1
|
Sanna D, Rocchitta G, Serra M, Abbondio M, Serra PA, Migheli R, De Luca L, Garribba E, Porcheddu A. Synthesis of Nitric Oxide Donors Derived from Piloty's Acid and Study of Their Effects on Dopamine Secretion from PC12 Cells. Pharmaceuticals (Basel) 2017; 10:E74. [PMID: 28872590 PMCID: PMC5620618 DOI: 10.3390/ph10030074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023] Open
Abstract
This study investigated the mechanisms and kinetics of nitric oxide (NO) generation by derivatives of Piloty's acid (NO-donors) under physiological conditions. In order to qualitatively and quantitatively measure NO release, electron paramagnetic resonance (EPR) was carried out with NO spin trapping. In addition, voltammetric techniques, including cyclic voltammetry and constant potential amperometry, were used to confirm NO release from Piloty's acid and its derivatives. The resulting data showed that Piloty's acid derivatives are able to release NO under physiological conditions. In particular, electron-withdrawing substituents favoured NO generation, while electron-donor groups reduced NO generation. In vitro microdialysis, performed on PC12 cell cultures, was used to evaluate the dynamical secretion of dopamine induced by the Piloty's acid derivatives. Although all the studied molecules were able to induce DA secretion from PC12, only those with a slow release of NO have not determined an autoxidation of DA itself. These results confirm that the time-course of NO-donors decomposition and the amount of NO released play a key role in dopamine secretion and auto-oxidation. This information could drive the synthesis or the selection of compounds to use as potential drugs for the therapy of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, 07040 Sassari, Italy.
| | - Gaia Rocchitta
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, 07040 Sassari, Italy.
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Rossana Migheli
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, viale San Pietro 43/b, 07100 Sassari, Italy.
| | - Lidia De Luca
- Department of Chemistry and Pharmacy, University of Sassari, via Vienna 2, 07100 Sassari, Italy.
| | - Eugenio Garribba
- Department of Chemistry and Pharmacy, University of Sassari, via Vienna 2, 07100 Sassari, Italy.
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato, Italy.
| |
Collapse
|
2
|
Perinatal manganese exposure and hydroxyl radical formation in rat brain. Neurotox Res 2014; 27:1-14. [PMID: 25323423 PMCID: PMC4286139 DOI: 10.1007/s12640-014-9474-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 11/13/2022]
Abstract
The present study was designed to investigate the role of pre- and postnatal manganese (Mn) exposure on hydroxyl radical (HO•) formation in the brains of dopamine (DA) partially denervated rats (Parkinsonian rats). Wistar rats were given tap water containing 10,000 ppm manganese chloride during the duration of pregnancy and until the time of weaning. Control rat dams consumed tap water without added Mn. Three days after birth, rats of both groups were treated with 6-hydroxydopamine at one of three doses (15, 30, or 67 µg, intraventricular on each side), or saline vehicle. We found that Mn content in the brain, kidney, liver, and bone was significantly elevated in dams exposed to Mn during pregnancy. In neonates, the major organs that accumulated Mn were the femoral bone and liver. However, Mn was not elevated in tissues in adulthood. To determine the possible effect on generation of the reactive species, HO• in Mn-induced neurotoxicity, we analyzed the contents of 2.3- and 2.5-dihydroxybenzoic acid (spin trap products of salicylate; HO• being an index of in vivo HO• generation), as well as antioxidant enzyme activities of superoxide dismutase (SOD) isoenzymes and glutathione S-transferase (GST). 6-OHDA-depletion of DA produced enhanced HO• formation in the brain tissue of newborn and adulthood rats that had been exposed to Mn, and the latter effect did not depend on the extent of DA denervation. Additionally, the extraneuronal, microdialysate, content of HO• in neostriatum was likewise elevated in 6-OHDA-lesioned rats. Interestingly, there was no difference in extraneuronal HO• formation in the neostriatum of Mn-exposed versus control rats. In summary, findings in this study indicate that Mn crosses the placenta but in contrast to other heavy metals, Mn is not deposited long term in tissues. Also, damage to the dopaminergic system acts as a “trigger mechanism,” initiating a cascade of adverse events leading to a protracted increase in HO• generation, and the effects of Mn and 6-OHDA are compounded. Moreover, HO• generation parallels the suppression of SOD isoenzymes and GST in the brains of rats lesioned with 6-OHDA and/or intoxicated with Mn—the most prominent impairments being in frontal cortex, striatum, and brain stem. In conclusion, ontogenetic Mn exposure, resulting in reactive oxygen species, HO• formation, represents a risk factor for dopaminergic neurotoxicity and development of neurodegenerative disorders.
