1
|
Lan XQ, Deng CJ, Wang QQ, Zhao LM, Jiao BW, Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen Comp Endocrinol 2024; 353:114513. [PMID: 38604437 DOI: 10.1016/j.ygcen.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-β superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-β family members, such as TGF-β1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-β signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-β signaling for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xin-Qiang Lan
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Cheng-Jie Deng
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Qi-Quan Wang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Li-Min Zhao
- Senescence and Cancer Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bao-Wei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
2
|
Salemi S, Schori LJ, Gerwinn T, Horst M, Eberli D. Myostatin Overexpression and Smad Pathway in Detrusor Derived from Pediatric Patients with End-Stage Lower Urinary Tract Dysfunction. Int J Mol Sci 2023; 24:ijms24054462. [PMID: 36901894 PMCID: PMC10003571 DOI: 10.3390/ijms24054462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Cell therapies and tissue engineering approaches using smooth muscle cells (SMCs) may provide treatment alternatives for end-stage lower urinary tract dysfunction (ESLUTD). Myostatin, a negative regulator of muscle mass, is a promising target to improve muscle function through tissue engineering. The ultimate goal of our project was to investigate the expression of myostatin and its potential impact in SMCs derived from healthy pediatric bladders and pediatric ESLUTD patients. Human bladder tissue samples were evaluated histologically, and SMCs were isolated and characterized. The proliferation of SMCs was assessed by WST-1 assay. The expression pattern of myostatin, its pathway and the contractile phenotype of the cells were investigated at gene and protein levels by real-time PCR, flow cytometry, immunofluorescence, WES and gel contraction assay. Our results show that myostatin is expressed in human bladder smooth muscle tissue and in isolated SMCs at gene and protein levels. A higher expression of myostatin was detected in ESLUTD-derived compared to control SMCs. Histological assessment of bladder tissue confirmed structural changes and decreased muscle-to-collagen ratios in ESLUTD bladders. A decrease in cell proliferation and in the expression of key contractile genes and proteins, α-SMA, calponin, smoothelin and MyH11, as well as a lower degree of in vitro contractility was observed in ESLUTD-derived compared to control SMCs. A reduction in the myostatin-related proteins Smad 2 and follistatin, and an upregulation in the proteins p-Smad 2 and Smad 7 were observed in ESLUTD SMC samples. This is the first demonstration of myostatin expression in bladder tissue and cells. The increased expression of myostatin and the changes in the Smad pathways were observed in ESLUTD patients. Therefore, myostatin inhibitors could be considered for the enhancement of SMCs for tissue engineering applications and as a therapeutic option for patients with ESLUTD and other smooth muscle disorders.
Collapse
Affiliation(s)
- Souzan Salemi
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, 8952 Schlieren, Switzerland
- Correspondence: ; Tel.: +41-795-788-654
| | - Larissa J. Schori
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, 8952 Schlieren, Switzerland
| | - Tim Gerwinn
- Division of Pediatric Urology, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Maya Horst
- Division of Pediatric Urology, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Daniel Eberli
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, 8952 Schlieren, Switzerland
| |
Collapse
|
3
|
Ginevičienė V, Utkus A, Pranckevičienė E, Semenova EA, Hall ECR, Ahmetov II. Perspectives in Sports Genomics. Biomedicines 2022; 10:298. [PMID: 35203507 PMCID: PMC8869752 DOI: 10.3390/biomedicines10020298] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Human athletic performance is a complex phenotype influenced by environmental and genetic factors, with most exercise-related traits being polygenic in nature. The aim of this article is to outline some of the challenge faced by sports genetics as this relatively new field moves forward. This review summarizes recent advances in sports science and discusses the impact of the genome, epigenome and other omics (such as proteomics and metabolomics) on athletic performance. The article also highlights the current status of gene doping and examines the possibility of applying genetic knowledge to predict athletes' injury risk and to prevent the rare but alarming occurrence of sudden deaths during sporting events. Future research in large cohorts of athletes has the potential to detect new genetic variants and to confirm the previously identified DNA variants believed to explain the natural predisposition of some individuals to certain athletic abilities and health benefits. It is hoped that this article will be useful to sports scientists who seek a greater understanding of how genetics influences exercise science and how genomic and other multi-omics approaches might support performance analysis, coaching, personalizing nutrition, rehabilitation and sports medicine, as well as the potential to develop new rationale for future scientific investigation.
Collapse
Affiliation(s)
- Valentina Ginevičienė
- Institute of Biomedical Science, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (A.U.); (E.P.)
| | - Algirdas Utkus
- Institute of Biomedical Science, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (A.U.); (E.P.)
| | - Erinija Pranckevičienė
- Institute of Biomedical Science, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (A.U.); (E.P.)
- Department of Systems Analysis, Faculty of Informatics, Vytautas Magnus University, 44248 Kaunas, Lithuania
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420010 Kazan, Russia
| | - Elliott C. R. Hall
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Laboratory of Molecular Genetics, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
4
|
Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Opposite Regulation in Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells 2021; 10:cells10082083. [PMID: 34440852 PMCID: PMC8393414 DOI: 10.3390/cells10082083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN−/−, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation. Downregulation of the FMOD gene in MSTN−/− mice, and MSTN upregulation and FMOD downregulation in FMOD and MSTN knockdown C2C12 cells, respectively, during their differentiation, suggested FMOD negatively regulates MSTN gene expression, and MSTN positively regulates FMOD gene expression. The results of our in vivo and in vitro experiments indicate FMOD inhibits muscle aging by negatively regulating MSTN gene expression or by suppressing the action of MSTN protein, and that MSTN promotes muscle aging by positively regulating the expressions of Atrogin1, CD36, and PPARγ genes in muscle.
Collapse
|
5
|
Al-Qahtani M, Altuwaijri O, Altaf M, Al-Enezi M, Abulmeaty M, Javed R. Influence of body mass index and weight lifting on bicep brachii muscle and distal bicep tendon stiffness evaluated using ultrasound elastography. BMC Med Imaging 2020; 20:129. [PMID: 33302887 PMCID: PMC7731623 DOI: 10.1186/s12880-020-00531-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between stiffness of the bicep brachii muscle (BBM) and distal bicep tendon (DBT) and effects of weight lifting (pre- to post-workout changes) among groups with different body mass indexes (BMI). METHODS Participants were divided into four groups according to BMI: A, underweight (< 18.5 kg/m2); B, normal (18.5-24.9 kg/m2); C, overweight (25.0-29.9 kg/m2); and D, obese (> 30.0 kg/m2). All participants were males who were untrained and had sedentary lifestyle without involvement in sports activities for the past 12 months. Ultrasonographic measurements to determine muscle and tendon stiffness was performed on the dominant side (i.e., right side) of the upper extremities in all participants. RESULTS Twenty-one healthy and untrained males volunteered to participate in this study; 14 were nonsmokers and 7 were smokers. The mean age and BMI were 22.5 ± 1.5 years and 23.8 ± 6.3 kg/m2, respectively. Groups A, B, C, and D had four, ten, four, and three participants, respectively. The BBM thickness did not increase with increase in BMI and was not significantly different (P > .05) between groups. The BBM stiffness was significantly different (all P < .05) from pre- to post-workout values in all groups, whereas DBT stiffness did not follow the same trend. CONCLUSIONS Our study revealed that the BBM thickness is independent of BMI. After weight lifting, BBM stiffness in groups A and B increased for BBM compared to those in groups C and D. A similar trend was also recorded for DBT. Weight lifting in concentric and eccentric motions affects the stiffness of the BBM and DBT, thus weight lifting plays a role in adjusting the stiffness of the BBM and DBT. Trial registration The study was approved by ethics committee of the College of Applied Medical Sciences (CAMS 080-3839; March 14, 2018).
