1
|
Su CM, Tsai CH, Chen HT, Wu YS, Yang SF, Tang CH. Melatonin Regulates Rheumatoid Synovial Fibroblasts-Related Inflammation: Implications for Pathological Skeletal Muscle Treatment. J Pineal Res 2024; 76:e13009. [PMID: 39315577 DOI: 10.1111/jpi.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Melatonin has been reported to regulate circadian rhythms and have anti-inflammatory characteristics in various inflammatory autoimmune diseases, but its effects in diseases-associated muscle atrophy remain controversial. This study is aimed to determine the evidence of melatonin in rheumatoid arthritis (RA)-related pathological muscle atrophy. We used initially bioinformatics results to show that melatonin regulated significantly the correlation between pro-inflammation and myogenesis in RA synovial fibroblasts (RASF) and myoblasts. The conditioned medium (CM) from melatonin-treated RASF was incubated in myoblasts with growth medium and differentiated medium to investigate the markers of pro-inflammation, atrophy, and myogenesis. We found that melatonin regulated RASF CM-induced pathological muscle pro-inflammation and atrophy in myoblasts and differentiated myocytes through NF-κB signaling pathways. We also showed for the first time that miR-30c-1-3p is negatively regulated by three inflammatory cytokines in human RASF, which is associated with murine-differentiated myocytes. Importantly, oral administration with melatonin in a collagen-induced arthritis (CIA) mouse model also significantly improved arthritic swelling, hind limb grip strength as well as pathological muscle atrophy. In conclusion, our study is the first to demonstrate not only the underlying mechanism whereby melatonin decreases pro-inflammation in RA-induced pathological muscle atrophy but also increases myogenesis in myoblasts and differentiated myocytes.
Collapse
MESH Headings
- Melatonin/pharmacology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/drug therapy
- Humans
- Fibroblasts/metabolism
- Fibroblasts/drug effects
- Fibroblasts/pathology
- Animals
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Inflammation/metabolism
- Inflammation/pathology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Synovial Membrane/drug effects
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Male
- Myoblasts/metabolism
- Myoblasts/drug effects
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/drug therapy
- Mice, Inbred DBA
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, Taiwan
- School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, Taiwan
- Spine Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| | - Yi-Syuan Wu
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung City, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung City, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung City, Taiwan
| |
Collapse
|
2
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. The temporal and spatial effects of reconstructive surgery on the atrophy of hindlimb muscles in anterior cruciate ligament transected rats. Physiol Res 2023; 72:99-109. [PMID: 36545871 PMCID: PMC10069818 DOI: 10.33549/physiolres.934909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
After anterior cruciate ligament (ACL) injury, a decrease in muscle strength associated with muscle atrophy is frequently observed. The temporal and spatial effects of reconstructive surgery on muscle atrophy have not been examined in detail. This study aimed to 1) reveal the short and mid-term effects of reconstructive surgery on muscle atrophy, and 2) investigate the differences in the degree of atrophy after ACL reconstruction in the hindlimb muscles. ACL transection with or without reconstructive surgery was performed unilaterally on the knees of rats. Untreated rats were used as controls. At one or four weeks post-surgery, the relative muscle wet weights (wet weight/body weight) of the hindlimb muscles were calculated to assess atrophy. At one week post-surgery, muscle atrophy was induced by ACL transection and further aggravated by reconstructive surgery. Reconstructive surgery facilitated recovery from muscle atrophy in some muscles compared with those without reconstructive surgery (ACL transection alone) at four weeks post-surgery. Muscle atrophy after ACL reconstruction was greater in the rectus femoris and plantar flexors than in the semitendinosus and plantar extensors at one week post-surgery. These results indicate that reconstructive surgery exacerbates muscle atrophy in the first week post-surgery, while facilitating recovery between the first and fourth week post-surgery. After reconstructive surgery, muscle atrophy was observed not only in the quadriceps and hamstrings, but also in the lower leg muscles, suggesting the need for muscle strengthening interventions for the lower leg muscles as well as the quadriceps and hamstrings.