Collapse
|
3
|
Effects of the neurotoxin MPTP and pargyline protection on extracellular energy metabolites and dopamine levels in the striatum of freely moving rats. Brain Res 2013; 1538:159-71. [PMID: 24080403 DOI: 10.1016/j.brainres.2013.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/27/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
Abstract
The neurotoxin MPTP is known to induce dopamine release and depletion of ATP in the striatum of rats. Therefore, we studied the changes induced by MPTP and pargyline protection both on striatal dopamine release and on extracellular energy metabolites in freely moving rats, using dual asymmetric-flow microdialysis. A dual microdialysis probe was inserted in the right striatum of rats. MPTP (25mg/kg, 15mg/kg, 10mg/kg) was intraperitoneally administered for three consecutive days. MAO-B inhibitor pargyline (15mg/kg) was systemically administered before neurotoxin administration. The first MPTP dose induced an increase in dialysate dopamine and a decrease of DOPAC levels in striatal dialysate. After the first neurotoxin administration, increases in striatal glucose, lactate, pyruvate, lactate/pyruvate (L/P) and lactate/glucose (L/G) ratios were observed. Subsequent MPTP administrations showed a progressive reduction of dopamine, glucose and pyruvate levels with a concomitant further increase in lactate levels and L/P and L/G ratios. At day 1, pargyline pre-treatment attenuated the MPTP-induced changes in all studied analytes. Starting from day 2, pargyline prevented the depletion of dopamine, glucose and pyruvate while reduced the increase of lactate, L/P ratio and L/G ratio. These in vivo results suggest a pargyline neuroprotection role against the MPTP-induced energetic impairment consequent to mitochondrial damage. This neuroprotective effect was confirmed by TH immunostaining of the substantia nigra.
Collapse
|
4
|
Bazzu G, Biosa A, Farina D, Spissu Y, Dedola S, Calia G, Puggioni G, Rocchitta G, Migheli R, Desole MS, Serra PA. Dual asymmetric-flow microdialysis for in vivo monitoring of brain neurochemicals. Talanta 2011; 85:1933-40. [PMID: 21872041 DOI: 10.1016/j.talanta.2011.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 01/25/2023]
Abstract
Microdialysis is an extensively used technique for both in vivo and in vitro experiments, applicable to animal and human studies. In neurosciences, the in vivo microdialysis is usually performed to follow changes in the extracellular levels of substances and to monitor neurotransmitters release in the brain of freely moving animals. Catecholamines, such as dopamine and their related compounds, are involved in the neurochemistry and in the physiology of mental diseases and neurological disorders. It is generally supposed that the brain's energy requirement is supplied by glucose oxidation. More recently, lactate was proposed to be the metabolic substrate used by neurons during synaptic activity. In our study, an innovative microdialysis approach for simultaneous monitoring of catecholamines, indolamines, glutamate and energy substrates in the striatum of freely moving rats, using an asymmetric perfusion flow rate on microdialysis probe, is described. As a result of this asymmetric perfusion, two samples are available from the same brain region, having the same analytes composition but different concentrations. The asymmetric flow perfusion could be a useful tool in neurosciences studies related to brain's energy requirement, such as toxin-induced models of Parkinson's disease.