Collapse
Affiliation(s)
- Mahdi Al-Qahtani
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Omar Altuwaijri
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Meteb Altaf
- National Center for Robotics Technology and Intelligent Systems, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Majed Al-Enezi
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Abulmeaty
- Community Health Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ravish Javed
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Statzer C, Ewald CY. The extracellular matrix phenome across species. Matrix Biol Plus 2020; 8:100039. [PMID: 33543035 PMCID: PMC7852310 DOI: 10.1016/j.mbplus.2020.100039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrices are essential for cellular and organismal function. Recent genome-wide and phenome-wide association studies started to reveal a broad spectrum of phenotypes associated with genetic variants. However, the phenome or spectrum of all phenotypes associated with genetic variants in extracellular matrix genes is unknown. Here, we analyzed over two million recorded genotype-to-phenotype relationships across multiple species to define their extracellular matrix phenomes. By using the previously defined matrisomes of humans, mice, zebrafish, Drosophila, and C. elegans, we found that the extracellular matrix phenome comprises of 3-10% of the entire phenome. Collagens (COL1A1, COL2A1) and fibrillin (FBN1) are each associated with >150 distinct phenotypes in humans, whereas collagen COL4A1, Wnt- and sonic hedgehog (shh) signaling are predominantly associated in other species. We determined the phenotypic fingerprints of matrisome genes and found that MSTN, CTSD, LAMB2, HSPG2, and COL11A2 and their corresponding orthologues have the most phenotypes across species. Out of the 42,551 unique matrisome genotype-to-phenotype relationships across the five species with defined matrisomes, we have constructed interaction networks to identify the underlying molecular components connecting with orthologues phenotypes and with novel phenotypes. Thus, our networks provide a framework to predict unassessed phenotypes and their potential underlying molecular interactions. These frameworks inform on matrisome genotype-to-phenotype relationships and potentially provide a sophisticated choice of biological model system to study human phenotypes and diseases.
Collapse
Affiliation(s)
- Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Zürich CH-8603, Switzerland
| | - Collin Y. Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Zürich CH-8603, Switzerland
| |
Collapse
|
7
|
Esposito P, Battaglia Y, La Porta E, Grignano MA, Caramella E, Avella A, Peressini S, Sessa N, Albertini R, Di Natali G, Lisi C, Gregorini M, Rampino T. Significance of serum Myostatin in hemodialysis patients. BMC Nephrol 2019; 20:462. [PMID: 31829144 PMCID: PMC6907124 DOI: 10.1186/s12882-019-1647-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malnutrition and muscle wasting are common in haemodialysis (HD) patients. Their pathogenesis is complex and involves many molecules including Myostatin (Mstn), which acts as a negative regulator of skeletal muscle. The characterisation of Mstn as a biomarker of malnutrition could be useful in the prevention and management of this condition. Previous studies have reported no conclusive results on the actual relationship between serum Mstn and wasting and malnutrition. So, in this study, we evaluated Mstn profile in a cohort of regular HD patients. METHODS We performed a cross-sectional study, enrolling 37 patients undergoing bicarbonate-HD (BHD) or haemodiafiltration (HDF) at least for six months. 20 sex-matched healthy subjects comprised the control group. Mstn serum levels were evaluated by ELISA before and after HD. We collected clinical and biochemical data, evaluated insulin resistance, body composition, malnutrition [by Malnutrition Inflammation Score (MIS)] and tested muscle function (by hand-grip strength, six-minute walking test and a questionnaire on fatigue). RESULTS Mstn levels were not significantly different between HD patients and controls (4.7 ± 2.8 vs 4.5 ± 1.3 ng/ml). In addition, while a decrease in Mstn was observed after HD treatment, there were no differences between BHD and HDF. In whole group of HD patients Mstn was positively correlated with muscle mass (r = 0.82, p < 0.001) and inversely correlated with age (r = - 0.63, p < 0.01) and MIS (r = - 0.39, p = 0.01). No correlations were found between Mstn and insulin resistance, such as between Mstn levels and parameters of muscle strength and fatigue. In multivariate analysis, Mstn resulted inversely correlated with fat body content (β = - 1.055, p = 0.002). CONCLUSIONS Circulating Mstn is related to muscle mass and nutritional status in HD patients, suggesting that it may have a role in the regulation of skeletal muscle and metabolic processes. However, also considering the lack of difference of serum Mstn between healthy controls and HD patients and the absence of correlations with muscle function tests, our findings do not support the use of circulating Mstn as a biomarker of muscle wasting and malnutrition in HD.
Collapse
Affiliation(s)
- Pasquale Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yuri Battaglia
- Department of Specialized Medicine, Division of Nephrology and Dialysis, Hospital-University St. Anna, Ferrara, Italy.
| | - Edoardo La Porta
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Maria Antonietta Grignano
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Elena Caramella
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Alessando Avella
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Sabrina Peressini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Nicodemo Sessa
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Albertini
- Clinical Chemistry Laboratory Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Di Natali
- Physical Medicine and Rehabilitation Unit, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Claudio Lisi
- Physical Medicine and Rehabilitation Unit, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Marilena Gregorini
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Grade CVC, Mantovani CS, Alvares LE. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J Anim Sci Biotechnol 2019; 10:32. [PMID: 31044074 PMCID: PMC6477727 DOI: 10.1186/s40104-019-0338-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- 1Universidade Federal da Integração Latino-Americana, UNILA, Instituto Latino-Americano de Ciências da Vida e da Natureza, Avenida Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR CEP 85870-901 Brazil
| | - Carolina Stefano Mantovani
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| | - Lúcia Elvira Alvares
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| |
Collapse
|
9
|
Grade CVC, Mantovani CS, Fontoura MA, Yusuf F, Brand-Saberi B, Alvares LE. CREB, NF-Y and MEIS1 conserved binding sites are essential to balance Myostatin promoter/enhancer activity during early myogenesis. Mol Biol Rep 2017; 44:419-427. [PMID: 28956216 DOI: 10.1007/s11033-017-4126-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/08/2017] [Indexed: 12/27/2022]
Abstract
Myostatin (MSTN) is a strong inhibitor of skeletal muscle growth in human and other vertebrates. Its transcription is controlled by a proximal promoter/enhancer (Mstn P/E) containing a TATA box besides CREB, NF-Y, MEIS1 and FXR transcription factor binding sites (TFBSs), which are conserved throughout evolution. The aim of this work was to investigate the role of these TFBSs on Mstn P/E activity and evaluate the potential of their putative ligands as Mstn trans regulators. Mstn P/E mutant constructs were used to establish the role of conserved TFBSs using dual-luciferase assays. Expression analyses were performed by RT-PCR and in situ hybridization in C2C12 myoblasts and E10.5 mouse embryos, respectively. Our results revealed that CREB, NF-Y and MEIS1 sites are required to balance Mstn P/E activity, keeping Mstn transcription within basal levels during myoblast proliferation. Furthermore, our data showed that NF-Y site is essential, although not sufficient, to mediate Mstn P/E transcriptional activity. In turn, CREB and MEIS1 binding sites seem to depend on the presence of NF-Y site to induce Mstn P/E. FXR appears not to confer any effect on Mstn P/E activity, except in the absence of all other conserved TFBS. Accordingly, expression studies pointed to CREB, NF-Y and MEIS1 but not to FXR factors as possible regulators of Mstn transcription in the myogenic context. Altogether, our findings indicated that CREB, NF-Y and MEIS1 conserved sites are essential to control basal Mstn transcription during early myogenesis, possibly by interacting with these or other related factors.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil.,Latin American Institute of Natural and Life Sciences, Federal University of the Latin American Integration - UNILA, Avenida Tarquínio Joslin dos Santos 1000, Foz do Iguaçu, CEP 85870-901, Brazil
| | - Carolina Stefano Mantovani
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil
| | - Marina Alves Fontoura
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil
| | - Faisal Yusuf
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum - RUB, Universitätsstr. 150 - MA 5/158, 44801, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum - RUB, Universitätsstr. 150 - MA 5/158, 44801, Bochum, Germany
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, State University of Campinas - UNICAMP, Rua Charles Darwin s/n, Campinas, CEP 13083-863, Brazil.
