1
|
Diao X, Yao L, Duan T, Qin J, He L, Zhang W. Melatonin promotes the development of the secondary hair follicles by regulating circMPP5. J Anim Sci Biotechnol 2023; 14:51. [PMID: 37024982 PMCID: PMC10080870 DOI: 10.1186/s40104-023-00849-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/05/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The quality and yield of cashmere fibre are closely related to the differentiation and development of secondary hair follicles in the skin of cashmere goats. The higher the density of secondary hair follicles, the higher the quality and yield of cashmere from the fleece. Development of secondary hair follicles commences in the embryonic stage of life and is completed 6 months after birth. Preliminary experimental results from our laboratory showed that melatonin (MT) treatment of goat kids after their birth could increase the density of secondary hair follicles and, thus, improve the subsequent yield and quality of cashmere. These changes in the secondary hair follicles resulted from increases in levels of antioxidant and expression of anti-apoptotic protein, and from a reduction in apoptosis. The present study was conducted to explore the molecular mechanism of MT-induced secondary hair follicle differentiation and development by using whole-genome analysis. RESULTS MT had no adverse effect on the growth performance of cashmere kids but significantly improved the character of the secondary hair follicles and the quality of cashmere, and this dominant effect continued to the second year. Melatonin promotes the proliferation of secondary hair follicle cells at an early age. The formation of secondary hair follicles in the MT group was earlier than that in the control group in the second year. The genome-wide data results involved KEGG analysis of 1044 DEmRNAs, 91 DElncRNAs, 1054 DEcircRNAs, and 61 DEmiRNAs which revealed that the mitogen-activated protein kinase (MAPK) signaling pathway is involved in the development of secondary hair follicles, with key genes (FGF2, FGF21, FGFR3, MAPK3 (ERK1)) being up-regulated and expressed. We also found that the circMPP5 could sponged miR-211 and regulate the expression of MAPK3. CONCLUSIONS We conclude that MT achieves its effects by regulating the MAPK pathway through the circMPP5 sponged the miR-211, regulating the expression of MAPK3, to induce the differentiation and proliferation of secondary hair follicle cells. In addition there is up-regulation of expression of the anti-apoptotic protein causing reduced apoptosis of hair follicle cells. Collectively, these events increase the numbers of secondary hair follicles, thus improving the production of cashmere from these goats.
Collapse
Affiliation(s)
- Xiaogao Diao
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyun Yao
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Duan
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaxin Qin
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liwen He
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Zhang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Liu Z, Liu Z, Mu Q, Zhao M, Cai T, Xie Y, Zhao C, Qin Q, Zhang C, Xu X, Lan M, Zhang Y, Su R, Wang Z, Wang R, Wang Z, Li J, Zhao Y. Identification of key pathways and genes that regulate cashmere development in cashmere goats mediated by exogenous melatonin. Front Vet Sci 2022; 9:993773. [PMID: 36246326 PMCID: PMC9558121 DOI: 10.3389/fvets.2022.993773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of secondary hair follicles in cashmere goats follows a seasonal cycle. Melatonin can regulate the cycle of cashmere growth. In this study, melatonin was implanted into live cashmere goats. After skin samples were collected, transcriptome sequencing and histological section observation were performed, and weighted gene co-expression network analysis (WGCNA) was used to identify key genes and establish an interaction network. A total of 14 co-expression modules were defined by WGCNA, and combined with previous analysis results, it was found that the blue module was related to the cycle of cashmere growth after melatonin implantation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the first initiation of exogenous melatonin-mediated cashmere development was related mainly to the signaling pathway regulating stem cell pluripotency and to the Hippo, TGF-beta and MAPK signaling pathways. Via combined differential gene expression analyses, 6 hub genes were identified: PDGFRA, WNT5A, PPP2R1A, BMPR2, BMPR1A, and SMAD1. This study provides a foundation for further research on the mechanism by which melatonin regulates cashmere growth.
