conditions this gland increases the production of PpIX, which can be detected in different regions of the body, in a manner reminiscent of a porphyria. MATERIAL AND METHODS Sixty-five Wistar rats were used in this study. The fluorescence spectra were registered with optical resolution better than 1.7 nm. The rats were fed a 5% glucose diet, exclusively, up to 120 h. The animals were evaluated throughout the diet period, which included two sequential experiments: considering the red fluorescence of their intestinal tract and the fluorescence that appeared in some external parts of their bodies (paw, tail, nose, and scrotum). The normal diet was reintroduced and new spectra were obtained after 24 and 48 h. RESULTS Experiment I showed a marked, time-dependent increase in the intestinal content of porphyrin in rats fed the glucose diet. The fluorescence spectrum of the material identified it as PpIX. The spectra collected in Experiment II showed an increase in fluorescence in the four external areas associated with the duration of the diet. This fluorescence disappeared after reintroduction of the regular diet. CONCLUSION The feeding of a restricted diet (5% glucose) to Wistar rats resulted in reversible porphyria. Measurement of the fluorescence intensity may be a reliable method for monitoring the porphyrin content of tissues.
Collapse
Affiliation(s)
- João W R Hernandez
- Laser Laboratory, Center for Experimental Medicine and Surgery, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Hirotsu C, Tufik S, Bergamaschi CT, Tenorio NM, Araujo P, Andersen ML. Sleep pattern in an experimental model of chronic kidney disease. Am J Physiol Renal Physiol 2010; 299:F1379-88. [PMID: 20826571 DOI: 10.1152/ajprenal.00118.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prevalence of sleep disorders is significantly elevated in chronic kidney disease (CKD) patients. Numerous factors likely contribute to the high prevalence of sleep problems in uremic patients. The objective of this study was to evaluate the long-term sleep pattern changes in uremic rats during disease progression. Sleep recordings of the rats were monitored during light and dark periods that lasted 12 h each. These recordings were performed on days 7, 30, 60, and 90 after CKD induction. Cardiovascular, hormonal, and biochemical changes were evaluated at these same time points in control and uremic rats. CKD progression was reflected by the presence of hypertension and progressive increases in urea, creatinine, and cholesterol levels. We also observed hormonal fluctuations of corticosterone and ACTH, which indicated a potential alteration in the hypothalamic-pituitary-adrenal axis in diseased rats. In addition, rats with CKD demonstrated fragmented sleep with a greater number of arousals and decreased sleep efficiency in the light period during disease progression. In the dark period, there was an initial increase in sleep efficiency in CKD rats, but after 90 days of CKD, these animals slept less compared with the control group. Collectively, these metabolic and cardiovascular changes were associated with the persistent alterations in sleep architecture observed in CKD rats.
Collapse
Affiliation(s)
- Camila Hirotsu
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The magnitude and duration of the hormonal stress response change dramatically throughout an organism's lifespan. Although much is known about the factors that modulate stress reactivity during adulthood and how neonatal development and aging influence stress responsiveness, we know relatively little about how stress reactivity changes during the juvenile to adult transition. Recent studies in adolescent boys and girls have suggested that stress is an important factor contributing to an individual's vulnerability to various neuropsychological dysfunctions, including anxiety, depression, and drug abuse. Thus, understanding how exposure to stressors during this crucial period of development lead to negative consequences is of paramount importance. A growing body of literature indicates that pubertal organisms react differentially, both physiologically and behaviorally, to a stressor compared to adults. The purpose of this review, therefore, is to discuss the recent findings regarding the pubertal maturation of stress reactivity, while also highlighting future research directions that will aid in our understanding of stress and adolescent mental health and development.
Collapse
Affiliation(s)
- Russell D Romeo
- Department of Psychology, and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, USA.
| |
Collapse
|
18
|
Kasturi BS, Stein DG. Progesterone decreases cortical and sub-cortical edema in young and aged ovariectomized rats with brain injury. Restor Neurol Neurosci 2009; 27:265-75. [PMID: 19738320 DOI: 10.3233/rnn-2009-0475] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) -induced brain edema can be reduced by acute progesterone (PROG) treatment in young adult males and females, and in aged males. To extend these findings we tested these hypotheses: 1. Acute PROG treatment post-TBI will reduce cortical edema in aged females as much as in young adults. 2. TBI will induce edema in sub-cortical structures (SCS): the thalamus (TH), hypothalamus (HT), brain stem (BS) and anterior pituitary (AP). 3. Acute, systemic PROG treatment post-TBI will reduce edema in SCS. METHODS Young adult (n = 42) and aged (n = 40), bilaterally ovariectomized rats were given medial frontal cortical (MFC) contusion injury, treated with PROG (16 mg/kg body weight) or vehicle at 1, 6 and 24 hours post-injury and killed at 6, 24 and 48 hours post-injury. Their brains were removed and the target areas isolated and measured for water content. RESULTS TBI induced cortical and delayed sub-cortical edema. Acute PROG treatment decreased this edema. At 6 hours post-TBI serum PROG levels were substantially elevated in both young and aged, PROG-treated, groups, but were higher in the latter. CONCLUSION Acute PROG treatment post-TBI could prove an effective intervention to prevent or attenuate systemic, post-injury cortical and sub-cortical edema in young and aged females.