| |
Collapse
|
10
|
Percutaneous endoscopic gastrostomy: confirming the clinical benefits far beyond anthropometry. Eur J Gastroenterol Hepatol 2017; 29:1097-1101. [PMID: 28746159 DOI: 10.1097/meg.0000000000000923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The real benefit of gastrostomy is still a matter of debate. We aimed to prospectively evaluate the global impact of percutaneous endoscopic gastrostomy (PEG) in patients followed at a specialized multidisciplinary clinic, namely, the impact on the need for healthcare resources, anthropometric measures, pressure ulcers prevention and healing, and nutritional and hydration status. PATIENTS AND METHODS From the 201 patients who underwent PEG between May 2011 and September 2014, 60 were included in a prospective study. Anthropometric, clinical, and laboratorial variables were collected and compared before and after PEG. Follow-up duration, mortality, and number of emergency department visits or hospital admissions were also assessed. RESULTS Thirty-three (55.0%) patients were women and the median age was 79 years. The main indications for PEG were dementia (43.3%) and poststroke dysphagia (30.0%). Four months following PEG, significant decreases in the tricipital skinfold (P=0.002) and brachial perimeter (P=0.003) were found. A decrease in the mean number of hospitalizations (1.4 vs. 0.3; P<0.001) and visits to emergency department (2.2 vs. 1.1; P=0.003) was noted in the next 6 months after PEG compared with the previous semester. In 53.8% of patients with pressure ulcers, complete healing was observed after PEG. PEG was associated with increases in hemoglobin (P=0.024), lymphocytes (P=0.041), cholesterol (P=0.008), transferrin (P<0.001), albumin (P<0.001), and total proteins (P<0.001), and a decrease in serum sodium (P=0.001). CONCLUSION Anthropometric values may not translate the early benefits of a gastrostomy. PEG decreases the need for hospital health care, facilitates healing of pressure ulcers, and induces biochemical changes that may reflect better nutrition and hydration.
Collapse
|
11
|
Esposito P, La Porta E, Calatroni M, Grignano MA, Milanesi S, Verzola D, Battaglia Y, Gregorini M, Libetta C, Garibotto G, Rampino T. Modulation of Myostatin/Hepatocyte Growth Factor Balance by Different Hemodialysis Modalities. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7635459. [PMID: 28459069 PMCID: PMC5387812 DOI: 10.1155/2017/7635459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Background. In this study we investigated the relevance of myostatin and Hepatocyte Growth Factor (HGF) in patients undergoing hemodialysis HD and the influence of different HD modalities on their levels. Methods. We performed a prospective crossover study in which HD patients were randomized to undergo 3-month treatment periods with bicarbonate hemodialysis (BHD) followed by online hemodiafiltration (HDF). Clinical data, laboratory parameters, and myostatin and HGF serum levels were collected and compared. Results. Ten patients and six controls (C) were evaluated. In any experimental condition myostatin and HGF levels were higher in HD than in C. At enrollment and after BHD there were not significant correlations, whereas at the end of the HDF treatment period myostatin and HGF were inversely correlated (r -0.65, p < 0.05), myostatin serum levels inversely correlated with transferrin (r -0.73, p < 0.05), and HGF levels that resulted positively correlated with BMI (r 0.67, p < 0.05). Moving from BHD to HDF, clinical and laboratory parameters were unchanged, as well as serum HGF, whereas myostatin levels significantly decreased (6.3 ± 4.1 versus 4.3 ± 3.1 ng/ml, p < 0.05). Conclusions. Modulation of myostatin levels and myostatin/HGF balance by the use of different HD modalities might represent a novel approach to the prevention and treatment of HD-related muscle wasting syndrome.
Collapse
Affiliation(s)
- Pasquale Esposito
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
- *Pasquale Esposito:
| | - Edoardo La Porta
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Marta Calatroni
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Maria Antonietta Grignano
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Samantha Milanesi
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Daniela Verzola
- 2Department of Internal Medicine, Istituto Nazionale per la Ricerca sul Cancro, University of Genoa and IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genoa, Italy
| | - Yuri Battaglia
- 3Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Marilena Gregorini
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giacomo Garibotto
- 2Department of Internal Medicine, Istituto Nazionale per la Ricerca sul Cancro, University of Genoa and IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genoa, Italy
| | - Teresa Rampino
- 1Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Jiang JG, Shen GF, Li J, Qiao C, Xiao B, Yan H, Wang DW, Xiao X. Adeno-associated virus-mediated expression of myostatin propeptide improves the growth of skeletal muscle and attenuates hyperglycemia in db/db mice. Gene Ther 2016; 24:167-175. [PMID: 27983718 DOI: 10.1038/gt.2016.85] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/25/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023]
Abstract
Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.
Collapse
Affiliation(s)
- J G Jiang
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - G F Shen
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - J Li
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Qiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - H Yan
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - D W Wang
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - X Xiao
- Departments of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-β Signalling Network in Muscle Development, Adaptation and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:97-131. [PMID: 27003398 DOI: 10.1007/978-3-319-27511-6_5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle possesses remarkable ability to change its size and force-producing capacity in response to physiological stimuli. Impairment of the cellular processes that govern these attributes also affects muscle mass and function in pathological conditions. Myostatin, a member of the TGF-β family, has been identified as a key regulator of muscle development, and adaptation in adulthood. In muscle, myostatin binds to its type I (ALK4/5) and type II (ActRIIA/B) receptors to initiate Smad2/3 signalling and the regulation of target genes that co-ordinate the balance between protein synthesis and degradation. Interestingly, evidence is emerging that other TGF-β proteins act in concert with myostatin to regulate the growth and remodelling of skeletal muscle. Consequently, dysregulation of TGF-β proteins and their associated signalling components is increasingly being implicated in muscle wasting associated with chronic illness, ageing, and inactivity. The growing understanding of TGF-β biology in muscle, and its potential to advance the development of therapeutics for muscle-related conditions is reviewed here.
Collapse
Affiliation(s)
- Justin L Chen
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia.,Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Timothy D Colgan
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Walton
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Neurology, School of Medicine, The University of Washington, Seattle, WA, USA.
| | - Craig A Harrison
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Ju CR, Zhang JH, Chen M, Chen RC. Plasma myostatin levels are related to the extent of right ventricular dysfunction in exacerbation of chronic obstructive pulmonary disease. Biomarkers 2016; 22:246-252. [PMID: 27323660 DOI: 10.1080/1354750x.2016.1203999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the relationship between plasma myostatin levels and right ventricle (RV) dysfunction (RVD) in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS The study recruited 84 patients with AECOPD. Plasma myostatin was analyzed and tricuspid annular plane systolic excursion (TAPSE) < 16 mm was used as the main indicator for RVD. RESULTS Plasma myostatin levels were significantly higher in 47 patients with RVD than 37 ones without (P < 0.005). Multivariate regression analysis revealed that myostatin levels correlated significantly with TAPSE values and RV myocardial performance index (p < 0.001) among the study patients. CONCLUSION Plasma myostatin is a potential biomarker for improving diagnosis of RVD in AECOPD.
