2
|
Hwang IW, Kim K, Choi EJ, Jin HJ. Association of mitochondrial haplogroup F with physical performance in Korean population. Genomics Inform 2019; 17:e11. [PMID: 30929412 PMCID: PMC6459174 DOI: 10.5808/gi.2019.17.1.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Athletic performance is a complex multifactorial trait involving genetic and
environmental factors. The heritability of an athlete status was reported to be
about 70% in a twin study, and at least 155 genetic markers are known to be
related with athlete status. Mitochondrial DNA (mtDNA) encodes essential
proteins for oxidative phosphorylation, which is related to aerobic capacity.
Thus, mtDNA is a candidate marker for determining physical performance. Recent
studies have suggested that polymorphisms of mtDNA are associated with athlete
status and/or physical performance in various populations. Therefore, we
analyzed mtDNA haplogroups to assess their association with the physical
performance of Korean population. The 20 mtDNA haplogroups were determined using
the SNaPshot assay. Our result showed a significant association of the
haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval,
1.094 to 8.464; p = 0.012). Athletes with haplogroup F (60.64 ±
3.04) also demonstrated a higher Sargent jump than athletes with other
haplogroups (54.28 ± 1.23) (p = 0.041). Thus, our data imply
that haplogroup F may play a crucial role in the physical performance of Korean
athletes. Functional studies with larger sample sizes are necessary to further
substantiate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Kicheol Kim
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eun Ji Choi
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
3
|
Rankinen T, Fuku N, Wolfarth B, Wang G, Sarzynski MA, Alexeev DG, Ahmetov II, Boulay MR, Cieszczyk P, Eynon N, Filipenko ML, Garton FC, Generozov EV, Govorun VM, Houweling PJ, Kawahara T, Kostryukova ES, Kulemin NA, Larin AK, Maciejewska-Karłowska A, Miyachi M, Muniesa CA, Murakami H, Ospanova EA, Padmanabhan S, Pavlenko AV, Pyankova ON, Santiago C, Sawczuk M, Scott RA, Uyba VV, Yvert T, Perusse L, Ghosh S, Rauramaa R, North KN, Lucia A, Pitsiladis Y, Bouchard C. No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes. PLoS One 2016; 11:e0147330. [PMID: 26824906 PMCID: PMC4732768 DOI: 10.1371/journal.pone.0147330] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 01/01/2016] [Indexed: 12/16/2022] Open
Abstract
There are strong genetic components to cardiorespiratory fitness and its response to exercise training. It would be useful to understand the differences in the genomic profile of highly trained endurance athletes of world class caliber and sedentary controls. An international consortium (GAMES) was established in order to compare elite endurance athletes and ethnicity-matched controls in a case-control study design. Genome-wide association studies were undertaken on two cohorts of elite endurance athletes and controls (GENATHLETE and Japanese endurance runners), from which a panel of 45 promising markers was identified. These markers were tested for replication in seven additional cohorts of endurance athletes and controls: from Australia, Ethiopia, Japan, Kenya, Poland, Russia and Spain. The study is based on a total of 1520 endurance athletes (835 who took part in endurance events in World Championships and/or Olympic Games) and 2760 controls. We hypothesized that world-class athletes are likely to be characterized by an even higher concentration of endurance performance alleles and we performed separate analyses on this subsample. The meta-analysis of all available studies revealed one statistically significant marker (rs558129 at GALNTL6 locus, p = 0.0002), even after correcting for multiple testing. As shown by the low heterogeneity index (I2 = 0), all eight cohorts showed the same direction of association with rs558129, even though p-values varied across the individual studies. In summary, this study did not identify a panel of genomic variants common to these elite endurance athlete groups. Since GAMES was underpowered to identify alleles with small effect sizes, some of the suggestive leads identified should be explored in expanded comparisons of world-class endurance athletes and sedentary controls and in tightly controlled exercise training studies. Such studies have the potential to illuminate the biology not only of world class endurance performance but also of compromised cardiac functions and cardiometabolic diseases.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Bernd Wolfarth
- Department of Sport Medicine Humboldt University and Charite University School of Medicine, Berlin, Germany
| | - Guan Wang
- Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | - Mark A. Sarzynski
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
- School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | | | - Ildus I. Ahmetov
- Research Institute for Physical-Chemical Medicine, Moscow, Russia
- Sport Technology Research Centre, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Marcel R. Boulay
- Department of Kinesiology, Laval University, Ste-Foy, Québec, Canada
| | - Pawel Cieszczyk
- University of Szczecin, Department of Physical Education and Health Promotion, Szczecin, Poland
- Academy of Physical Education and Sport, Department of Tourism and Recreation, Gdansk, Poland
| | - Nir Eynon
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Maxim L. Filipenko
- Pharmacogenomics Laboratory, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Fleur C. Garton
- Murdoch Childrens Research Institute and Department of Paediatrics, University of Melbourne, Victoria, Australia
- Institute of Neuroscience and Muscle Research, Childrens Hospital Westmead, Westmead, Australia
| | | | - Vadim M. Govorun
- Research Institute for Physical-Chemical Medicine, Moscow, Russia
| | - Peter J. Houweling
- Pharmacogenomics Laboratory, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Takashi Kawahara
- Department of Sports Medicine, Japan Institute of Sports Sciences, Tokyo, Japan
| | | | | | - Andrey K. Larin
- Research Institute for Physical-Chemical Medicine, Moscow, Russia
| | | | - Motohiko Miyachi
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, Tokyo, Japan
| | | | - Haruka Murakami
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, Tokyo, Japan
| | | | - Sandosh Padmanabhan
- College of Medicine, Veterinary & Life Sciences, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Olga N. Pyankova
- Pharmacogenomics Laboratory, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Marek Sawczuk
- University of Szczecin, Department of Physical Education and Health Promotion, Szczecin, Poland
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Thomas Yvert
- Universidad Europea and Research Institute i+12, Madrid, Spain
| | - Louis Perusse
- Department of Kinesiology, Laval University, Ste-Foy, Québec, Canada
| | - Sujoy Ghosh
- Cardiovascular & Metabolic Disorders Program, and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kathryn N. North
- Murdoch Childrens Research Institute and Department of Paediatrics, University of Melbourne, Victoria, Australia
- Institute of Neuroscience and Muscle Research, Childrens Hospital Westmead, Westmead, Australia
| | - Alejandro Lucia
- Universidad Europea and Research Institute i+12, Madrid, Spain
| | - Yannis Pitsiladis
- Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| |
Collapse
|