Collapse
Affiliation(s)
- A Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan.
| | | | | | | |
Collapse
|
3
|
Pita LM, Spadella MA, Montenote MC, Oliveira PB, Chies AB. Repercussions of adjuvant-induced arthritis on body composition, soleus muscle, and heart muscle of rats. ACTA ACUST UNITED AC 2020; 53:e8969. [PMID: 32130291 PMCID: PMC7057929 DOI: 10.1590/1414-431x20198969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023]
Abstract
This study investigated the repercussions of adjuvant-induced arthritis (AIA) on
body composition and the structural organization of the soleus and cardiac
muscles, including their vascularization, at different times of disease
manifestation. Male rats were submitted to AIA induction by intradermal
administration of 100 μL of Mycobacterium tuberculosis (50
mg/mL), in the right hind paw. Animals submitted to AIA were studied 4 (AIA4),
15 (AIA15), and 40 (AIA40) days after AIA induction as well as a control group
of animals not submitted to AIA. Unlike the control animals, AIA animals did not
gain body mass throughout the evolution of the disease. AIA reduced food
consumption, but only on the 40th day after induction. In the soleus muscle, AIA
reduced the wet mass in a time-dependent manner but increased the capillary
density by the 15th day and the fiber density by both 15 and 40 days after
induction. The diameter of the soleus fiber decreased from the 4th day after AIA
induction as well as the capillary/fiber ratio, which was most evident on the
40th day. Moreover, AIA induced slight histopathological changes in the cardiac
muscle that were more evident on the 15th day after induction. In conclusion,
AIA-induced changes in body composition as well as in the soleus muscle fibers
and vasculature have early onset but are more evident by the 15th day after
induction. Moreover, the heart may be a target organ of AIA, although less
sensitive than skeletal muscles.
Collapse
Affiliation(s)
- L M Pita
- Laboratório de Farmacologia, Faculdade de Medicina de Marília, Marília, SP, Brasil
| | - M A Spadella
- Laboratório de Embriologia Humana, Faculdade de Medicina de Marília, Marília, SP, Brasil
| | - M C Montenote
- Departamento de Farmacologia, Instituto de Biociências de Botucatu, Botucatu, SP, Brasil
| | - P B Oliveira
- Laboratório de Farmacologia, Faculdade de Medicina de Marília, Marília, SP, Brasil
| | - A B Chies
- Laboratório de Farmacologia, Faculdade de Medicina de Marília, Marília, SP, Brasil
| |
Collapse
|
4
|
Himori K, Tatebayashi D, Ashida Y, Yamada T. Eccentric training enhances the αB-crystallin binding to the myofibrils and prevents skeletal muscle weakness in adjuvant-induced arthritis rat. J Appl Physiol (1985) 2019; 127:71-80. [DOI: 10.1152/japplphysiol.00102.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Patients with rheumatoid arthritis (RA) frequently suffer from muscle weakness. We examined whether eccentric training prevents skeletal muscle weakness in adjuvant-induced arthritis (AIA) rat, a widely used animal model for RA. AIA was induced in the knees of Wistar rats by injection of complete Freund’s adjuvant. To induce eccentric contractions (ECCs), neuromuscular electrical stimulation (45 V) was applied to the plantar flexor muscles simultaneously with forced dorsiflexion of the ankle joint (0–40°) and was given every 6 s. ECC exercise was applied every other day for a total of 11 sessions and consisted of 4 sets of 5 contractions. There was a significant reduction in in vitro maximum Ca2+-activated force in skinned fibers in gastrocnemius muscle from AIA rats. These changes were associated with reduced expression levels of contractile proteins (i.e., myosin and actin), increased levels of inflammation redox stress-related biomarkers (i.e., TNF-α, malondialdehyde-protein adducts, NADPH oxidase 2, and neuronal nitric oxide synthase), and autolyzed active calpain-1 in AIA muscles. ECC training markedly enhanced the steady-state levels of αB-crystallin, a small heat shock protein, and its binding to the myofibrils and prevented the AIA-induced myofibrillar dysfunction, reduction in contractile proteins, and inflammation-oxidative stress insults. Our findings demonstrate that ECC training preserves myofibrillar function without muscle damage in AIA rats, which is at least partially attributable to the protective effect of αB-crystallin on the myofibrils against oxidative stress-mediated protein degeneration. Thus ECC training can be a safe and effective intervention, counteracting the loss of muscle strength in RA patients. NEW & NOTEWORTHY Eccentric contractions (ECCs) are regarded as an effective way to increase muscle strength. No studies, however, assess safety and effectiveness of ECC training on muscle weakness associated with rheumatoid arthritis. Here, we used adjuvant-induced arthritis (AIA) rats to demonstrate that ECC training prevents intrinsic contractile dysfunction without muscle damage in AIA rats, which may be attributed to the protective effect of αB-crystallin on the myofibrils against inflammation-oxidative stress insults.