Collapse
Affiliation(s)
- Chun-Rong Ju
- a State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease , First Affiliated Hospital of Guangzhou Medical University , Guangdong , China
| | - Jian-Heng Zhang
- a State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease , First Affiliated Hospital of Guangzhou Medical University , Guangdong , China
| | - Miao Chen
- a State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease , First Affiliated Hospital of Guangzhou Medical University , Guangdong , China
| | - Rong-Chang Chen
- a State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease , First Affiliated Hospital of Guangzhou Medical University , Guangdong , China
| |
Collapse
|
15
|
Gu H, Cao Y, Qiu B, Zhou Z, Deng R, Chen Z, Li R, Li X, Wei Q, Xia X, Yong W. Establishment and phenotypic analysis of an Mstn knockout rat. Biochem Biophys Res Commun 2016; 477:115-122. [PMID: 27289021 DOI: 10.1016/j.bbrc.2016.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
Myostatin (Mstn) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In addition to its myogenic regulatory function, Mstn plays important roles in the development of adipose tissues and in metabolism. In the present study, an Mstn knockout rat model was generated using the zinc finger nuclease (ZFN) technique in order to further investigate the function and mechanism of Mstn in metabolism. The knockout possesses a frame shift mutation resulting in an early termination codon and a truncated peptide of 109 amino acids rather than the full 376 amino acids. The absence of detectable mRNA confirmed successful knockout of Mstn. Relative to wild-type (WT) littermates, Knockout (KO) rats exhibited significantly greater body weight, body circumference, and muscle mass. However, no significant differences in grip force was observed, indicating that Mstn deletion results in greater muscle mass but not greater muscle fiber strength. Additionally, KO rats were found to possess less body fat relative to WT littermates, which is consistent with previous studies in mice and cattle. The aforementioned results indicate that Mstn knockout increases muscle mass while decreasing fat content, leading to observed increases in body weight and body circumference. The Mstn knockout rat model provides a novel means to study the role of Mstn in metabolism and Mstn-related muscle hypertrophy.
Collapse
Affiliation(s)
- Hao Gu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China; Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Sichuan 646000, China
| | - Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Zhiqiang Zhou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Ran Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Zhuang Chen
- Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Sichuan 646000, China
| | - Rongfeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010021, China
| | - Xueling Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010021, China
| | - Qiang Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
16
|
Ju CR, Chen M, Zhang JH, Lin ZY, Chen RC. Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease. PLoS One 2016; 11:e0150838. [PMID: 26998756 PMCID: PMC4801210 DOI: 10.1371/journal.pone.0150838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/20/2016] [Indexed: 12/18/2022] Open
Abstract
Objective To analyze plasma myostatin levels and investigate their relationship with right ventricular (RV) function in patients with cor pulmonale secondary to chronic obstructive pulmonary disease (COPD). Methods The study recruited 81 patients with advanced COPD and 40 age-matched controls. The patients were divided into two groups: those with cor pulmonale and those without. Echocardiography was used to evaluate RV function and morphology, and the value of tricuspid annular plane systolic excursion (TAPSE) less than 16 mm was considered RV dysfunction. Plasma myostatin levels were analyzed by enzyme-linked immunosorbent assay, and B-type natriuretic peptide (BNP) levels were analyzed as a comparison of myostatin. Results The data detected cor pulmonale in 39/81 patients, with the mean value of TAPSE of 14.3 mm. Plasma myostatin levels (ng/mL) were significantly higher in patients with cor pulmonale (16.68 ± 2.95) than in those without (13.56 ± 3.09), and much higher than in controls (8.79±2.79), with each p<0.01. Significant differences were also found in plasma BNP levels among the three groups (p<0.05). Multivariate regression analysis suggested that myostatin levels were significantly correlated with the values of TAPSE and RV myocardium performance index among the COPD patients, and that BNP levels were significantly correlated only with systolic pulmonary arterial pressure, with each p<0.05. Conclusions Plasma myostatin levels are increased in COPD patients who have cor pulmonale. Stronger correlations of plasma myostatin levels with echocardiographic indexes of the right heart suggest that myostatin might be superior to BNP in the early diagnosis of cor pulmonale in COPD.
Collapse
Affiliation(s)
- Chun-Rong Ju
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Miao Chen
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Jian-Heng Zhang
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Zhi-Ya Lin
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Rong-Chang Chen
- State Key Lab of the Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| |
Collapse
|
17
|
Kim A, Im M, Ma JY. Sosiho‑tang ameliorates cachexia‑related symptoms in mice bearing colon 26 adenocarcinoma by reducing systemic inflammation and muscle loss. Oncol Rep 2015; 35:1841-50. [PMID: 26718030 DOI: 10.3892/or.2015.4527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/20/2015] [Indexed: 11/05/2022] Open
Abstract
Cachexia accompanied by muscle wasting is a key determinant of poor prognosis in cancer patients and cancer‑related death. Previous studies have demonstrated that inflammatory cytokines such as interleukin‑6 (IL‑6), tumor necrosis factor‑α (TNF‑α), IL‑1 and interferon‑γ (IFN‑γ) secreted from host cells and tumor cells participate in skeletal muscle wasting followed by severe loss of body weight. Therefore, blockade of the inflammatory response is thought to be a logical target for pharmacological and nutritional interventions to preserve skeletal muscle mass under cachectic conditions. Sosiho‑tang (SO; Xiaocharihu‑tang in Chinese and Sho‑saiko‑to in Japanese) is an Oriental herbal medicine that has been used to treat chronic hepatic diseases and to control fever. In recent studies, SO inhibited the production of inflammatory cytokines in lipopolysaccharide (LPS)‑stimulated macrophages, prevented thrombus formation and suppressed cancer progression. However, the anti‑cachectic activity of SO in tumor‑bearing mice has not yet been examined. In the present study, we characterized the effect of SO administration on cancer‑induced cachexia in CT‑26‑bearing mice, and elucidated the anti‑cachectic mechanisms. Daily oral administration of SO at doses of 50 and 100 mg/kg to CT‑26‑bearing mice significantly retarded tumor growth and prevented the loss of final body weight, carcass weight, heart weight, gastrocnemius muscle, and epididymal fat, compared with saline‑treated control mice. In addition, serum IL‑6 levels elevated by cancer were decreased by SO administration. In the J774A.1 macrophage cell line, SO efficiently suppressed LPS‑mediated increases in inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO), and procachectic inflammatory cytokine production through inhibition of nuclear factor‑κB (NF‑κB) and p38 activation. In addition, SO attenuated muscle atrophy caused by cancer cells by affecting myoblast proliferation and differentiation, and C2C12 myotube wasting. Taken together, these results suggest that SO is a safe and useful anti‑cachectic therapy for cancer patients with severe weight loss.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong‑gu, Daegu 701‑300, Republic of Korea
| | - Minju Im
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong‑gu, Daegu 701‑300, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong‑gu, Daegu 701‑300, Republic of Korea
| |
Collapse
|
18
|
McLean JB, Moylan JS, Horrell EMW, Andrade FH. Proteomic analysis of media from lung cancer cells reveals role of 14-3-3 proteins in cachexia. Front Physiol 2015; 6:136. [PMID: 25972815 PMCID: PMC4411971 DOI: 10.3389/fphys.2015.00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/15/2015] [Indexed: 01/06/2023] Open
Abstract
Aims: At the time of diagnosis, 60% of lung cancer patients present with cachexia, a severe wasting syndrome that increases morbidity and mortality. Tumors secrete multiple factors that contribute to cachectic muscle wasting, and not all of these factors have been identified. We used Orbitrap electrospray ionization mass spectrometry to identify novel cachexia-inducing candidates in media conditioned with Lewis lung carcinoma cells (LCM). Results: One-hundred and 58 proteins were confirmed in three biological replicates. Thirty-three were identified as secreted proteins, including 14-3-3 proteins, which are highly conserved adaptor proteins known to have over 200 binding partners. We confirmed the presence of extracellular 14-3-3 proteins in LCM via western blot and discovered that LCM contained less 14-3-3 content than media conditioned with C2C12 myotubes. Using a neutralizing antibody, we depleted extracellular 14-3-3 proteins in myotube culture medium, which resulted in diminished myosin content. We identified the proposed receptor for 14-3-3 proteins, CD13, in differentiated C2C12 myotubes and found that inhibiting CD13 via Bestatin also resulted in diminished myosin content. Conclusions: Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines and may signal via CD13 to help maintain muscle mass.
