1
|
Roberts TD, Costa PB, Lynn SK, Coburn JW. Effects of Percussive Massage Treatments on Symptoms Associated with Eccentric Exercise-Induced Muscle Damage. J Sports Sci Med 2024; 23:126-135. [PMID: 38455428 PMCID: PMC10915620 DOI: 10.52082/jssm.2024.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 03/09/2024]
Abstract
Percussive massage (PM) is an emerging recovery treatment despite the lack of research on its effects post-eccentric exercise (post-EE). This study investigated the effects of PM treatments (immediately, 24, 48, and 72 h post-EE) on the maximal isometric torque (MIT), range of motion (ROM), and an 11-point numerical rating scale (NRS) of soreness of the nondominant arm's biceps brachii from 24-72 h post-EE. Seventeen untrained, college-aged subjects performed 60 eccentric elbow flexion actions with their nondominant arms. Nine received 1 minute of PM, versus eight who rested quietly (control [CON]). In order, NRS, ROM, and MIT (relative to body mass) were collected pre-eccentric exercise (pre-EE) and after treatment (AT) at 24, 48, and 72 h post-EE. NRS was also collected before treatment (BT). Electromyographic (EMG) and mechanomyographic (MMG) amplitudes were collected during the MIT and normalized to pre-EE. There were no interactions for MIT, EMG, or MMG, but there were interactions for ROM and NRS. For ROM, the PM group had higher values than the CON 24-72 h by ~6-8°, a faster return to pre-EE (PM: 48 h, CON: 72 h), and exceeded their pre-EE at 72 h by ~4°. The groups' NRS values did not differ BT 24-72 h; however, the PM group lowered their NRS from BT to AT within every visit by ~1 point per visit, which resulted in them having lower values than the CON from 24-72 h by ~2-3 points. Additionally, the PM group returned their NRS to pre-EE faster than the CON (PM: BT 72 h, CON: never). In conclusion, PM treatments may improve ROM without affecting isometric strength or muscle activation 24-72 h post-EE. Although the PM treatments did not enhance the recovery from delayed onset muscle soreness until 72 h, they consistently provided immediate, temporary relief when used 24-72 h post-EE.
Collapse
Affiliation(s)
- Trevor D Roberts
- California State University, Fullerton; Center for Sport Performance and Exercise Physiology Lab; Fullerton, CA, USA
| | - Pablo B Costa
- California State University, Fullerton; Center for Sport Performance and Exercise Physiology Lab; Fullerton, CA, USA
| | - Scott K Lynn
- California State University, Fullerton; Center for Sport Performance and Exercise Physiology Lab; Fullerton, CA, USA
| | - Jared W Coburn
- California State University, Fullerton; Center for Sport Performance and Exercise Physiology Lab; Fullerton, CA, USA
| |
Collapse
|
2
|
Kisilewicz A, Madeleine P, Ignasiak Z, Ciszek B, Kawczynski A, Larsen RG. Eccentric Exercise Reduces Upper Trapezius Muscle Stiffness Assessed by Shear Wave Elastography and Myotonometry. Front Bioeng Biotechnol 2020; 8:928. [PMID: 32903634 PMCID: PMC7438744 DOI: 10.3389/fbioe.2020.00928] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
In this study, we tested the hypotheses that unaccustomed eccentric exercise (ECC) would reduce the elastic modulus and dynamic stiffness of the upper trapezius muscle and that these changes would correlate with increases in muscle thickness, reflecting muscle edema. Shear wave elastography was used to measure elastic modulus, dynamic stiffness was assessed using myotonometry, and muscle thickness was measured using ultrasonography. All measurements were performed at four locations over the upper trapezius before and 24 h after a single bout of ECC. Fourteen healthy participants (11 males and 3 females; 23.2 ± 3.0 years; height 175.1 ± 10.4 cm; body mass 73.8 ± 11.3 kg) took part in the study. Overall, ECC resulted in decreased elastic modulus (from 45.8 ± 1.6 to 39.4 ± 1.2 kPa, p < 0.01) and dynamic muscle stiffness (from 369.0 ± 7.3 to 302.6 ± 6.0 N/m, p < 0.01). Additionally, ECC resulted in increased muscle thickness (from 6.9 ± 0.4 to 7.3 ± 0.4 mm, p < 0.01). Spatial changes (across the four locations) were found for elastic modulus, stiffness and thickness. No significant correlations were found between changes in measures of muscle stiffness, or between changes in stiffness and changes in thickness. In conclusion, the present pilot study showed that ECC altered biomechanical muscle properties, reflected by decreased elastic modulus and dynamic muscle stiffness 24 h after ECC.