Collapse
Affiliation(s)
- Gianfranco Bazzu
- Department of Neuroscience, Medical School, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Di Giovanni G, Esposito E, Di Matteo V. In vivo microdialysis in Parkinson's research. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:223-43. [PMID: 20411781 DOI: 10.1007/978-3-211-92660-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for parkinsonian motor symptoms. The pathogenesis of the disease is still not completely understood, but environmental and genetic factors are thought to play important roles. Research into the pathogenesis and the development of new therapeutic intervention strategies that will slow or stop the progression of the disease in human has rapidly advanced by the use of neurotoxins that specifically target DA neurons. Over the years, a broad variety of experimental models of the disease has been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecolaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we review the most prominent animal and human data obtained by the use of this technique in PD research.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, G. Pagano, Universitá degli Studi di Palermo, 90134, Palermo, Italy
| | | | | |
Collapse
|
6
|
Migheli R, Puggioni G, Dedola S, Rocchitta G, Calia G, Bazzu G, Esposito G, Lowry JP, O'Neill RD, Desole MS, Miele E, Serra PA. Novel integrated microdialysis-amperometric system for in vitro detection of dopamine secreted from PC12 cells: design, construction, and validation. Anal Biochem 2008; 380:323-30. [PMID: 18577368 DOI: 10.1016/j.ab.2008.05.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.
Collapse
Affiliation(s)
- Rossana Migheli
- Department of Neuroscience, Medical School, University of Sassari, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rocchitta G, Migheli R, Esposito G, Marchetti B, Desole MS, Miele E, Serra PA. Endogenous melatonin protects L-DOPA from autoxidation in the striatal extracellular compartment of the freely moving rat: potential implication for long-term L-DOPA therapy in Parkinson's disease. J Pineal Res 2006; 40:204-13. [PMID: 16499555 DOI: 10.1111/j.1600-079x.2005.00299.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We previously showed, using microdialysis, that autoxidation of exogenous L-dihydroxyphenylalanine (L-DOPA) occurs in vivo in the extracellular compartment of the freely moving rat, with a consequent formation of L-DOPA semiquinone (L-DOPA-SQ). In the present study, intrastriatal infusion of L-DOPA (1.0 microm for 200 min) increased dialysate L-DOPA concentrations (maximum increases up to 116-fold baseline values); moreover, L-DOPA-SQ was detected in dialysates. Individual dialysate concentrations of L-DOPA were negatively correlated with those of L-DOPA-SQ. Co-infusion of N-acetylcysteine (100 microm) or melatonin (50 microm) increased L-DOPA (up to 151- and 246-fold, respectively) and decreased L-DOPA-SQ (by about 53% and 87%, respectively) dialysate concentrations. Systemic L-DOPA [25 mg/kg intraperitoneally (i.p.) twice in a 12-h interval] significantly increased striatal baseline dialysate concentrations of L-DOPA and decreased dopamine (DA) and ascorbic acid (AsAc) concentrations, when compared with controls. Following systemic L-DOPA, L-DOPA-SQ was detected in dialysates. Endogenous melatonin was depleted in rats maintained on a 24-h light cycle for 1 wk. In melatonin-depleted rats, systemic L-DOPA induced a smaller increase in dialysate L-DOPA, a greater increase in L-DOPA-SQ formation, and a greater reduction in DA and AsAc dialysate concentrations. Co-administration of melatonin (5.0 mg/kg, i.p., twice in a 12-h interval) with L-DOPA, in control as well as in light-exposed rats, significantly increased dialysate L-DOPA concentrations, greatly inhibited L-DOPA-SQ formation, and restored up to the control values dialysate DA and AsAc concentrations. These findings demonstrate that endogenous melatonin protects exogenous L-DOPA from autoxidation in the extracellular compartment of the striatum of freely moving rats; moreover, systemic co-administration of melatonin with L-DOPA markedly increases striatal L-DOPA bioavailability in control as well as in melatonin-depleted rats. These results may be of relevance to the long-term L-DOPA therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Gaia Rocchitta
- Department of Pharmacology, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | |
Collapse
|