Collapse
Affiliation(s)
- Julie B McLean
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Jennifer S Moylan
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA ; Center for Clinical and Translational Science, University of Kentucky Lexington, KY, USA
| | - Erin M W Horrell
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Markey Cancer Center, University of Kentucky Lexington, KY, USA
| | - Francisco H Andrade
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
19
|
Sepulveda PV, Bush ED, Baar K. Pharmacology of manipulating lean body mass. Clin Exp Pharmacol Physiol 2015; 42:1-13. [PMID: 25311629 PMCID: PMC4383600 DOI: 10.1111/1440-1681.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023]
Abstract
Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts. Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health. With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development. The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader.
Collapse
Affiliation(s)
- Patricio V Sepulveda
- Department of Physiology, Monash University, Monash College Wellington Rd, Melbourne Victoria, Australia
| | - Ernest D Bush
- Akashi Therapeutics, Cambridge, MA, University of California Davis, Davis, CA, USA
| | - Keith Baar
- Departments of Neurobiology, Physiology and Behaviour and Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
20
|
Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology 2013; 14:273-92. [PMID: 23666344 PMCID: PMC3719007 DOI: 10.1007/s10522-013-9429-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/29/2013] [Indexed: 12/31/2022]
Abstract
Although adult skeletal muscle is composed of fully differentiated fibers, it retains the capacity to regenerate in response to injury and to modify its contractile and metabolic properties in response to changing demands. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic precursor cells that reside between the basal lamina and plasmalemma and that are rapidly activated in response to appropriate stimuli. However, in pathologic conditions or during aging, the complete regenerative program can be precluded by fibrotic tissue formation and resulting in functional impairment of the skeletal muscle. Our study, along with other studies, demonstrated that although the regenerative program can also be impaired by the limited proliferative capacity of satellite cells, this limit is not reached during normal aging, and it is more likely that the restricted muscle repair program in aging is presumably due to missing signals that usually render the damaged muscle a permissive environment for regenerative activity.
Collapse
|
21
|
Kimyagarov S, Turgeman D, Fleissig Y, Klid R, Kopel B, Adunsky A. Percutaneous endoscopic gastrostomy (PEG) tube feeding of nursing home residents is not associated with improved body composition parameters. J Nutr Health Aging 2013; 17:162-5. [PMID: 23364496 DOI: 10.1007/s12603-012-0075-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To study differences in nutritional status and body composition, by feeding modality, among disabled nursing home residents. DESIGN A retrospective chart-review study. SETTING A nursing wing of a public urban geriatric center. PARTICIPANTS Three groups of patients: non-dysphagic, orally-fed dysphagic and percutaneous endoscopic gastrostomy -fed dysphagic patients. INTERVENTION Standard nursing care. MEASUREMENTS Basal metabolic rate, total energy expenditure and nitrogen balance under oral or percutaneous endoscopic gastrostomy feeding. Dietary intake was assessed during a 3-days period by daily-food intake protocols and a 24-hours urinary creatinine excretion to detect nitrogen balance and calculate body composition parameters. RESULTS Data of 117 patients (55.5% females), mean age 84.6±7.5 (range 66-98 years) was analyzed. Dysphagic patients (60) differed from non-dysphagic patients (57) by lower body mass index (p=0.020), fat mass index (p=0.017), daily protein intake (p<0.0001), daily energy intake (p<0.001), protein related energy intake (p<0.001) and a negative nitrogen balance (p<0.001). In regression analyses, dysphagia was associated with increased risk of having a body mass index lower than 22.0kg/m2 (OR=2.60, 95% CI 1.135-5.943), a negative nitrogen balance (OR=2.33, 95% CI 1.063-4.669), a low fat mass index (OR=2.53, 95% CI 1.066-6.007), and low daily protein and energy intakes per body weight (OR=2.87, 95% CI 1.316-6.268 and OR=2.99, 95% CI 1.297-6.880). Compared with orally-fed dysphagic patients (21pts.), percutaneous endoscopic gastrostomy -fed patients (39pts.) received an additional mean energy intake of 30.5% kcal per day and mean protein intake of 26.0%. This additional intake was not associated with improved body composition parameters (such as fat free mass, skeletal mass or body mass index). CONCLUSION Dysphagic nursing home residents are characterized by worse nutritional, metabolic and body composition parameters, compared with non-dysphagic residents. Body composition parameters did not differ between orally-fed and percutaneous endoscopic gastrostomy-fed dysphagic patients, despite significantly better nutritional and metabolic parameters in PEG-fed patients. Other approaches (perhaps physical training, pharmacological etc.) should be sought to improve body composition of such patients.
Collapse
|
22
|
Skorokhod A, Bachmann J, Giese NA, Martignoni ME, Krakowski-Roosen H. Real-imaging cDNA-AFLP transcript profiling of pancreatic cancer patients: Egr-1 as a potential key regulator of muscle cachexia. BMC Cancer 2012; 12:265. [PMID: 22721276 PMCID: PMC3465185 DOI: 10.1186/1471-2407-12-265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/24/2012] [Indexed: 01/08/2023] Open
Abstract
Background Cancer cachexia is a progressive wasting syndrome and the most prevalent characteristic of cancer in patients with advanced pancreatic adenocarcinoma. We hypothesize that genes expressed in wasted skeletal muscle of pancreatic cancer patients may determine the initiation and severity of cachexia syndrome. Experimental design We studied gene expression in skeletal muscle biopsies from pancreatic cancer patients with and without cachexia utilizing Real-Imaging cDNA-AFLP-based transcript profiling for genome-wide expression analysis. Results Our approach yielded 183 cachexia-associated genes. Ontology analysis revealed characteristic changes for a number of genes involved in muscle contraction, actin cytoskeleton rearrangement, protein degradation, tissue hypoxia, immediate early response and acute-phase response. Conclusions We demonstrate that Real-Imaging cDNA-AFLP analysis is a robust method for high-throughput gene expression studies of cancer cachexia syndrome in patients with pancreatic cancer. According to quantitative RT-PCR validation, the expression levels of genes encoding the acute-phase proteins α-antitrypsin and fibrinogen α and the immediate early response genes Egr-1 and IER-5 were significantly elevated in the skeletal muscle of wasted patients. By immunohistochemical and Western immunoblotting analysis it was shown, that Egr-1 expression is significantly increased in patients with cachexia and cancer. This provides new evidence that chronic activation of systemic inflammatory response might be a common and unifying factor of muscle cachexia.