Collapse
Affiliation(s)
- Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhichen Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Meng Zhao
- Inner Mongolia Autonomous Region Agriculture and Animal Husbandry Technology Extension Center, Hohhot, China
| | - Ting Cai
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yuchun Xie
- Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Cun Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chongyan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingxi Lan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Yanhong Zhao
| |
Collapse
|
3
|
Zhang W, Wang N, Zhang T, Wang M, Ge W, Wang X. Roles of Melatonin in Goat Hair Follicle Stem Cell Proliferation and Pluripotency Through Regulating the Wnt Signaling Pathway. Front Cell Dev Biol 2021; 9:686805. [PMID: 34150780 PMCID: PMC8212062 DOI: 10.3389/fcell.2021.686805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/03/2021] [Indexed: 01/20/2023] Open
Abstract
Emerging studies show that melatonin promotes cashmere development through hypodermic implantation. However, the impact and underlying mechanisms are currently unknown. In vitro study has previously demonstrated that melatonin induces cashmere growth by regulating the proliferation of goat secondary hair follicle stem cells (gsHFSCs), but there is limited information concerning the effects of melatonin on cell pluripotency. It is also known that Wnt signaling may actively participate in regulating cell proliferation and stem cell pluripotency. Therefore, in the current investigation, goat hair follicle stem cells were exposed to multiple concentrations of melatonin and different culture times to reveal the relationship between melatonin and the activation of Wnt signaling. A proportionally high Catenin beta-1 (CTNNB1) response was induced by 500 ng/L of melatonin, but it was then suppressed with the dosages over 1,000 ng/L. Greater amounts of CTNNB1 entered the cell nuclei by extending the exposure time to 72 h, which activated transcription factor 4/lymphoid enhancer-binding factor 1 and promoted the expression of the proliferation-related genes C-MYC, C-JUN, and CYCLIND1. Moreover, nuclear receptor ROR-alpha (RORα) and bone morphogenetic protein 4 (BMP4) were employed to analyze the underlying mechanism. RORα presented a sluggish concentration/time-dependent rise, but BMP4 was increased dramatically by melatonin exposure, which revealed that melatonin might participate in regulating the pluripotency of hair follicle stem cells. Interestingly, NOGGIN, which is a BMP antagonist and highly relevant to cell stemness, was also stimulated by melatonin. These findings demonstrated that melatonin exposure and/or NOGGIN overexpression in hair follicle stem cells might promote the expression of pluripotency markers Homeobox protein NANOG, Organic cation/carnitine transporter 4, and Hematopoietic progenitor cell antigen CD34. Our findings here provided a comprehensive view of Wnt signaling in melatonin stimulated cells and melatonin mediated stemness of gsHFSCs by regulating NOGGIN, which demonstrates a regulatory mechanism of melatonin enhancement on the growth of cashmere.
Collapse
Affiliation(s)
- Weidong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Niu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tongtong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Meng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Jin M, Qiu X, Piao J, Zhang L, Piao J, Zhao F. Study on the roles of melatonin in regulating dermal fibroblast growth in Liaoning cashmere goats by transcriptome sequencing. Anim Biotechnol 2021; 33:1255-1267. [PMID: 33775202 DOI: 10.1080/10495398.2021.1886940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this study, the genes related to the Downy growth of Liaoning cashmere goats were screened for their expression with simultaneous melatonin administration, so as to investigate the effects of target genes on the proliferation of skin fibroblasts in this animal species. Genes related to the villus growth of skin fibroblasts were screened by in vitro transcriptome sequencing and verified by qPCR. In addition, gene overexpression and interference were used to study the effects of target genes on the proliferation of skin fibroblasts. Groups treated with M1_24H, M2_24H and M2_72H exhibited significant differences compared with the control group. Among them, the differentially expressed transcripts in the M2_72H group were significantly enriched in the TNF and NOD-like receptor signaling pathways, which are associated with the villus. In addition, eight differentially expressed genes were screened from the TNF and the NOD-like receptor signaling pathways. Verification by qPCR showed that the expression of TNF-α, IL-6, TNFAIP3, PYCARD and NFKBIA genes were significantly upregulated, which was consistent with the sequencing results. Melatonin treatments can significantly lead to an increase in the expression of IL-6 and TNF-α genes. Besides, melatonin treatments can affect cashmere growth in Liaoning cashmere goats by regulating several signaling pathways, including TNF, NOD-like receptor and NF-κB.