Collapse
Affiliation(s)
- Badrinarayanan S Kasturi
- Brain Research Laboratory, Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
19
|
Frye CA. Hormonal influences on seizures: basic neurobiology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 83:27-77. [PMID: 18929075 DOI: 10.1016/s0074-7742(08)00003-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There are sex differences and effects of steroid hormones, such as androgens, estrogens, and progestogens, that influence seizures. Androgens exert early organizational and later activational effects that can amplify sex/gender differences in the expression of some seizure disorders. Female-typical sex steroids, such as estrogen (E2) and progestins, can exert acute activational effects to reduce convulsive seizures and these effects are mediated in part by the actions of steroids in the hippocampus. Some of these anticonvulsive effects of sex steroids are related to their formation of ligands which have agonist-like actions at gamma-aminobutyric acid (GABAA) receptors or antagonist actions at glutamatergic receptors. Differences in stress, developmental phase, reproductive status, endocrine status, and treatments, such as anti-epileptic drugs (AEDs), may alter levels of these ligands and/or the function of target sites, which may mitigate differences in sensitivity to, and/or tolerance of, steroids among some individuals. The evidence implicating sex steroids in differences associated with hormonal, reproductive, developmental, stress, seizure type, and/or therapeutics are discussed.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-State University of New York, New York 12222, USA
| |
Collapse
|
20
|
Sato S, Yin C, Teramoto A, Sakuma Y, Kato M. Sexually dimorphic modulation of GABA(A) receptor currents by melatonin in rat gonadotropin-releasing hormone neurons. J Physiol Sci 2008; 58:317-22. [PMID: 18834560 DOI: 10.2170/physiolsci.rp006208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 07/31/2008] [Indexed: 11/05/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons represent the final output neurons in the central control of reproduction. gamma-Amino butyric acid (GABA), one of the major regulators of GnRH neurons, depolarizes GnRH neurons isolated from adult rats via GABA(A) receptors. The presence of GABA(A) receptors in GnRH neurons has also been demonstrated morphologically. Furthermore, the pineal hormone melatonin is involved in the regulation of reproductive function, including the timing of the luteinizing hormone surge. The suprachiasmatic nucleus and the GABAergic system in the medial preoptic area are considered as possible sites of the action of melatonin. Until now, however, a direct action of melatonin on GnRH neurons has not been reported. Therefore we examined the effect of melatonin on GABA(A) receptor currents in GnRH neurons isolated from GnRH-EGFP transgenic rats by means of perforated patch-clamp experiments. The GABA(A) receptor currents were modulated by melatonin in a sex-specific manner. In GnRH neurons from adult males, melatonin augmented these currents in 67% of the neurons examined, but attenuated the currents in only 19% of them. These modulations were blocked by the melatonin receptor antagonist luzindole, suggesting an involvement of melatonin receptors. The modulation by melatonin was not observed in GnRH neurons isolated from infantile rats. These findings indicate that GABA affects the excitability of GnRH neurons in adult rats through GABA(A) receptors, and that melatonin modifies this excitability via melatonin receptors in a sex-specific manner.
Collapse
Affiliation(s)
- Shun Sato
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | | | | | | | | |
Collapse
|
21
|
Weil ZM, Norman GJ, DeVries AC, Nelson RJ. The injured nervous system: a Darwinian perspective. Prog Neurobiol 2008; 86:48-59. [PMID: 18602443 DOI: 10.1016/j.pneurobio.2008.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 04/28/2008] [Accepted: 06/09/2008] [Indexed: 12/11/2022]
Abstract
Much of the permanent damage that occurs in response to nervous system damage (trauma, infection, ischemia, etc.) is mediated by endogenous secondary processes that can contribute to cell death and tissue damage (excitotoxicity, oxidative damage and inflammation). For humans to evolve mechanisms to minimize secondary pathophysiological events following CNS injuries, selection must occur for individuals who survive such insults. Two major factors limit the selection for beneficial responses to CNS insults: for many CNS disease states the principal risk factor is advanced, post-reproductive age and virtually all severe CNS traumas are fatal in the absence of modern medical intervention. An alternative hypothesis for the persistence of apparently maladaptive responses to CNS damage is that the secondary exacerbation of damage is the result of unavoidable evolutionary constraints. That is, the nervous system could not function under normal conditions if the mechanisms that caused secondary damage (e.g., excitotoxicity) in response to injury were decreased or eliminated. However, some vertebrate species normally inhabit environments (e.g., hypoxia in underground burrows) that could potentially damage their nervous systems. Yet, neuroprotective mechanisms have evolved in these animals indicating that natural selection can occur for traits that protect animals from nervous system damage. Many of the secondary processes and regeneration-inhibitory factors that exacerbate injuries likely persist because they have been adaptive over evolutionary time in the healthy nervous system. Therefore, it remains important that researchers consider the role of the processes in the healthy or developing nervous system to understand how they become dysregulated following injury.