Collapse
Affiliation(s)
- Alexander Skorokhod
- Division of Preventive Oncology (G110), National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Kimyagarov S, Klid R, Fleissig Y, Kopel B, Arad M, Adunsky A. Skeletal muscle mass abnormalities are associated with survival rates of institutionalized elderly nursing home residents. J Nutr Health Aging 2012; 16:432-6. [PMID: 22555785 DOI: 10.1007/s12603-012-0005-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Knowledge about the changes in skeletal muscle mass in nursing home residents is very limited. We hypothesized that such patients have different types of skeletal muscle mass abnormalities that may affect mortality rates. Therefore, the objective of this study was to evaluate the prevalence and extent of skeletal muscle mass decline, its different clinical phenotypes (sarcopenia, wasting/atrophy and cachexia) and the mortality rates associated with these abnormalities. METHODS A retrospective chart-review study comprising 109 institutionalized nursing home residents. Body mass index, body fat mass, fat free mass, skeletal muscle mass and survival rates were assessed. RESULTS Skeletal muscle mass abnormalities were found among 73 out of 109 (67.0%) patients and were more prevalent in males compared with females (97.8% and 43.8%, respectively, p<0.001). Most of these patients had muscle wasting/atrophy (51.4%) or sarcopenia (40.3%), and 9.7% suffered from cachexia. One third of the patients with abnorrmal skeletal muscle mass showed a moderate decline of skeletal muscle mass (34.7%) while the remainder (65.3%) had very low levels of skeletal muscle mass. Each group was characterized by typical medical conditions associated with skeletal muscle mass abnormality. A Kaplan-Meier survival plot of mortality showed only lower one-year survival rates in the group with sarcopenia (60%) and muscle atrophy or cachexia (53%), compared with elderly participants with a normal skeletal muscle mass (73%), (p<0.0001). There were no significant differences in 1-year mortality rates between patients with abnormal skeletal muscle mass (whether sarcopenia, cachexia or wasting). CONCLUSION About two thirds of nursing home patients show skeletal muscle mass abnormalities, most within the range of very low skeletal muscle mass rather than moderately low skeletal muscle mass, that are associated with shorter survival rates, compared with normal skeletal muscle mass patients.
Collapse
Affiliation(s)
- S Kimyagarov
- The Gilad Geriatric Center, Ramat-Gan, Tel Hashomer, 52621, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Ju CR, Chen RC. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease. Respir Med 2011; 106:102-8. [PMID: 21840694 DOI: 10.1016/j.rmed.2011.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 07/02/2011] [Accepted: 07/25/2011] [Indexed: 12/27/2022]
Abstract
INTRODUCTION It is well confirmed that myostatin is a negative regulator of skeletal muscle mass and implicated in several diseases involved in muscle wasting and cachexia. Skeletal muscle wasting is an important systemic manifestation of chronic obstructive pulmonary disease (COPD), while the expression of circulating myostatin in COPD remains unclear. The aim of this study was to investigate the expression of circulating myostatin and its relationship with skeletal muscle wasting in COPD. METHODS Seventy-one patients with stable COPD and sixty age-matched, healthy control subjects participated in the study. Total skeletal muscle mass (SMM) were calculated according to a validated formula by using age and anthropometric measurements. Serum levels of myostatin, tumor necrosis factor (TNF)-α and interleukin-6 were determined by ELISA. RESULTS Serum myostatin levels were significantly elevated in COPD patients when compared to controls [(11.85 ± 4.01) ng/ml vs. (7.46 ± 2.21) ng/ml, p < 0.01], while total SMM was significantly decreased in COPD patients when compared to controls [(20.81 ± 1.74) kg vs. (27.31 ± 2.18) kg for male, and (11.70 ± 0.56) kg vs. (19.89 ± 1.47) kg for female] (both p < 0.05). Regression correlation analysis on all COPD patients showed that serum myostatin levels weren't significantly correlated with SMM, but correlated with TNF-α levels (R(2) = 0.042, p = 0.048). However, when stratified for gender, serum myostatin levels were correlated inversely both with SMM (R(2) = 0.20, p = 0.000) and with BMI (R(2) = 0.084, p = 0.019) in subgroup of male patients. CONCLUSION This study demonstrates that circulating myostatin levels are elevated in COPD and related to SMM in male patients, suggesting that myostatin contributes to skeletal muscle wasting in COPD.
Collapse
Affiliation(s)
- Chun-Rong Ju
- State Key Lab of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical College, Guangdong 510012, China
| | | |
Collapse
|
25
|
Kim KH, Kim YS, Yang J. The muscle-hypertrophic effect of clenbuterol is additive to the hypertrophic effect of myostatin suppression. Muscle Nerve 2011; 43:700-7. [DOI: 10.1002/mus.21950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2010] [Indexed: 02/04/2023]
|
26
|
Jespersen JG, Nedergaard A, Reitelseder S, Mikkelsen UR, Dideriksen KJ, Agergaard J, Kreiner F, Pott FC, Schjerling P, Kjaer M. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients. PLoS One 2011; 6:e18090. [PMID: 21483870 PMCID: PMC3069050 DOI: 10.1371/journal.pone.0018090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/20/2011] [Indexed: 12/25/2022] Open
Abstract
Background Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls. Methodology/Principal Findings ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and muscle ring finger protein 1 (MuRF1); and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1), FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2 = 0.36, p<0.05) between insulin infusion dose and phosphorylated Akt was demonstrated. Conclusions/Significance We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.
Collapse
Affiliation(s)
- Jakob G Jespersen
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jespersen JG, Nedergaard A, Andersen LL, Schjerling P, Andersen JL. Myostatin expression during human muscle hypertrophy and subsequent atrophy: increased myostatin with detraining. Scand J Med Sci Sports 2011; 21:215-23. [DOI: 10.1111/j.1600-0838.2009.01044.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Carosio S, Berardinelli MG, Aucello M, Musarò A. Impact of ageing on muscle cell regeneration. Ageing Res Rev 2011; 10:35-42. [PMID: 19683075 DOI: 10.1016/j.arr.2009.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022]
Abstract
Skeletal muscle regeneration is a coordinate process in which several factors are sequentially activated to maintain and preserve muscle structure and function. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic cells that reside between the basal lamina and plasmalemma and are rapidly activated in response to appropriate stimuli. However, in several muscle conditions, including aging, the capacity of skeletal muscle to sustain an efficient regenerative pathway is severely compromised. Nevertheless, if skeletal muscle possesses a stem cell compartment it is not clear why the muscle fails to regenerate under pathological conditions. Either the resident muscle stem cells are too rare or intrinsically incapable of repairing major damage, or perhaps the injured/pathological muscle is a prohibitive environment for stem cell activation and function. Although we lack definitive answers, recent experimental evidences suggest that the mere presence of endogenous stem cells may not be sufficient to guarantee muscle regeneration, and that the presence of appropriate stimuli and factors are necessary to provide a permissive environment that permits stem cell mediated muscle regeneration and repair. In this review we discuss the molecular basis of muscle regeneration and how aging impacts stem cell mediated muscle regeneration and repair.