Collapse
Affiliation(s)
- Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
5
|
Kaneguchi A, Ozawa J, Moriyama H, Yamaoka K. Nociception contributes to the formation of myogenic contracture in the early phase of adjuvant-induced arthritis in a rat knee. J Orthop Res 2017; 35:1404-1413. [PMID: 27584936 DOI: 10.1002/jor.23412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/25/2016] [Indexed: 02/04/2023]
Abstract
It is unknown how joint contracture is generated in inflamed joints. This study aimed to clarify the role of nociception on the formation of joint contracture secondary to arthritis. Monoarthritis was induced by intra-articular injections of complete Freund's adjuvant (CFA) into rat knees. On day 5 after CFA injection, the passive extension range of motion (ROM) of knee joints were measured, both before and after myotomy of knee flexors, to evaluate the extent of muscular contribution to CFA-induced joint contracture. The steroidal anti-inflammatory drug dexamethasone could prevent ROM restrictions completely, both before and after myotomy. On the other hand, the opioid analgesic drug morphine did not prevent the development of restricted ROM observed after myotomy, while it did before myotomy. This indicates that nociception contributes to joint contracture through alterations in muscular structure (myogenic factors). Next, we tested the hypothesis that nociception-induced reflexive flexor muscle contractions cause myogenic contracture in arthritic joints. To do this, chemical denervation was performed by Botulinum toxin type A (BTX-A) injections into knee flexor muscles, simultaneously with CFA injections into the knee. As expected, BTX-A could alleviate ROM restrictions observed before myotomy. These findings suggest that nociceptive-related muscle contractions play an essential role in the formation of joint contracture. Thus, our study indicates that analgesic management during an early stage of joint arthritis is an essential mean to prevent the formation of joint contracture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1404-1413, 2017.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Hideki Moriyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, Japan
| | - Kaoru Yamaoka
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
6
|
Zheng K, Zhao Z, Lin N, Wu Y, Xu Y, Zhang W. Protective Effect of Pinitol Against Inflammatory Mediators of Rheumatoid Arthritis via Inhibition of Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22). Med Sci Monit 2017; 23:1923-1932. [PMID: 28430763 PMCID: PMC5408901 DOI: 10.12659/msm.903357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background The aim of the current study was to explore the anti-arthritic effect of pinitol via assessing its effect on various inflammatory mediators and its possible mechanism of action. Material/Method We assessed the anti-arthritic effect of pinitol in a formaldehyde- and CFA-induced arthritic model in Wistar Swiss albino strain rats divided into 6 groups. The rats received different doses of pinitol and indomethacin for 28 days. The arthritic index and body weight were determined at regular intervals, together with hepatic, hematological, and antioxidant parameters. The expression of proinflammatory cytokines (e.g., IL-6, TNF-α, and IL-1β) and inflammatory mediators (e.g., COX-2 and VEGF) were also estimated with histopathological evaluation of the joint tissue of rats. A docking study of pinitol with PTPN22 was also carried out. Results The CFA-induced model rats developed redness and nodules in the tail and front paws, and the arthritic control (AC) group rats showed similar symptoms, which were decreased by pinitol administration. The body weight of AC group rats was decreased, while pinitol-treated rats showed considerably increased body weight. Hematological, hepatic, and antioxidant parameters were altered by pinitol in a dose-dependent manner. Pinitol significantly decreased the elevated concentration of proinflammatory cytokines and inflammatory mediators, with improvement in histopathological condition. The docking study suggested that pinitol efficiently interacted with PTPN22 via Arg59, Tyr60, Leu106, and Lys138 by creating close interatomic hydrogen bonds and hydrophobic contacts. Conclusions Pinitol showed anti-arthritic effects via reduction of proinflammatory cytokines and inflammatory mediators via inhibition of PTPN22.