Collapse
Affiliation(s)
- Aleksandra Kisilewicz
- Department of Paralympics Sports, University School of Physical Education, Wrocław, Poland
| | - Pascal Madeleine
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Zofia Ignasiak
- Department of Biostructure, University School of Physical Education, Wrocław, Poland
| | - Bogdan Ciszek
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - Adam Kawczynski
- Department of Paralympics Sports, University School of Physical Education, Wrocław, Poland
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Cè E, Longo S, Limonta E, Coratella G, Rampichini S, Esposito F. Peripheral fatigue: new mechanistic insights from recent technologies. Eur J Appl Physiol 2019; 120:17-39. [DOI: 10.1007/s00421-019-04264-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
|
4
|
Zargari Marandi R, Madeleine P, Omland Ø, Vuillerme N, Samani A. An oculometrics-based biofeedback system to impede fatigue development during computer work: A proof-of-concept study. PLoS One 2019; 14:e0213704. [PMID: 31150405 PMCID: PMC6544207 DOI: 10.1371/journal.pone.0213704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/18/2019] [Indexed: 12/19/2022] Open
Abstract
A biofeedback system may objectively identify fatigue and provide an individualized timing plan for micro-breaks. We developed and implemented a biofeedback system based on oculometrics using continuous recordings of eye movements and pupil dilations to moderate fatigue development in its early stages. Twenty healthy young participants (10 males and 10 females) performed a cyclic computer task for 31–35 min over two sessions: 1) self-triggered micro-breaks (manual sessions), and 2) biofeedback-triggered micro-breaks (automatic sessions). The sessions were held with one-week inter-session interval and in a counterbalanced order across participants. Each session involved 180 cycles of the computer task and after each 20 cycles (a segment), the task paused for 5-s to acquire perceived fatigue using Karolinska Sleepiness Scale (KSS). Following the pause, a 25-s micro-break involving seated exercises was carried out whether it was triggered by the biofeedback system following the detection of fatigue (KSS≥5) in the automatic sessions or by the participants in the manual sessions. National Aeronautics and Space Administration Task Load Index (NASA-TLX) was administered after sessions. The functioning core of the biofeedback system was based on a Decision Tree Ensemble model for fatigue classification, which was developed using an oculometrics dataset previously collected during the same computer task. The biofeedback system identified fatigue with a mean accuracy of approx. 70%. Perceived workload obtained from NASA-TLX was significantly lower in the automatic sessions compared with the manual sessions, p = 0.01 Cohen’s dz = 0.89. The results give support to the effectiveness of integrating oculometrics-based biofeedback in timing plan of micro-breaks to impede fatigue development during computer work.