Collapse
Affiliation(s)
- Zachary M Weil
- Departments of Psychology and Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
22
|
Romeo RD, Karatsoreos IN, McEwen BS. Pubertal maturation and time of day differentially affect behavioral and neuroendocrine responses following an acute stressor. Horm Behav 2006; 50:463-8. [PMID: 16836997 DOI: 10.1016/j.yhbeh.2006.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 05/31/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Puberty markedly influences stress responsiveness such that prepubertal animals show a more protracted corticosterone (CORT) and progesterone response following acute stress compared to adults. In both adult and juvenile rats, circadian time modulates adrenocortical steroids with basal CORT and progesterone levels rising prior to the onset of the dark phase of the light-dark cycle (i.e., active period). How time of day affects the pubertal difference in stress responsiveness and if the behaviors of prepubertal and adult animals are differentially affected by stress and time of testing remain unknown. Thus, we exposed group housed (3 per cage) prepubertal (28d) and adult (77d) male rats to 30 min of restraint in either the early portion of the behaviorally inactive, light (circadian nadir of CORT and progesterone) or behaviorally active, dark (circadian peak) phase of their light-dark cycle and measured ACTH, CORT, progesterone, and home cage behavior before and after the stressor. We found that the extended hormonal stress response demonstrated by prepubertal males occurred at both times of day. However, differences in post-stress behavior were dependent on time of testing. Specifically, although pre- and post-stress behaviors were similarly affected by the stressor in the light phase in prepubertal and adult males, during the dark phase, stress suppressed play behavior in the prepubertal males, and increased their time spent resting together (huddling), while these behaviors were unaffected by stress in the adults. These data indicate that pubertal development and time of day interact to modulate post-stress behavior and demonstrate a dissociation between post-stress hormonal and behavioral responses.
Collapse
Affiliation(s)
- Russell D Romeo
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
23
|
Dagnino-Subiabre A, Orellana JA, Carmona-Fontaine C, Montiel J, Díaz-Velíz G, Serón-Ferré M, Wyneken U, Concha ML, Aboitiz F. Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats. J Neurochem 2006; 97:1279-87. [PMID: 16539651 DOI: 10.1111/j.1471-4159.2006.03787.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic stress affects brain areas involved in learning and emotional responses. Although most studies have concentrated on the effect of stress on limbic-related brain structures, in this study we investigated whether chronic stress might induce impairments in diencephalic structures associated with limbic components of the stress response. Specifically, we analyzed the effect of chronic immobilization stress on the expression of sympathetic markers in the rat epithalamic pineal gland by immunohistochemistry and western blot, whereas the plasma melatonin concentration was determined by radioimmunoassay. We found that chronic stress decreased the expression of three sympathetic markers in the pineal gland, tyrosine hydroxylase, the p75 neurotrophin receptor and alpha-tubulin, while the same treatment did not affect the expression of the non-specific sympathetic markers Erk1 and Erk2, and glyceraldehyde-3-phosphate dehydrogenase. Furthermore, these results were correlated with a significant increase in plasma melatonin concentration in stressed rats when compared with control animals. Our findings indicate that stress may impair pineal sympathetic inputs, leading to an abnormal melatonin release that may contribute to environmental maladaptation. In addition, we propose that the pineal gland is a target of glucocorticoid damage during stress.
Collapse
Affiliation(s)
- Alexies Dagnino-Subiabre
- Department of Psychiatry and Center for Medical Research, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hipólide DC, Suchecki D, Pimentel de Carvalho Pinto A, Chiconelli Faria E, Tufik S, Luz J. Paradoxical sleep deprivation and sleep recovery: effects on the hypothalamic-pituitary-adrenal axis activity, energy balance and body composition of rats. J Neuroendocrinol 2006; 18:231-8. [PMID: 16503918 DOI: 10.1111/j.1365-2826.2006.01412.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous studies indicate that sleep deprivation alters energy expenditure. However, this conclusion is drawn from indirect measurements. In the present study, we investigated alterations of energy expenditure, body composition, blood glucose levels, plasma insulin, adrenocorticotropic hormone (ACTH) and corticosterone levels immediately after 4 days of sleep deprivation or after 4 days of sleep recovery. Rats were sleep deprived or maintained in a control environment (groups sleep-deprived/deprivation and control/deprivation). One half of these animals were sacrificed at the end of the deprivation period and the other half was transported to metabolic cages, where they were allowed to sleep freely (groups sleep-deprived/recovery and control/recovery). At the end of the sleep recovery period, these rats were sacrificed. After sleep deprivation, sleep-deprived rats exhibited loss of body weight, augmented energy expenditure and reduced metabolic efficiency compared to control rats. These alterations were normalised during the sleep recovery period. The body composition of sleep-deprived rats was altered insofar as there was a loss of fat content and gain of protein content in the carcass compared to control rats. However, these alterations were not reversed by sleep recovery. Finally, plasma levels of insulin were reduced during the sleep deprivation period in both control and sleep deprived groups compared to the recovery period. After the deprivation period, plasma ACTH and corticosterone levels were increased in sleep-deprived rats compared to control rats, and although ACTH levels were similar between the groups after the sleep recovery period, corticosterone levels remained elevated in sleep-deprived rats after this period. By means of direct measurements of metabolism, our results showed that sleep deprivation produces increased energy expenditure and loss of fat content. Most of the alterations were reversed by sleep recovery, except for corticosterone levels and body composition.