Collapse
Affiliation(s)
- Kewen Zheng
- Department of Orthopeadic Surgery, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Zhixuan Zhao
- Department of Integrated TCM and Western Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Na Lin
- Department of Stomatology, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Yiyan Wu
- College of Pharmacy, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Ying Xu
- Department of Integrated TCM and Western Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| | - Wanli Zhang
- Department of Pediatric Surgery, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China (mainland)
| |
Collapse
|
7
|
Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment. Int J Cardiol 2016; 202:766-72. [DOI: 10.1016/j.ijcard.2015.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/04/2015] [Indexed: 02/07/2023]
|
8
|
Drescher C, Konishi M, Ebner N, Springer J. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle 2015; 6:303-11. [PMID: 26676067 PMCID: PMC4670737 DOI: 10.1002/jcsm.12082] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 01/02/2023] Open
Abstract
Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies, and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartate-resistant acid phosphatase 5a, and novel substances like epigallocatechin-3-gallate. In summary, the progress to combat muscle wasting is in full swing, and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon support by improved and more helpful strategies.
Collapse
Affiliation(s)
- Cathleen Drescher
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Masaaki Konishi
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Nicole Ebner
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG) Göttingen, Germany
| |
Collapse
|
9
|
Hong Y, Kim JH, Jin Y, Lee S, Park K, Lee Y, Chang KT, Hong Y. Melatonin treatment combined with treadmill exercise accelerates muscular adaptation through early inhibition of CHOP-mediated autophagy in the gastrocnemius of rats with intra-articular collagenase-induced knee laxity. J Pineal Res 2014; 56:175-88. [PMID: 24313305 DOI: 10.1111/jpi.12110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to determine the effects of melatonin intervention on gastrocnemius remodeling in rats with collagenase-induced knee instability. Type VII collagenase was injected into the right knee to induce joint laxity with cartilage destruction. Melatonin (MT; 10 mg/kg) injection was performed twice daily subcutaneously, and treadmill exercise (Ex; 11 m/min) was conducted for 1 hr/day at a frequency of 5 days/wk for 4 wks. The gastrocnemius mass, which was reduced with collagenase injection only (Veh), was increased with collagenase injection with melatonin treatment with and without exercise in the early phase, and the mass in both limbs was significantly different in the Veh compared with the MT group. However, there was an increase in the relative muscle weight to body weight ratio in the Veh group at the advanced stage. Insulin-like growth factor receptor (IGF-IR) was downregulated in the Veh group, whereas IGF-IR was upregulated in the MT and MT + Ex groups. Joint laxity induced enhancement of autophagic proteolysis (LC3 II) in the muscle, which was recovered to values similar to those in the normal control group (Con) compared with those in the MT and MT+Ex groups. Although intra-articular collagenase increased the total C/EBP homology protein (CHOP) levels at 1 wk and decreased them at 4 wks in the Veh group, CHOP in the nucleus was upregulated continuously. Prolonged melatonin treatment with and without exercise intervention suppressed nuclear localization of ATF4 and CHOP with less activation of caspase-3, at the advanced phase. Moreover, the interventions promoted the expression of myosin heavy chain (MHC) isoforms under the control of myogenin. Concomitant with a beneficial effect of melatonin with and without exercise, step length of the saline-injected limb and the collagenase-injected supporting side was maintained at values similar to those in control rats. Taken together, the findings demonstrate that melatonin with and without exercise accelerate remodeling of the gastrocnemius through inhibition of nuclear CHOP in rats with collagenase-induced knee instability.
