1
|
Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms 2023; 11:microorganisms11010228. [PMID: 36677520 PMCID: PMC9860978 DOI: 10.3390/microorganisms11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite's basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies.
Collapse
|
2
|
Alcolea PJ, Alonso A, Degayón MA, Moreno-Paz M, Jiménez M, Molina R, Larraga V. In vitro infectivity and differential gene expression of Leishmania infantum metacyclic promastigotes: negative selection with peanut agglutinin in culture versus isolation from the stomodeal valve of Phlebotomus perniciosus. BMC Genomics 2016; 17:375. [PMID: 27206922 PMCID: PMC4874012 DOI: 10.1186/s12864-016-2672-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 04/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background Leishmania infantum is the protozoan parasite responsible for zoonotic visceral leishmaniasis in the Mediterranean basin. A recent outbreak in humans has been reported in this area. The life cycle of the parasite is digenetic. The promastigote stage develops within the gut of phlebotomine sand flies, whereas amastigotes survive and multiply within phagolysosomes of mammalian host phagocytes. The major vector of L. infantum in Spain is Phlebotomus perniciosus. The axenic culture model of promastigotes is generally used because it is able to mimic the conditions of the natural environment (i.e. the sand fly vector gut). However, infectivity decreases with culture passages and infection of laboratory animals is frequently required. Enrichment of the stationary phase population in highly infective metacyclic promastigotes is achieved by negative selection with peanut agglutinin (PNA), which is possible only in certain Leishmania species such as L. major and L. infantum. In this study, in vitro infectivity and differential gene expression of cultured PNA-negative promastigotes (Pro-PNA−) and metacyclic promastigotes isolated from the sand fly anterior thoracic midgut (Pro-Pper) have been compared. Results In vitro infectivity is about 30 % higher in terms of rate of infected cells and number of amastigotes per infected cell in Pro-Pper than in Pro-PNA−. This finding is in agreement with up-regulation of a leishmanolysin gene (gp63) and genes involved in biosynthesis of glycosylinositolphospholipids (GIPL), lipophosphoglycan (LPG) and proteophosphoglycan (PPG) in Pro-Pper. In addition, differences between Pro-Pper and Pro-PNA− in genes involved in important cellular processes (e.g. signaling and regulation of gene expression) have been found. Conclusions Pro-Pper are significantly more infective than peanut lectin non-agglutinating ones. Therefore, negative selection with PNA is an appropriate method for isolating metacyclic promastigotes in stationary phase of axenic culture but it does not allow reaching the in vitro infectivity levels of Pro-Pper. Indeed, GIPL, LPG and PPG biosynthetic genes together with a gp63 gene are up-regulated in Pro-Pper and interestingly, the correlation coefficient between both transcriptomes in terms of transcript abundance is R2 = 0.68. This means that the correlation is sufficiently high to consider that both samples are physiologically comparable (i.e. the experiment was correctly designed and performed) and sufficiently low to conclude that important differences in transcript abundance have been found. Therefore, the implications of axenic culture should be evaluated case-by-case in each experimental design even when the stationary phase population in culture is enriched in metacyclic promastigotes by negative selection with PNA. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2672-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro J Alcolea
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), calle Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| | - Ana Alonso
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), calle Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - María A Degayón
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), calle Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Mercedes Moreno-Paz
- Laboratorio de Ecología Molecular, Centro de Astrobiología, (Instituto Nacional de Técnica Aeroespacial "Esteban Terradas"-Consejo Superior de Investigaciones Científicas), ctra. de Ajalvir Km 4, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Maribel Jiménez
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias (Instituto de Salud Carlos III), ctra. Majadahonda-Pozuelo s/n, 28220, Majadahonda, Madrid, Spain
| | - Ricardo Molina
- Unidad de Entomología Médica, Servicio de Parasitología, Centro Nacional de Microbiología, Virología e Inmunología Sanitarias (Instituto de Salud Carlos III), ctra. Majadahonda-Pozuelo s/n, 28220, Majadahonda, Madrid, Spain
| | - Vicente Larraga
- Laboratorio de Parasitología Molecular, Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), calle Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
3
|
Singh AK, Roberts S, Ullman B, Madhubala R. A quantitative proteomic screen to identify potential drug resistance mechanism in α-difluoromethylornithine (DFMO) resistant Leishmania donovani. J Proteomics 2014; 102:44-59. [PMID: 24631822 DOI: 10.1016/j.jprot.2014.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Visceral leishmaniasis (VL) caused by Leishmania donovani is a systemic protozoan disease that is fatal if left untreated. The promastigote form of L. donovani is sensitive to growth inhibition by dl-α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), the first enzyme of the polyamine biosynthetic pathway. Exposure of a wild type (DI700) cell population to gradually increasing concentrations of DFMO resulted in the selection of a strain of Leishmania (DFMO-16), which was capable of proliferating in 16mM DFMO. To elucidate the molecular basis for this resistance, we undertook a comparative proteomic analysis of DFMO-resistant/sensitive parasites using isobaric tagging for relative and absolute quantification (iTRAQ/LC-MS/MS). Out of the 101 proteins identified in at least 2 of the 3 independent experiments, 82 proteins are 1.5- to 44.0-fold more abundant in DFMO-resistant strain (DFMO-16) while 19 are 2- to 5.0-fold less abundant as compared to the wild-type (DI700) parasites. Proteins with 2-fold or greater abundance in the DFMO-resistant strain include free radical detoxification, polyamine and trypanothione metabolic proteins, proteins involved in metabolism, intracellular survival and proteolysis, elongation factors, signaling molecules and mitochondrial transporters, and many with no annotated function. Differentially modulated proteins contribute to our understanding of molecular mechanism of DFMO-resistance and have the potential to act as biomarkers. BIOLOGICAL SIGNIFICANCE This study will facilitate a deeper understanding of the phenomenon of acquired drug resistance and possible biomarkers in Leishmania against antiparasitic drug DFMO. Also it will provide information about the metabolic pathways modulated in resistant parasites as an adaptation mechanism to counter drugs. Studies like this are important to safeguard the efficacy of a limited repertoire of anti-parasitic drugs, and to lead the development of new drugs and drug combinations.