Collapse
Affiliation(s)
- D C Hipólide
- Department of Psychobiology, Universidade Federal de Sao Paulo, Escola Paulista de Medicina, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Romeo RD, Bellani R, McEwen BS. Stress-induced progesterone secretion and progesterone receptor immunoreactivity in the paraventricular nucleus are modulated by pubertal development in male rats. Stress 2005; 8:265-71. [PMID: 16423715 DOI: 10.1080/10253890500489320] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Male rats show a differential adrenocortical response to stress before and after pubertal development, such that prepubertal animals have a more prolonged stress-induced corticosterone response compared to adults. Whether pubertal maturation affects other adrenocortical responses to stress is currently unknown. To address this question, we assessed stress-induced progesterone secretion in both intact and gonadectomized prepubertal (28 days of age) and adult (77 days of age) male rats either before or after exposure to a 30 min session of restraint stress. We found that prepubertal males show a greater and more prolonged stress-induced progesterone response compared to adults. We also found a similar effect in castrated prepubertal and adult males, indicating the differential stress-induced progesterone response is not gonadal in origin. We also examined progesterone receptor (PR) levels by immunohistochemistry in the paraventricular nucleus (PVN) of the hypothalamus, a key regulatory nucleus of the hypothalamic-pituitary-adrenal (HPA) axis, and found lower PR protein expression in the PVN of prepubertal compared to adult males. These data indicate that in addition to corticosterone, stress-induced adrenocortical progesterone levels are differentially affected by pubertal maturation. Furthermore, these data raise the possibility of different progesterone sensitivity of the PVN before and after puberty. The significance of this differential response is presently unknown. However, given the pleiotropic effects of progesterone on male physiology and behaviour, it is likely that the disparate post-stress exposure to progesterone affects the prepubertal and adult male differently.
Collapse
Affiliation(s)
- Russell D Romeo
- The Rockefeller University, Laboratory of Neuroendocrinology, New York, NY 10021, USA.
| | | | | |
Collapse
|
26
|
Retana-Márquez S, Bonilla-Jaime H, Vázquez-Palacios G, Martínez-García R, Velázquez-Moctezuma J. Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats. Horm Behav 2003; 44:327-37. [PMID: 14613727 DOI: 10.1016/j.yhbeh.2003.04.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic exposure to stressors increases HPA axis activity and concomitantly reduces HPG axis activity. This antagonistic relationship between both these axes has been proposed to underlie the inhibition of reproductive function due to stress. Sexual behavior in males may be the most vulnerable aspect of male reproduction to acute and chronic stress and it has been suggested that alterations in sexual behavior during stress are due to the antagonistic relationship between testosterone and corticosteroids. However, only in a few studies has a correlation between the levels of testosterone and corticosterone, and sexual behavior been made. In this study, we evaluated the effects of different stressors, applied both acute and chronically, on masculine sexual behavior and whether or not these effects on sexual behavior are accompanied by changes in plasma levels of corticosterone and testosterone. Additionally, we evaluated the effect of testosterone treatment on the effects of stress on sexual behavior. Sexually experienced male rats were exposed to one of the following stressors: immobilization (IMB), electric foot shocks (EFS) or immersion in cold water (ICW). Sexual behavior and plasma levels of testosterone and corticosterone were assessed on days 1, 5, 10, 15, and 20 of stress. In a second experiment, males were castrated, treated with 3 different doses of testosterone propionate (TP) and exposed to ICW for 20 consecutive days. Sexual behavior was assessed on days 1, 5, 10, 15, and 20 and steroids were evaluated on day 20. Parameters of masculine sexual behavior were modified depending on the characteristics of each stressor. Mount, intromission and ejaculation latencies increased significantly, the number of mounts increased, and ejaculations decreased significantly in males exposed to EFS and to ICW but not in males exposed to IMB. Associated with these effects, testosterone decreased in the EFS and ICW groups on days 1, 15, and 20. However, corticosterone increased only in males exposed to ICW. In castrated males, TP treatment failed to block the effects of stress by ICW on sexual behavior and corticosterone. These results indicate that the effects of stress on sexual behavior depend on the characteristics of each stressor, and these effects, as well as the decrease in testosterone are not necessarily associated with the increase in corticosterone. The fact that testosterone treatment did not prevent the effects of stress on sexual behavior suggests that other mediators could be involved in the alterations of sexual behavior caused by stress.