Collapse
Affiliation(s)
- Yunkyung Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea; Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
de Oliveira Nunes Teixeira V, Filippin LI, Viacava PR, de Oliveira PG, Xavier RM. Muscle wasting in collagen-induced arthritis and disuse atrophy. Exp Biol Med (Maywood) 2013; 238:1421-30. [PMID: 24186267 DOI: 10.1177/1535370213505961] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of muscle wasting and decreased mobility have a major functional effect in rheumatoid arthritis, but they have been poorly studied. The objective of our study is to describe muscular involvement and the pathways in an experimental model of arthritis compared to the pathways in disuse atrophy. Female Wistar rats were separated into three groups: control (CO), collagen-induced arthritis (CIA), and immobilized (IM). Spontaneous locomotion and weight were evaluated weekly. The gastrocnemius muscle was evaluated by histology and immunoblotting to measure the expression of myostatin (a negative regulator), LC3 (autophagy), MuRF-1 (proteasome-mediated proteolysis), MyoD, and myogenin (satellite-cell activation). The significance level was set at P < 0.05, and histological analysis of joints confirmed the severity of the arthropathy. There was a significant difference in spontaneous locomotion in the CIA group. Animal body weight, gastrocnemius muscle weight, and relative muscle weight decreased 20%, 30%, and 20%, respectively, in the CIA rats. Inflammatory infiltration and swelling were present in the gastrocnemius muscles of the CIA rats. The mean cross-sectional area was reduced by 30% in the CIA group and by 60% in the IM group. The expressions of myostatin and LC3 between the groups were similar. There was increased expression of MuRF-1 in the IM (1.9-fold) and CIA (3.1-fold) groups and of myogenin in the muscles of the CIA animals (1.7-fold), while MyoD expression was decreased in the IM (20%) rats. This study demonstrated that the development of experimental arthritis is associated with decreased mobility, body weight, and muscle loss. Both IM and CIA animal models presented muscle atrophy, but while proteolysis and the regeneration pathways were activated in the CIA model, there was no activation of regeneration in the IM model. We can assume that muscle atrophy in experimental arthritis is associated with the disease itself and not simply with decreased mobility.
Collapse
|
11
|
Temporal development of muscle atrophy in murine model of arthritis is related to disease severity. J Cachexia Sarcopenia Muscle 2013; 4:231-8. [PMID: 23389765 PMCID: PMC3774915 DOI: 10.1007/s13539-013-0102-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/13/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unknown etiology, affecting mainly the joint but also other tissues. RA patients usually present weakness and muscle atrophy, nonarticular manifestations of the disease. Although causing great impact, the understanding of muscle atrophy, its development, and the mechanisms involved is still very limited. The objective of this study is to evaluate the development of muscle atrophy in skeletal muscle of a murine model of arthritis. METHODS The experimental murine model of collagen-induced arthritis (CIA) was used. DBA/1J mice were randomly divided into three groups: control (CO, n = 25), sham arthritis (SA, n = 25), and arthritis (CIA, n = 28), analyzed in different time points: 25, 35, and 45 days after the induction of arthritis. The arthritis development was followed by clinical scores and hind paw edema three times a week. The spontaneous exploratory locomotion and weight were evaluated weekly. In all time points, serum was collected before the death of the animals for cytokine analysis, and myofiber cross-sectional areas (CSA) of gastrocnemius (GA) and tibialis anterior (TA) skeletal muscles were evaluated. RESULTS The clinical parameters of arthritis progressively increased in CIA in all experimental times, demonstrating the greatest difference from other groups at 45 days after induction (clinical score: CO, 00 ± 00; SA, 1.00 ± 0.14; CIA, 3.28 ± 0.41 p > 0.05). The CIA animals had lower weights during all the experimentation periods with a difference of 6 % from CO at 45 days (p > 0.05). CIA animals also demonstrated progressive decrease in distance walked, with a reduction of 54 % in 35 and 74 % at 45 days. Cytokine analysis identified significant increase in IL-6 serum levels in CIA than CO and SA in all experimental times. CSA of the myofiber of GA and TA was decreased 26 and 31 % (p > 0.05) in CIA in 45 days after the induction of disease, respectively. There was significant and inverse correlation between the disease clinical score and myofiber CSA in 45 days (GA: r = -0.71; p = 0.021). CONCLUSION Our results point to a progressive development of muscle wasting, with premature onset arthritis. These observations are relevant to understand the development of muscle loss, as well as for the design of future studies trying to understand the mechanisms involved in muscle wasting. As far as we are concerned, this is the first study to evaluate the relation between disease score and muscle atrophy in a model of arthritis.
Collapse
|