Collapse
Affiliation(s)
- Ramtin Zargari Marandi
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
- Univ. Grenoble Alpes, AGEIS, Grenoble, France
| | - Pascal Madeleine
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
| | - Øyvind Omland
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
- Aalborg University Hospital, Clinic of Occupational Medicine, Danish Ramazzini Center, Aalborg, Denmark
| | - Nicolas Vuillerme
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
- Univ. Grenoble Alpes, AGEIS, Grenoble, France
- Institut Universitaire de France, Paris, France
| | - Afshin Samani
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
5
|
Wages NP, Beck TW, Ye X, Carr JC. Unilateral fatiguing exercise and its effect on ipsilateral and contralateral resting mechanomyographic mean frequency between aerobic populations. Physiol Rep 2017; 5:e13151. [PMID: 28242828 PMCID: PMC5328779 DOI: 10.14814/phy2.13151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022] Open
Abstract
The purpose of this investigation was to establish a better understanding of contralateral training and its effects between homologous muscles following unilateral fatiguing aerobic exercise during variable resting postural positions, and to determine if any observable disparities could be attributed to the differences between the training ages of the participants. Furthermore, we hypothesized that we would observe a contralateral cross-over effect for both groups, with the novice trained group having the higher mechanomyographic mean frequency values in both limbs, across all resting postural positions. Twenty healthy male subjects exercised on an upright cycle ergometer, using only their dominate limb, for 30 min at 60% of their VO2 peak. Resting electromyographic and mechanomyographic signals were measured prior to and following fatiguing aerobic exercise. We found that there were resting mechanomyographic mean frequency differences of approximately 1.9 ± 0.8% and 0.9 ± 0.7%; 9.1 ± 0.3% and 10.2 ± 3.7%; 2 ± 1.8% and 3 ± 1.4%; and 0.9 ± 0.6% and 0.2 ± 1.3% between the novice and advanced trained groups (for the upright sitting position with legs extended 180°; upright sitting position with legs bent 90°; lying supine position with legs extended 180°; and lying supine with legs bent 90°, respectively), from the dominant and nondominant limbs, respectively. We have concluded that despite the relative matching of exercise intensity between groups, acute responses to contralateral training become less accentuated as one progresses in training age. Additionally, our results lend support to the notion that there are multiple, overlapping neural and mechanical mechanisms concurrently contributing to the contralateral cross-over effects observed across the postexercise resting time course.
Collapse
Affiliation(s)
- Nathan P Wages
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Travis W Beck
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Xin Ye
- Department of Health, Exercise Science and Recreation Management, University of Mississippi, University, Mississippi
| | - Joshua C Carr
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
6
|
Wages NP, Beck TW, Ye X, Carr JC. Examination of a neural cross-over effect using resting mechanomyographic mean frequency from the vastus lateralis muscle in different resting positions following aerobic exercise. Eur J Appl Physiol 2016; 116:919-29. [PMID: 26970952 DOI: 10.1007/s00421-016-3351-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/01/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the potential neural cross-over effect between the vastus lateralis muscles in different postural resting positions. METHODS Subjects exercised on an upright cycle ergometer, using only their dominate leg, for 2 min at 30 % VO2 peak. Following this warm-up, subjects then cycled (still using only their dominant leg) for 30 min at 60 % VO2 peak. After the aerobic phase, subjects cooled down (again, using only their dominant leg) for 2 min at 30 % VO2 peak. Resting mechanomyography mean frequency was measured prior to and following aerobic exercise. RESULTS There was an approximate 6.3 ± 6.8 and a 10 ± 5.1 % increase (upright sitting position with the subject's knee joint angle fixed at 180°); an approximate 7 ± 6.6 and a 16.1 ± 6.5 % increase (upright sitting position with the subject's knee joint angle fixed at 90°); an approximate 0.5 ± 6.8 and 3.7 ± 5.6 % increase (lying supine position with the subject's knee joint angle fixed at 180°); and an approximately 2 ± 8.3 and 2.5 ± 8.6 % increase (lying supine position with the subject's knee joint angle fixed at 90°) in normalized mechanomyography mean frequency after aerobic exercise for the dominant and non-dominate vastus lateralis muscles, respectfully. CONCLUSION There appears to be a statistically significant neural cross-over effect for the vastus lateralis muscle, during three of the four postural resting positions, with the non-dominant vastus lateralis muscle having a greater increase in mechanomyography mean frequency.