Collapse
Affiliation(s)
- S Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Mexico City C.P. 09340, Mexico.
| | | | | | | | | |
Collapse
|
27
|
Retana-Márquez S, Bonilla-Jaime H, Vázquez-Palacios G, Domínguez-Salazar E, Martínez-García R, Velázquez-Moctezuma J. Body weight gain and diurnal differences of corticosterone changes in response to acute and chronic stress in rats. Psychoneuroendocrinology 2003; 28:207-27. [PMID: 12510013 DOI: 10.1016/s0306-4530(02)00017-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plasmatic levels of corticosterone display a circadian rhythm, with the higher values occurring during the dark phase in nocturnally feeding animals. Stressful situations induce a rise of corticosterone levels and this endocrine response to stress also presents circadian variations. The higher increase of corticosterone in response to stress occurs when the hormone is in its lower circadian level, and the minimum responses occurring at the peak. Since it has been shown that plasma hormones respond differently to different stressors, in the present study, we compared the acute and chronic effects of four different stressors: electric foot shocks (3 mA, 1/s, 5 min), immobilization during two hours or six hours, and immersion in cold water (15 degrees C) for 15 min. Stressors were applied, both acutely and chronically (during 4, 12 and 20 days) at the onset of the light phase as well as at the onset of the dark phase of the light/dark cycle. Body weight was assessed every day, and at the end of the manipulations plasmatic corticosterone levels were determined from the trunk blood. Adrenal and testicular weights were also assessed. Acute exposure to stressors increased plasmatic corticosterone levels significantly when the stressors were applied at the beginning of the light phase of the cycle. In the dark phase, only two hours of immobilization and immersion in cold water caused an increase in plasmatic corticosterone. With repeated exposure, electric foot shocks failed to induce significant changes in corticosterone levels in any phase of the light-dark cycle. Immobilization stress induced a significant rise in corticosterone levels only when the stressor was applied during the light phase. Immersion in cold water elicited a clear increase in plasmatic corticosterone levels in all the periods tested, regardless of the time of the cycle in which the stressor was applied. We did not observe a loss in body weight, but rather a smaller weight gain in stressed rats. Body weight gain was minimum in rats exposed to immersion and 6 hours of immobilization. Adrenal hypertrophy was observed in rats exposed to these same stressors. We conclude that: 1) the activation of the hypothalamus-pituitary-adrenal axis by stress depends mainly on the characteristics of the stressor; 2) the response of this axis to stress also depends on the time of day in which the stressor is applied.
Collapse
Affiliation(s)
- S Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico.
| | | | | | | | | | | |
Collapse
|
28
|
Barriga C, Marchena JM, Lea RW, Harvey S, Rodríguez AB. Effect of stress and dexamethasone treatment on circadian rhythms of melatonin and corticosterone in ring dove (Streptopelia risoria). Mol Cell Biochem 2002; 232:27-31. [PMID: 12030377 DOI: 10.1023/a:1014833030530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The possible relationship between the circadian rhythm of blood levels of melatonin and corticosterone in ring dove (Streptopelia risoria) subjected to both immobilization stress and immobilization stress plus dexamethasone treatment were studied. The results show changes in the circadian rhythm of melatonin, with increased daytime levels in situations of stress accompanied by increased corticosterone levels. The highest blood melatonin levels over the 24 h of the study were obtained when the animals were treated with dexamethasone and then subjected to stress. Given the antioxidant role of melatonin, our results support the idea ofmelatonin-corticosterone coupling with the possibility that melatonin released in situations of stress counteracts the adverse effects of glucocorticoids on the organism.
Collapse
Affiliation(s)
- Carmen Barriga
- Department of Physiology, University of Extremadura, Badajoz, Spain.
| | | | | | | | | |
Collapse
|
29
|
Lan CT, Hsu JC, Ling EA. Influence of sleep deprivation coupled with administration of melatonin on the ultrastructure of rat pineal gland. Brain Res 2001; 910:1-11. [PMID: 11489248 DOI: 10.1016/s0006-8993(01)02714-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of sleep deprivation with or without melatonin treatment on the pineal morphology in rats were studied. Five days after sleep deprivation and using electron microscopy, many of the pinealocytes exhibited structural alterations including dilation of the cisternae of the rough/smooth endoplasmic reticulum, Golgi saccules and mitochondria, and an increase in the numbers of lipid droplets, vacuoles and dense-core vesicles. These features were considered as morphological evidence of increased synthesis or secretion by the pineal gland. In addition, numerous membranous profiles, considered to be degraded cellular organelles, were observed in some pinealocytes and sympathetic nerve terminals. It is suggested that the occurrence of degenerating organelles had resulted from the deleterious effect of sleep deprivation. This may be attributed to an overload of secretory activity of the pineal gland during stress elicited by the long-term sleep deprivation, leading to functional exhaustion and irreversible damage of the oxidation-related organelles. In sleep-deprived rats receiving a single injection of melatonin (10 mg/kg) for 5 consecutive days, the above features indicative of pinealocytic activation were attenuated. In fact, all signs of degeneration of cellular organelles were rarely found. These results suggest that the pineal gland is itself a target for exogenously administered melatonin. Thus, melatonin when administered systemically may be used as a potential neuroprotective drug against neuronal damage induced by sleep deprivation.