Collapse
Affiliation(s)
- Mei Jin
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Department of Life Sciences, Liaoning Normal University, Dalian, China
| | - Xinyue Qiu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Department of Life Sciences, Liaoning Normal University, Dalian, China
| | - Jing'ai Piao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Department of Life Sciences, Liaoning Normal University, Dalian, China
| | - Lijuan Zhang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Department of Life Sciences, Liaoning Normal University, Dalian, China
| | - Jun Piao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Department of Life Sciences, Liaoning Normal University, Dalian, China
| | - Fengqin Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Department of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
5
|
Genetic Signatures of Selection for Cashmere Traits in Chinese Goats. Animals (Basel) 2020; 10:ani10101905. [PMID: 33080940 PMCID: PMC7603090 DOI: 10.3390/ani10101905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cashmere goats are a unique husbandry resource in China. These goats are well known for producing the highest cashmere yield and best fiber quality in the world. Although cashmere is highly valued and also known as “fiber gem” and “soft gold”, few studies have examined the genetic basis of cashmere traits in cashmere goats. Here, we identified selection signals by comparing Fst and XP-EHH (the cross population extend haplotype homozygosity test) of a non-cashmere breed (Huanghuai goat) with those of two cashmere breeds (Inner Mongolia and Liaoning cashmere goats). Two genes (WNT10A and CSN3) were potentially associated with cashmere traits. This information may be valuable for studying the genetic uniqueness of cashmere goats and elucidating the mechanisms underlying cashmere traits in cashmere goats. Abstract Inner Mongolia and Liaoning cashmere goats in China are well-known for their cashmere quality and yield. Thus, they are great models for identifying genomic regions associated with cashmere traits. Herein, 53 Inner Mongolia cashmere goats, Liaoning cashmere goats and Huanghuai goats were genotyped, and 53,347 single-nucleotide polymorphisms (SNPs) were produced using the Illumina Caprine 50K SNP chip. Additionally, we identified some positively selected SNPs by analyzing Fst and XP-EHH. The top 5% of SNPs had selection signatures. After gene annotation, 222 and 173 candidate genes were identified in Inner Mongolia and Liaoning cashmere goats, respectively. Several genes were related to hair follicle development, such as TRPS1, WDR74, LRRC14, SPTLC3, IGF1R, PADI2, FOXP1, WNT10A and CSN3. Gene enrichment analysis of these cashmere trait-associated genes related 67 enriched signaling pathways that mainly participate in hair follicle development and stem cell pluripotency regulation. Furthermore, we identified 20 overlapping genes that were selected in both cashmere goat breeds. Among these overlapping genes, WNT10A and CSN3, which are associated with hair follicle development, are potentially involved in cashmere production. These findings may improve molecular breeding of cashmere goats in the future.
Collapse
|
6
|
Abstract
Sheep in temperate latitudes are seasonal breeders. Of the different seasonal cues, photoperiod is the most reliable parameter and is used by animals as an indication of the time of the year to synchronize endogenous annual rhythms of reproduction and physiology. The photoperiodic information is transduced into neuroendocrine changes through variations in melatonin secretion from the pineal gland. Melatonin triggers variations in the secretion of luteinizing hormone-releasing hormone, luteinizing hormone and follicle stimulating hormone (LHRH/LH/FSH) responsible for seasonal changes in reproductive activity. In female sheep, the seasonal changes in the hormonal LH pattern mainly reflect an increase in the negative feedback exerted by estradiol under long days on the frequency of pulsatile LH secretion. The resulting seasonal inhibition of LH secretion involves the activation of monoaminergic and especially dopaminergic systems by estradiol. Other types of physiological regulation subject to seasonal changes such as voluntary food intake (VFI), fat metabolism, body mass and pelage growth also occur in sheep, goats or related wild species. Several neuroendocrine intermediates seem to be shared by these different systems and may participate in their synchronization, providing the advantage that this helps mammalian species to adapt to their environment.