Collapse
Affiliation(s)
- Nathan P Wages
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Room 104, Norman, OK, 73019, USA.
| | - Travis W Beck
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Room 104, Norman, OK, 73019, USA
| | - Xin Ye
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Room 104, Norman, OK, 73019, USA
| | - Joshua C Carr
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Room 104, Norman, OK, 73019, USA
| |
Collapse
|
7
|
Kawczyński A, Samani A, Mroczek D, Chmura P, Błach W, Migasiewicz J, Klich S, Chmura J, Madeleine P. Functional connectivity between core and shoulder muscles increases during isometric endurance contractions in judo competitors. Eur J Appl Physiol 2015; 115:1351-8. [PMID: 25633071 DOI: 10.1007/s00421-015-3114-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/19/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to assess the surface electromyogram (SEMG) changes within and between muscles of the torso and shoulder region during static endurance contraction in elite judokas. We hypothesized an increased functional connectivity of muscles from the shoulder and torso regions during sustained isometric contraction. METHODS Twelve healthy, right-handed judo competitors participated in the study. The SEMG signals from the dominant trapezius (upper, middle and lower part), deltoideus anterior, serratus anterior, and pectoralis major muscles were recorded during isometric endurance contraction consisting of bilateral arm abduction at 90°. The normalized mutual information (NMI) was computed between muscle pairs as an index indicating functional connectivity. RESULTS The NMIs increased significantly during endurance test for 10 of the 15 muscle pairs (P < 0.001). CONCLUSION We concluded that the increases in NMIs highlighted functional changes in the interplay between core and shoulder muscles during an endurance contraction in elite judokas.
Collapse
Affiliation(s)
- Adam Kawczyński
- Department of Athletes Motor Skills, University School of Physical Education, al.I.J Paderewskiego 35, Wrocław, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Salles JI, Cossich VRA, Amaral MV, Monteiro MT, Cagy M, Motta G, Velasques B, Piedade R, Ribeiro P. Electrophysiological correlates of the threshold to detection of passive motion: an investigation in professional volleyball athletes with and without atrophy of the infraspinatus muscle. BIOMED RESEARCH INTERNATIONAL 2013; 2013:634891. [PMID: 23484136 PMCID: PMC3581095 DOI: 10.1155/2013/634891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/21/2012] [Accepted: 12/02/2012] [Indexed: 11/18/2022]
Abstract
The goal of the present study is to compare the electrophysiological correlates of the threshold to detection of passive motion (TTDPM) among three groups: healthy individuals (control group), professional volleyball athletes with atrophy of the infraspinatus muscle on the dominant side, and athletes with no shoulder pathologies. More specifically, the study aims at assessing the effects of infraspinatus muscle atrophy on the cortical representation of the TTDPM. A proprioception testing device (PTD) was used to measure the TTDPM. The device passively moved the shoulder and participants were instructed to respond as soon as movement was detected (TTDPM) by pressing a button switch. Response latency was established as the delay between the stimulus (movement) and the response (button press). Electroencephalographic (EEG) and electromyographic (EMG) activities were recorded simultaneously. An analysis of variance (ANOVA) and subsequent post hoc tests indicated a significant difference in latency between the group of athletes without the atrophy when compared both to the group of athletes with the atrophy and to the control group. Furthermore, distinct patterns of cortical activity were observed in the three experimental groups. The results suggest that systematically trained motor abilities, as well as the atrophy of the infraspinatus muscle, change the cortical representation of the different stages of proprioceptive information processing and, ultimately, the cortical representation of the TTDPM.