Collapse
Affiliation(s)
- C T Lan
- Department of Anatomy, Chung-Shan Medical and Dental College, No. 110, Sec. 1, Chien Kuo North Road, Taichung, Taiwan.
| | | | | |
Collapse
|
30
|
Durant S, Christeff N, Coulaud J, Nunez EA, Dardenne M, Homo-Delarche F. Basal concentrations of various steroids in the nonobese diabetic (NOD) mouse and effect of immobilization stress. Autoimmunity 1999; 28:249-58. [PMID: 9892507 DOI: 10.3109/08916939808995373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The progression of type I diabetes in the NOD mouse is modulated by, among other things, stressful events and steroids. We measured in 2-month-old prediabetic NOD mice various circulating steroids (progesterone, corticosterone, dehydroepiandrosterone, delta4-androstenedione, testosterone, estrone and estradiol) under basal and stressful conditions (1.5h immobilization). Basal progesterone concentrations were low but measurable in randomized cycling NOD females and under the detection limit in NOD males. Immobilization increased progesterone concentrations in both sexes. Serum corticosterone concentrations also increased after immobilization but with the sexual dimorphism normally observed in rodents. Dehydroepiandrosterone concentrations were similar in both sexes and remained unaffected by stress. Testosterone and delta4-androstenedione were drastically reduced after immobilization in NOD males. Serum estrone and estradiol were not found to be statistically different in NOD females and males, but slightly higher to that described in the literature, and immobilization increased estrone concentrations in NOD males. In conclusion, while nonspecific to the NOD mouse, the modulation of circulating corticosteroids, estrogens and androgens induced by environmental factors may be part of the mechanism(s) by which these factors modulate the progression of type I diabetes. The hormonal changes may act in a complex manner at different levels: the immune system, the islet of Langerhans and the other structures involved in glucose homeostasis.
Collapse
Affiliation(s)
- S Durant
- CNRS URA 1461 and Université Paris V, Hôpital Necker, France
| | | | | | | | | | | |
Collapse
|
31
|
Katoh Y, Takeuchi Y, Yamazaki K, Takahashi K. Effect of maternal deprivation on N-acetyltransferase activity rhythm in blinded rat pups. Physiol Behav 1998; 63:529-35. [PMID: 9523895 DOI: 10.1016/s0031-9384(97)00479-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been reported that the rhythms of infant rats synchronize with the mother's rhythm until the light-dark cycle comes and has strong effects on their endogenous clocks. We found that periodic maternal deprivation (PMD) was able to cause a phase shift of serotonin N-acetyltransferase (NAT) in neonatal blinded rat pups. PMD in which contact with the mother was allowed for only 4 h caused a phase shift of NAT rhythm, irrespective of the timing of contact with the mother in a day. Acute single mother deprivation caused an excess of NAT activity for more hours than usual and contact with the mother prevented such an excessive response. Mother deprivation may act as a cold stress, since artificial warming of pups gave the same results as contact with the mother. When the pups were artificially warmed by a heater during a 1-week deprivation period, a flat 24-h pattern of NAT was observed. The mechanism causing a phase shift of NAT activity rhythm of rat pups may be complicated.
Collapse
Affiliation(s)
- Y Katoh
- Department of Psychiatry and Behavioral Science, School of Medicine, Tokai University, Kanagawa, Japan
| | | | | | | |
Collapse
|
32
|
|
33
|
DeVries AC, Gerber JM, Richardson HN, Moffatt CA, Demas GE, Taymans SE, Nelson RJ. Stress affects corticosteroid and immunoglobulin concentrations in male house mice (Mus musculus) and prairie voles (Microtus ochrogaster). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:655-63. [PMID: 9406441 DOI: 10.1016/s0300-9629(97)87355-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glucocorticoids, secreted in response to perceived stress, can suppress immunoglobulin (Ig) levels and compromise immune function in mice and rats. Prairie voles (Microtus ochrogaster) have been reported to exhibit basal corticosterone concentrations that would cause pathological changes in the immune function of most other rodents. The goals of the present study were to verify that serum corticosterone concentrations are high in prairie voles, as compared with house mice (Mus musculus), by measuring serum corticosterone with the same RIA; to examine the effects of mild stressors on corticosterone response in both species and to examine the effects of elevated corticosterone levels on IgM and IgG levels in prairie voles and house mice. After 2 weeks of randomly timed 15-min daily restraint or cold-water swim sessions, animals were injected with sheep red blood cells. The data confirmed that basal blood concentrations of corticosterone were higher in prairie voles than house mice, but these high levels doubled after the first swim session in prairie voles, indicating that the adrenals can respond to stressors by producing increased corticosterone. After stress, antibody production (both IgM and IgG) was reduced in house mice but not in prairie voles, despite higher blood concentrations of glucocorticoids in prairie voles. Although body mass was statistically equivalent between species, prairie voles and mice differed dramatically in adrenal and splenic masses. Average adrenal mass of prairie voles was approximately three times the average mass of these organs in house mice; in contrast, the average splenic mass of house mice was approximately three times that of prairie voles. These data may be relevant to seasonal changes in immune function and survival.