Collapse
Affiliation(s)
- Silvia Carosio
- Institute Pasteur Cenci-Bolognetti, Department of Histology and Medical Embryology, IIM, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy
| | | | | | | |
Collapse
|
29
|
Myostatin regulates glucose metabolism via the AMP-activated protein kinase pathway in skeletal muscle cells. Int J Biochem Cell Biol 2010; 42:2072-81. [DOI: 10.1016/j.biocel.2010.09.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 12/30/2022]
|
30
|
Gustafsson T, Osterlund T, Flanagan JN, von Waldén F, Trappe TA, Linnehan RM, Tesch PA. Effects of 3 days unloading on molecular regulators of muscle size in humans. J Appl Physiol (1985) 2010; 109:721-7. [DOI: 10.1152/japplphysiol.00110.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Changes in skeletal muscle mass are controlled by mechanisms that dictate protein synthesis or degradation. The current human study explored whether changes in activation of the phosphoinositide 3-kinase (PI3K)-Akt1, p38, myostatin, and mRNA expression of markers of protein degradation and synthesis occur soon after withdrawal of weight bearing. Biopsies of the vastus lateralis muscle (VL) and soleus muscle (Sol) were obtained from eight healthy men before and following 3 days of unilateral lower limb suspension (ULLS). Akt1, Forkhead box class O (FOXO)-1A, FOXO-3A, p38, and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) phosphorylation and protein levels and myostatin protein level were analyzed by Western blot. Levels of mRNA of IGF1, FOXO-1A, FOXO-3A, atrogin-1, MuRF-1, caspase-3, calpain-2, calpain-3, 4E-BP1, and myostatin were measured using real-time PCR. The amounts of phosphorylated Akt1, FOXO-1A, FOXO-3A, and p38 were unaltered ( P > 0.05) after ULLS. Similarly, mRNA levels of IGF1, FOXO-1A, FOXO-3A, caspase-3, calpain-2, and calpain-3 showed no changes ( P > 0.05). The mRNA levels of atrogin-1 and MuRF-1, as well as the mRNA and protein phosphorylation of 4E-BP1, increased ( P < 0.05) in VL but not in Sol. Both muscles showed increased ( P < 0.05) myostatin mRNA and protein following ULLS. These results suggest that pathways other than PI3K-Akt stimulate atrogin-1 and MuRF-1 expression within 3 days of ULLS. Alternatively, transient changes in these pathways occurred in the early phase of ULLS. The increased myostatin mRNA and protein expression also indicate that multiple processes are involved in the early phase of muscle wasting. Further, the reported difference in gene expression pattern across muscles suggests that mechanisms regulating protein content in human skeletal muscle are influenced by phenotype and/or function.
Collapse
Affiliation(s)
- T. Gustafsson
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, Karolinska University Hospital
| | - T. Osterlund
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, Karolinska University Hospital
| | - J. N. Flanagan
- Andrology and Molecular Endocrinology Units, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - F. von Waldén
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and
| | - T. A. Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - R. M. Linnehan
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - P. A. Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
31
|
Wang X, Meng X, Song B, Qiu X, Liu H. SNPs in the myostatin gene of the mollusk Chlamys farreri: association with growth traits. Comp Biochem Physiol B Biochem Mol Biol 2009; 155:327-30. [PMID: 20026418 DOI: 10.1016/j.cbpb.2009.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 11/26/2022]
Abstract
Myostatin (MSTN) is a member of the transforming growth factor-beta superfamily which negatively regulates growth of muscle tissue. In this study, 103 cultivated Chlamys farreri individuals were screened for polymorphisms in the MSTN gene using PCR-single strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods. Two mutations were found: A/G at position 327 in exon 2, which caused an amino acid change from Thr to Ala (Thr305Ala), and C/T at position 289 in exon 3, which caused an amino acid change from Cys to Arg (Cys422Arg). One way ANOVA of the SNPs and growth traits showed that genotype GG of primer M5 had significantly higher body mass, soft-tissue mass, adductor muscle mass, shell length, shell height, absolute growth rate of shell height and body mass than those of genotype AG and AA (P<0.05). Genotype frequencies of genotype AA, AG and GG were 68.94%, 27.18% and 3.88%, respectively. The results present evidence that the C. farreri MSTN gene may be selected as a candidate gene for these growth traits.
Collapse
Affiliation(s)
- Xiuli Wang
- College of Life Sciences and Biotechnology, Dalian Fisheries University, Dalian 116023, China.
| | | | | | | | | |
Collapse
|
32
|
Grade CVC, Salerno MS, Schubert FR, Dietrich S, Alvares LE. An evolutionarily conserved Myostatin proximal promoter/enhancer confers basal levels of transcription and spatial specificity in vivo. Dev Genes Evol 2009; 219:497-508. [PMID: 20052486 DOI: 10.1007/s00427-009-0312-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 12/02/2009] [Indexed: 12/21/2022]
Abstract
Myostatin (Mstn) is a negative regulator of skeletal muscle mass, and Mstn mutations are responsible for the double muscling phenotype observed in many animal species. Moreover, Mstn is a positive regulator of adult muscle stem cell (satellite cell) quiescence, and hence, Mstn is being targeted in therapeutic approaches to muscle diseases. In order to better understand the mechanisms underlying Mstn regulation, we searched for the gene's proximal enhancer and promoter elements, using an evolutionary approach. We identified a 260-bp-long, evolutionary conserved region upstream of tetrapod Mstn and teleost mstn b genes. This region contains binding sites for TATA binding protein, Meis1, NF-Y, and for CREB family members, suggesting the involvement of cAMP in Myostatin regulation. The conserved fragment was able to drive reporter gene expression in C2C12 cells in vitro and in chicken somites in vivo; both normally express Mstn. In contrast, the reporter construct remained silent in the avian neural tube that normally does not express Mstn. This suggests that the identified element serves as a minimal promoter, harboring some spatial specificity. Finally, using bioinformatic approaches, we identified additional genes in the human genome associated with sequences similar to the Mstn proximal promoter/enhancer. Among them are genes important for myogenesis. This suggests that Mstn and these genes may form a synexpression group, regulated by a common signaling pathway.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- Department of Histology and Embryology, State University of Campinas-UNICAMP, Rua Charles Darwin, s/n, Cx. Postal 6109, CEP 13083-863, Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Cheema BSB. Review article: Tackling the survival issue in end-stage renal disease: time to get physical on haemodialysis. Nephrology (Carlton) 2009; 13:560-9. [PMID: 19161363 DOI: 10.1111/j.1440-1797.2008.01036.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Life expectancy in haemodialysis patients is reduced fourfold on average versus healthy age-matched individuals. The purpose of this review is to present empirical evidence that intradialytic exercise can mitigate primary independent risk factors for early mortality in end-stage renal disease. These risk factors include measures of skeletal muscle wasting, systemic inflammation, cardiovascular functioning and dialysis adequacy. Overall, the available literature provides support for the integration of exercise within the conventional outpatient haemodialysis unit. The amelioration of various physiological risk factors through an appropriate exercise prescription may enhance survival in this vulnerable cohort. Investigations are required to determine the effects of various doses of intradialytic exercise on a broad range of clinical outcomes, and more thoroughly elucidate the relationship between exercise-induced adaptations and survival advantage in end-stage renal disease.