Collapse
Affiliation(s)
- José Inácio Salles
- Neuromuscular Research Laboratory, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil 500, 20940-070 Rio de Janeiro, RJ, Brazil
- Brazilian Volleyball Confederation, Shopping Città America Avenida das Américas 700, Bloco 7, Barra da Tijuca, 22640-100 Rio de Janeiro, RJ, Brazil
| | - Victor Rodrigues Amaral Cossich
- Neuromuscular Research Laboratory, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil 500, 20940-070 Rio de Janeiro, RJ, Brazil
| | - Marcus Vinicius Amaral
- Neuromuscular Research Laboratory, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil 500, 20940-070 Rio de Janeiro, RJ, Brazil
| | - Martim T. Monteiro
- Neuromuscular Research Laboratory, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil 500, 20940-070 Rio de Janeiro, RJ, Brazil
| | - Maurício Cagy
- Biomedical Engineering Program, Centre of Technology, Federal University of Rio de Janeiro, Avenida Horácio Macedo 2030, Bloco H, Sala 327, Cidade Universitária, 21941-901 Rio de Janeiro, RJ, Brazil
| | - Geraldo Motta
- Neuromuscular Research Laboratory, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil 500, 20940-070 Rio de Janeiro, RJ, Brazil
| | - Bruna Velasques
- Neuromuscular Research Laboratory, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil 500, 20940-070 Rio de Janeiro, RJ, Brazil
- Brain Mapping and Sensorimotor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Avenida Venceslau Brás 71, Botafogo, 22290-140 Rio de Janeiro, RJ, Brazil
- Institute of Applied Neuroscience (IAN), Rua Pacheco Leão 704, 25 Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brazil
| | - Roberto Piedade
- Brain Mapping and Sensorimotor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Avenida Venceslau Brás 71, Botafogo, 22290-140 Rio de Janeiro, RJ, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensorimotor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Avenida Venceslau Brás 71, Botafogo, 22290-140 Rio de Janeiro, RJ, Brazil
- Institute of Applied Neuroscience (IAN), Rua Pacheco Leão 704, 25 Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Al-Mulla MR, Sepulveda F, Colley M. A review of non-invasive techniques to detect and predict localised muscle fatigue. SENSORS (BASEL, SWITZERLAND) 2011; 11:3545-94. [PMID: 22163810 PMCID: PMC3231314 DOI: 10.3390/s110403545] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/01/2011] [Accepted: 03/21/2011] [Indexed: 11/16/2022]
Abstract
Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results.
Collapse
Affiliation(s)
- Mohamed R. Al-Mulla
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK; E-Mails: (F.S.); (M.C.)
| | - Francisco Sepulveda
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK; E-Mails: (F.S.); (M.C.)
| | - Martin Colley
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK; E-Mails: (F.S.); (M.C.)
| |
Collapse
|
10
|
Dannecker EA, Knoll V, Robinson ME. Sex differences in muscle pain: self-care behaviors and effects on daily activities. THE JOURNAL OF PAIN 2008; 9:200-9. [PMID: 18088556 PMCID: PMC2290003 DOI: 10.1016/j.jpain.2007.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 09/30/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED Women have a higher prevalence of fibromyalgia and myofascial pain than men, but sex differences in muscle pain are inconsistently detected. We examined sex differences in ratings and effects of recalled and experimentally-induced muscle pain. In study 1 (n = 188), participants completed a questionnaire about recalled muscle pain. In study 2 (n = 55), participants described muscle pain from an exercise stimulus across 3 days by telephone. Muscle pain ratings, self-care behaviors for muscle pain, and effects of muscle pain on activities were measured. No significant sex differences were found except that women tended to view exercise as more effective for decreasing muscle pain than men (F (1, 187) = 5.43, P = .02, eta(2) = .03), fewer women performed exercise for induced muscle pain than men, and women's activity interference was significantly higher than men's at the third day after exercise (F (2, 42) = 6.54, P = .01, eta(2) = .14). These findings support the absence of meaningful sex differences in muscle pain ratings. However, additional investigations are needed that consider the daily activities completed by people and the prevalence and incidence of performing a wide range of self-care behaviors for pain. PERSPECTIVE These studies support that sex differences are not present in recalled and experimentally-induced muscle pain ratings. Therefore, we must be cautious about generalizing the musculoskeletal pain literature to muscle pain. Additional research is needed to interpret potential sex differences in self-care behaviors for muscle pain and activity interference from muscle pain.
Collapse
Affiliation(s)
- Erin A Dannecker
- Department of Physical Therapy, University of Missouri, Columbia, Missouri 65211-4250, USA.
| | | | | |
Collapse
|