Collapse
Affiliation(s)
- J C Thiéry
- UMR 6073 INRA/CNRS, Université de Tours, 37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
7
|
O'Callaghan D, Sweeney T, Taylor L, Roblot G, Wylde R. Effect of immunization against melatonin on prolactin concentrations and the timing of reproductive transitions in ewes. Domest Anim Endocrinol 1999; 16:207-17. [PMID: 10370860 DOI: 10.1016/s0739-7240(99)00017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this experiment was to develop a procedure for immunizing ewes against melatonin that would alter the effects of changing photoperiod on seasonal reproduction and prolactin secretion. Ewes were immunized against human serum albumin (HSA) as controls (n = 9) or a melatonin-human serum albumin conjugate (0.25 mg; n = 10) on December 14th (Day 0) and boosted 9 times. They were maintained on natural photoperiod and then transferred indoors and exposed to long days for 35 d, followed by short days for 146 d, long days for 93 d, and short days for a further 123 d. Antibody titers to melatonin (at a serum dilution of 1:1,250) were significantly higher in immunized ewes (27.3 +/- 6.6%) than controls (0.7 +/- 0.1%; P < 0.001). At the end of the experiment, antibody titers in immunized ewes (at dilution of 1:50) were higher in blood (43.7 +/- 8.2%) than in cerebrospinal fluid (10.8 +/- 3.9%; P < 0.05), and highly correlated (r2 = 0.746). Onset of the breeding season was advanced slightly after the second transfer from long to short days in immunized ewes (April 12 +/- 3 d) compared with controls (April 25 +/- 3 d; P < 0.05). Mean serum prolactin concentrations were lower (P < 0.05) in melatonin-immunized ewes compared with controls on natural photoperiod, after transfer from long to short days, during long days, and after the second transfer from long to short days. In conclusion, despite melatonin-immunization increasing antibody titers in blood and cerebrospinal fluid, and decreasing prolactin concentrations over much of the experiment, minimal effects on the timing of reproductive transitions in the ewes were evident. This discrepancy between the response of the prolactin and reproductive axes to melatonin immunization supports the hypothesis of a dual site of action of melatonin, with melatonin acting in the pituitary gland to mediate the effects of photoperiod on prolactin secretion and in the mediobasal hypothalamus to affect reproductive responses.
Collapse
Affiliation(s)
- D O'Callaghan
- Faculty of Veterinary Medicine, University College, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
8
|
Xiao Y, Forsberg M, Laitinen JT, Valtonen M. Effects of melatonin implants on winter fur growth and testicular recrudescence in adult male raccoon dogs (Nyctereutes procyonoides). J Pineal Res 1996; 20:148-56. [PMID: 8797182 DOI: 10.1111/j.1600-079x.1996.tb00251.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of melatonin implants were investigated on winter fur growth, monitored by counting growing and mature hairs per bundle and testicular recrudescence, judged by testis width, score count of spermatogenesis, and serum testosterone in the adult male raccoon dogs. Melatonin administration in July highly elevated melatonin concentrations in serum and urine and induced an earlier decrease in prolactin secretion (August in the treated group vs September in the control group), winter fur growth (July-beginning of November in the treated group vs. August-end of November in the control group) and testicular recrudescence (October in the treated group vs. November in the control group). In the control animals, urinary excretion of melatonin between 1500-0900 hr increased during autumn followed by a rapid fall in winter. The increase from July (1.8 +/- 0.4 ng) to August (3.9 +/- 0.5 ng) and the subsequent unchanged levels until October coincided with the period of winter fur growth. The further increase in November (6.5 +/- 1.2 ng) coincided with the significant elevation in both testis width and score count of spermatogenesis. These results suggest a role of the increase in endogenous melatonin secretion during autumn in the growth of winter fur and testicular recrudescence in this species under natural conditions. Relatively high serum concentrations of prolactin were shown in two animals, one in the control group and another in the treated group. However, the parameters for testis and winter fur growth in the two cases were similar to those in the remainder of the animals. Thereby, the role of prolactin in the winter fur growth and the initiation of testicular recrudescence, if it is truly involved, is manifested through its decreasing secretion rather than the actual blood concentrations.