Collapse
Affiliation(s)
- Birinder Singh Bobby Cheema
- Institute of Food, Nutrition and Human Health, Division of Exercise and Sport Science, College of Sciences, Massey University, Wellington, New Zealand.
| |
Collapse
|
34
|
Liu H, An X, Chen Y, Zhong J. Roles of extracellular signal-regulated kinase 1/2 on the suppression of myostatin gene expression induced by basic fibroblast growth factor. Acta Biochim Biophys Sin (Shanghai) 2008; 40:943-8. [PMID: 18989575 DOI: 10.1111/j.1745-7270.2008.00473.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Basic fibroblast growth factor (bFGF, FGF-2) has an inhibitory effect on the expression of the myostatin gene in murine C2C12 myoblasts, as shown in our recent investigation. To further verify the regulatory effects of bFGF on the myostatin gene and to better understand its mechanism in skeletal muscle, and to promote clinical applications of bFGF to treat skeletal muscle diseases correlated to muscular dystrophy or AIDS and so on, recombinant human bFGF (rh-bFGF) was added into media and stimulated murine C2C12 myoblasts to investigate the dose-dependent effect of bFGF on suppression of myostatin gene expression and the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulatory mechanism. Simultaneously, complete coding sequence of ovine?8 kDa-bFGF gene was inserted into eukaryotic vector pCMV-neo (originated from pEGFP-N1 vector, from which the EGFP gene has been removed), the recombinant plasmid pCMV-neo-bFGF was harvested and injected into the mouse skeletal muscle of posterior limb. Expression levels of bFGF, myostatin, and ERK1/2 genes in murine C2C12 myoblasts and the skeletal muscle were analyzed by real-time reverse transcription-polymerase chain reaction and Western blotting analysis, respectively. The results showed that bFGF impaired the expression of myostatin gene in a dose-dependent manner in C2C12 cells, with increasing concentration of rh-bFGF, myostatin mRNA declined gradually. In addition, results in skeletal muscle indicated that bFGF also suppressed the expression of the myostatin gene in vivo. Furthermore, we found ERK1/2 participated in the regulatory mechanism of bFGF on the expression of the myostatin gene.
Collapse
Affiliation(s)
- Huazhong Liu
- Modern Biochemistry Center, Guangdong Ocean University, Zhanjiang, China
| | | | | | | |
Collapse
|
35
|
Shefer G, Carmeli E, Rauner G, Yablonka-Reuveni Z, Benayahu D. Exercise running and tetracycline as means to enhance skeletal muscle stem cell performance after external fixation. J Cell Physiol 2008; 215:265-75. [PMID: 18064665 DOI: 10.1002/jcp.21306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prolonged limb immobilization, which is often the outcome of injury and illness, results in the atrophy of skeletal muscles. The basis of muscle atrophy needs to be better understood in order to allow development of effective countermeasures. The present study focused on determining whether skeletal muscle stem cells, satellite cells, are directly affected by long-term immobilization as well as on investigating the potential of pharmacological and physiological avenues to counterbalance atrophy-induced muscle deterioration. We used external fixation (EF), as a clinically relevant model, to gain insights into the relationships between muscle degenerative and regenerative conditions to the myogenic properties and abundance of bona fide satellite cells. Rats were treated with tetracycline (Tet) through the EF period, or exercise trained on a treadmill for 2 weeks after the cessation of the atrophic stimulus. EF induced muscle mass loss; declined expression of the muscle specific regulatory factors (MRFs) Myf5, MyoD, myogenin, and also of satellite cell numbers and myogenic differentiation aptitude. Tet enhanced the expression of MRFs, but did not prevent the decline of the satellite cell pool. After exercise running, however, muscle mass, satellite cell numbers (enumerated through the entire length of myofibers), and myogenic differentiation aptitude (determined by the lineal identity of clonal cultures of satellite cells) were re-gained to levels prior to EF. Together, our results point to Tet and exercise running as promising and relevant approaches for enhancing muscle recovery after atrophy.
Collapse
Affiliation(s)
- G Shefer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
36
|
Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007; 113:461-87. [PMID: 17258813 DOI: 10.1016/j.pharmthera.2006.11.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness are common in many disease states and conditions including aging, cancer cachexia, sepsis, denervation, disuse, inactivity, burns, HIV-acquired immunodeficiency syndrome (AIDS), chronic kidney or heart failure, unloading/microgravity, and muscular dystrophies. Although the maintenance of muscle mass is generally regarded as a simple balance between protein synthesis and protein degradation, these mechanisms are not strictly independent, but in fact they are coordinated by a number of different and sometimes complementary signaling pathways. Clearer details are now emerging about these different molecular pathways and the extent to which these pathways contribute to the etiology of various muscle wasting disorders. Therapeutic strategies for attenuating muscle wasting and improving muscle function vary in efficacy. Exercise and nutritional interventions have merit for slowing the rate of muscle atrophy in some muscle wasting conditions, but in most cases they cannot halt or reverse the wasting process. Hormonal and/or other drug strategies that can target key steps in the molecular pathways that regulate protein synthesis and protein degradation are needed. This review describes the signaling pathways that maintain muscle mass and provides an overview of some of the major conditions where muscle wasting and weakness are indicated. The review provides details on some therapeutic strategies that could potentially attenuate muscle atrophy, promote muscle growth, and ultimately improve muscle function. The emphasis is on therapies that can increase muscle mass and improve functional outcomes that will ultimately lead to improvement in the quality of life for affected patients.
Collapse
Affiliation(s)
- Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
37
|
Acharyya S, Guttridge DC. Cancer Cachexia Signaling Pathways Continue to Emerge Yet Much Still Points to the Proteasome: Fig. 1. Clin Cancer Res 2007; 13:1356-61. [PMID: 17332276 DOI: 10.1158/1078-0432.ccr-06-2307] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cachexia is a life-threatening consequence of cancer that diminishes both quality of life and survival. It is a syndrome that is characterized by extreme weight loss resulting mainly from the depletion of skeletal muscle. Research from the past decades investigating the mechanisms of tumor-induced muscle wasting has identified several key cachectic factors that act through the ubiquitin-dependent proteasome system. Signaling pathways that mediate the effects of these cachectic factors have also subsequently emerged. Here, we review some of these pathways specific to myostatin, nuclear factor kappaB, and the newly elucidated dystrophin glycoprotein complex. Although these molecules are likely to employ distinct modes of action, results suggest that they nevertheless maintain a link to the proteasome pathway. Therefore, although the proteasome remains a preferred choice for therapy, the continually emerging upstream signaling molecules serve as additional promising therapeutic targets for the treatment of tumor-induced muscle wasting.
Collapse
Affiliation(s)
- Swarnali Acharyya
- Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, Integrated Biomedical Graduate Program, The Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
38
|
Skipworth RJE, Stewart GD, Ross JA, Guttridge DC, Fearon KCH. The molecular mechanisms of skeletal muscle wasting: Implications for therapy. Surgeon 2006; 4:273-83. [PMID: 17009546 DOI: 10.1016/s1479-666x(06)80004-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle wasting is an important systemic manifestation of a wide range of diseases, including trauma, sepsis and cancer. The clinical consequences of muscle wasting undoubtedly include significant patient morbidity and worsened survival. Recently, there has been important progress in our understanding of the molecular mechanisms behind muscle wasting. In this review, the common systemic mediators, intracellular signalling pathways and effector mechanisms of skeletal muscle wasting are discussed with particular reference to different models of wasting and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- R J E Skipworth
- Clinical and Surgical Sciences (Surgery), School of Clinical Sciences and Community Health, The University of Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|