Collapse
Affiliation(s)
- A C DeVries
- Department of Psychology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Taymans SE, DeVries AC, DeVries MB, Nelson RJ, Friedman TC, Castro M, Detera-Wadleigh S, Carter CS, Chrousos GP. The hypothalamic-pituitary-adrenal axis of prairie voles (Microtus ochrogaster): evidence for target tissue glucocorticoid resistance. Gen Comp Endocrinol 1997; 106:48-61. [PMID: 9126465 DOI: 10.1006/gcen.1996.6849] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Basal plasma corticosterone levels in prairie voles (Microtus ochrogaster) are extremely high, in the absence of any apparent negative consequences of glucocorticoid excess. We tested the hypothesis that prairie voles are a novel rodent model of target tissue resistance to glucocorticoids. Prairie voles had a significantly higher adrenal-to-body weight ratio, 5- to 10-fold greater basal plasma corticosterone, and 2- to 3-fold greater basal plasma ACTH concentrations than montane voles (Microtus montanus) and rats. While plasma corticosterone binding globulin (CBG) was 2-fold higher in prairie voles than in rats, both estimated and directly measured plasma free corticosterone were significantly higher in prairie voles than in rats. Plasma corticosterone levels in prairie voles were responsive to both circadian cues and a stressor, but were resistant to suppression by the synthetic glucocorticoid, dexamethasone (DEX). Western blots of brain and liver protein extracts, using a glucocorticoid receptor (GR) antibody, revealed the presence of a approximately 97 kDa immunoreactive band, the expected size for GR. Binding assays revealed significantly lower DEX affinity of corticosteroid receptors (CR) in cytosol of prairie vole brain and liver than that in the same tissues in rats. We conclude that prairie voles are a novel rodent model of glucocorticoid resistance, and that decreased affinity of CR for ligand might be partially responsible for this phenomenon.
Collapse
Affiliation(s)
- S E Taymans
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nelson RJ, Asfaw B, DeVries AC, Demas GE. Reproductive response to photoperiod affects corticosterone and immunoglobulin G concentrations in prairie voles (Microtus ochrogaster). CAN J ZOOL 1996. [DOI: 10.1139/z96-064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nontropical rodent species display prominent breeding seasons mediated by photoperiod. Nonreproductive functions also exhibit seasonal changes; for example, fluctuations in adrenal activities may affect immune function and, ultimately, drive seasonal fluctuations in survival rates. The effects of photoperiod on adrenal and splenic masses and serum concentrations of corticosterone and immunoglobulin G (IgG) were evaluated in male prairie voles (Microtus ochrogaster). In one experiment, photoperiodic effects on adrenal and splenic masses and serum corticosterone and IgG levels were assessed in males that maintained "summer-like" reproductive systems after 8 weeks of short-day exposure. In a second experiment, the same parameters were examined in males in which testicular regression occurred after 8 weeks on short days. Voles that maintained reproductive organ size on short days failed to display other photoperiod-mediated differences in body, splenic, or adrenal masses or in serum corticosterone or IgG concentrations. In contrast, voles that underwent reproductive regression in response to short days decreased absolute adrenal mass and body mass compared with long-day animals, and also increased serum corticosterone concentrations and decreased IgG levels compared with their long-day counterparts. Taken together, these data indicate that reproductive responsiveness to day length may be linked to seasonal fluctuations in nonreproductive adaptations.