Collapse
Affiliation(s)
- Y Xiao
- Department of Applied Zoology and Veterinary Medicine, University of Kuopio, Finland
| | | | | | | |
Collapse
|
9
|
Abstract
Studies on farm animals have contributed significantly to our increased understanding of basic melatonin-related physiological mechanisms, as well as to the regulation of reproduction and pelage in individual domestic species. This review concentrates on recent work on the role of melatonin in the regulation of porcine reproduction, cervine endocrine, and behavioral cycles and wool and cashmere production which has added to this knowledge base. Early studies of the domestic pig indicated that melatonin secretion in this species differed markedly from that in other domestic and laboratory animals. There is now clear evidence that this is not the case and that the domestic pig uses a circadian rhythm of melatonin release for the transduction of photoperiodic information. Apparent inconsistencies among reports may be due, in part, to differences in the conditions under which the experiments were performed and to the assay systems employed to measure circulating melatonin, the concentrations of which are much lower than in other domestic species. Appropriately administered exogenous melatonin advances the onset of puberty in gilts, and may prove to be effective in overcoming seasonal infertility in female pigs. Appropriately timed melatonin and/or photoperiod treatments, administered to ruminants in utero, influence the reproductive physiology of the offspring, indicating that even in species which don't develop an endogenous melatonin rhythm till some weeks postnatally, awareness of photoenvironment, presumably via maternal melatonin, predates birth. Pre- or early postnatal melatonin-related treatments also influence the development/cycle frequency of pelage. Areas requiring further investigation include the hormonal/growth factors involved, reasons for the transient nature of the effects in sheep and goats, and the reason for similar effects on pelage of augmenting or inactivating melatonin. Aspects of endogenous melatonin rhythms in farm species which require further study include: the significance of the abolition of the nocturnal melatonin peak in the sheep by prolonged short day exposure; the increased pineal bloodflow in sheep bred to produce high wool yields; the presence of high daytime melatonin levels immediately prior to the rut in the fallow buck; and the low amplitude of the rhythm in the domestic pig.
Collapse
Affiliation(s)
- A M Paterson
- Animal Industries Division, Department of Agriculture Western Australia, South Perth
| | | |
Collapse
|
10
|
Abstract
The effects of surgical pinealectomy and plane of nutrition on wool growth and plasma prolactin concentrations in young Merino wethers were investigated. In young pinealectomized wethers maintained at a low live weight under conditions of minimal stress, the decline of conditioned clean wool production on midside patches was slowed when compared to pineal-intact controls. This difference appeared to be due in part to the observed greater secondary wool follicle density in the pinealectomized wethers; mean fiber diameter was affected to a smaller extent, while staple length growth rate was not significantly altered. Circulating prolactin profiles showed a seasonal variation (high in summer, low in winter) in both pinealectomized and control wethers. There was no difference in wool production between pinealectomized and control wethers when the diet of the same wethers was subsequently supplemented with formaldehyde-treated cottonseed meal. While the role of melatonin in the regulation of wool growth remains to be determined, it is suggested that the hormone may have a transient effect on wool production in young wethers under conditions of limited nutrition, but not at higher nutritional levels, and that melatonin may be involved in partitioning of nutrients to the wool follicle.
Collapse
Affiliation(s)
- A Foldes
- CSIRO Division of Animal Production, Blacktown, Australia
| | | |
Collapse
|