Collapse
|
36
|
Carter CS, DeVries AC, Taymans SE, Roberts RL, Williams JR, Chrousos GP. Adrenocorticoid hormones and the development and expression of mammalian monogamy. Ann N Y Acad Sci 1995; 771:82-91. [PMID: 8597447 DOI: 10.1111/j.1749-6632.1995.tb44672.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on research with prairie voles, we hypothesize that the unusual patterns of reproduction and social behavior associated with mammalian monogamy may arise as a consequence of normal developmental exposure to high levels of glucocorticoids and/or other hormones of the HPA axis. Increased HPA activity could functionally inhibit some of the masculinizing processes expected during the perinatal period. We hypothesize that the unique behavioral, physiological, and anatomical changes associated with monogamy may reflect the adaptive consequences of reduced exposure to the masculinizing actions of HPG hormones, such as testosterone. Reproductively naive, unpaired adult prairie voles also show unusual patterns of adrenal activity, including a marked decline in corticosterone levels within minutes following exposure to novel animals of the opposite sex. In females, this decline in corticosterone may contribute to pair bonding, since corticosterone injections inhibit, and adrenalectomy is associated with a facilitation of pair bond formation. In males, corticosterone injections facilitate pair bonding and adrenalectomy has the opposite effect. In animals from established social pairs corticosterone levels also fluctuate according to the social environment of the animal; the absence of a familiar partner is associated with increased corticosterone secretion, and in the presence of the familiar partner corticosterone levels tend to decline. Prairie voles may offer a valuable source of information regarding the behavioral, anatomical, and physiological consequences of long-term and short-term exposure to high levels of adrenal activity in the absence of pathology.
Collapse
Affiliation(s)
- C S Carter
- Department of Zoology, University of Maryland, College Park 20742, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kalsbeek A, Rikkers M, Vivien-Roels B, Pévet P. Vasopressin and vasoactive intestinal peptide infused in the paraventricular nucleus of the hypothalamus elevate plasma melatonin levels. J Pineal Res 1993; 15:46-52. [PMID: 8229645 DOI: 10.1111/j.1600-079x.1993.tb00509.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The connection between the suprachiasmatic nucleus (SCN) and the paraventricular nucleus of the hypothalamus (PVN) forms an important component of the melatonin rhythm-generating system. However, the chemical identity of this projection is not known. To test the possible implication of the SCN peptides vasopressin (VP) and vasoactive intestinal peptide (VIP) in this projection, we performed microinfusions in the PVN during the first half of the dark period and subsequently monitored resulting plasma melatonin levels. Infusions for 7 hr of either VP or VIP, but not oxytocin, caused increased plasma melatonin levels in the middle of the dark period. These observations confirm the role of the PVN in the melatonin rhythm-generating pathway and indicate that both VP and VIP released at the level of the PVN, and probably derived from the SCN, are able to influence peripheral plasma melatonin levels.
Collapse
Affiliation(s)
- A Kalsbeek
- URA-CNRS 1332, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
38
|
Abstract
Our objective was to suppress the daily surge of melatonin in serum of prepubertal dairy heifers by manipulating intensity of light (Experiment 1) and duration of exposure to light (Experiment 2). Heifers in Experiment 1 were exposed to either 12 hr of darkness (000 lux, control), or 400, 800, or 1,200 lux of light during the last 6 hr of their usual 12-hr nocturnal period. During this 6-hr exposure to various intensities of light, melatonin concentrations were similar to their respective daytime baseline values measured under 400 lux of light, but were 62% to 82% lower than melatonin concentrations during their nocturnal surge period. Suppression of melatonin concentrations was similar between 400 and 1,200 lux of light. In Experiment 2, heifers were exposed to LD 8:16, LD 16:8, LD 20:4, or LD 24:0 photoperiods (1,200 lux) for 4 months. Throughout treatment, concentrations and durations of the melatonin surge were suppressed in the LD 24:0 group and were greatest (during the nocturnal period) in the LD 8:16 group. Concentrations of prolactin in serum were elevated in animals under long days relative to LD 8:16 treatment and respective pretreatment periods. In conclusion, continuous light at an intensity of 1,200 lux suppressed the nocturnal surge of melatonin, but increased secretion of prolactin for at least 4 months in prepubertal heifers.
Collapse
Affiliation(s)
- B A Buchanan
- Department of Animal Science, Michigan State University, East Lansing 48824-1225
| | | | | |
Collapse
|
39
|
Persengiev SP. 2-(125I) iodomelatonin binding sites in rat adrenals: pharmacological characteristics and subcellular distribution. Life Sci 1992; 51:647-51. [PMID: 1323736 DOI: 10.1016/0024-3205(92)90237-j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific binding sites for 2-[125I] iodomelatonin, a selective radiolabeled melatonin receptor ligand, were detected and characterized in rat adrenal membranes. Saturation studies demonstrated that 2-[125I]iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 541 pM and a total binding capacity (Bmax) of 3.23 fmol/mg protein. Competition experiments revealed that the relative order of potency of compounds tested was as follows: 6-chloromelatonin greater than 2-iodomelatonin greater than melatonin greater than 5-methoxytryptamine greater than 5-methoxytryptophol. The highest density of binding sites was found in membranes from nuclear (0.76 fmol/mg protein) and mitochondrial (1.82 fmol/mg protein) subcellular fractions.
Collapse
Affiliation(s)
- S P Persengiev
- Department of Immunoneuroendocrinology, Bulgarian Academy of Sciences, Sofia
| |
Collapse
|