Collapse
Affiliation(s)
- Alok Kumar Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, USA
| | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
4
|
Fleming JR, Dawson A, Hunter WN. Crystal structure of Leishmania major ADP-ribosylation factor-like 1 and a classification of related GTPase family members in this Kinetoplastid. Mol Biochem Parasitol 2010; 174:141-4. [PMID: 20801163 DOI: 10.1016/j.molbiopara.2010.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 12/24/2022]
Abstract
ADP-ribosylation factor-like (ARL) proteins are small GTPases that undergo conformational changes upon nucleotide binding, and which regulate the affinity of ARLs for binding other proteins, lipids or membranes. There is a paucity of structural data on this family of proteins in the Kinetoplastida, despite studies implicating them in key events related to vesicular transport and regulation of microtubule-dependent processes. The crystal structure of Leishmania major ARL1 in complex with GDP has been determined to 2.1 Å resolution and reveals a high degree of structural conservation with human ADP-ribosylation factor 1 (ARF1). Putative L. major and Trypanosoma brucei ARF/ARL family members have been classified based on structural considerations, amino acid sequence conservation combined with functional data on Kinetoplastid and human orthologues. This classification may guide future studies designed to elucidate the function of specific family members.
Collapse
Affiliation(s)
- Jennifer R Fleming
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
5
|
Sahin A, Espiau B, Tetaud E, Cuvillier A, Lartigue L, Ambit A, Robinson DR, Merlin G. The leishmania ARL-1 and Golgi traffic. PLoS One 2008; 3:e1620. [PMID: 18286177 PMCID: PMC2237903 DOI: 10.1371/journal.pone.0001620] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/19/2008] [Indexed: 12/20/2022] Open
Abstract
We present here the characterisation of the Leishmania small G protein ADP-Ribosylation Factor-Like protein 1 (ARL-1). The ARL-1 gene is present in one copy per haploid genome and conserved among trypanosomatids. It encodes a protein of 20 kDa, which is equally expressed in the insect promastigote and mammalian amastigote forms of the parasite. ARL-1 localises to the Trans-Golgi Network (TGN); N-terminal myristoylation is essential for TGN localisation. In vivo expression of the LdARL-1/Q74L and LdARL-1/T51N mutants (GTP- and GDP-bound blocked forms respectively) shows that GDP/GTP cycling occurs entirely within the TGN. This is contrary to previous reports in yeast and mammals, where the mutant empty form devoid of nucleotide has been considered as the GDP-blocked form. The dominant-negative empty form mutant LdARL-1/T34N inhibits endocytosis and intracellular trafficking from the TGN to the Lysosome/Multivesicular Tubule and to the acidocalcisomes; these defects are probably related to a mislocalisation of the GRIP domain-containing vesicle tethering factors which cannot be recruited to the TGN by the cytoplasmic LdARL-1/T34N. Thus, besides the functional characterization of a new mutant and a better understanding of ARL-1 GDP/GTP cycling, this work shows that Leishmania ARL-1 is a key component of an essential pathway worth future study.
Collapse
Affiliation(s)
- Annelise Sahin
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Benoît Espiau
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Emmanuel Tetaud
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Armelle Cuvillier
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Lydia Lartigue
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Audrey Ambit
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Derrick R. Robinson
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Gilles Merlin
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
- *E-mail:
| |
Collapse
|
6
|
Gerald NJ, Coppens I, Dwyer DM. Molecular dissection and expression of the LdK39 kinesin in the human pathogen, Leishmania donovani. Mol Microbiol 2007; 63:962-79. [PMID: 17257310 DOI: 10.1111/j.1365-2958.2006.05487.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we show for the first time the intracellular distribution of a K39 kinesin homologue in Leishmania donovani, a medically important parasite of humans. Further, we demonstrated that this motor protein is expressed in both the insect and mammalian developmental forms (i.e. promastigote and amastigotes) of this organism. Moreover, in both of these parasite developmental stages, immunofluorescence indicated that the LdK39 kinesin accumulated at anterior and posterior cell poles and that it displayed a peripheral localization consistent with the cortical cytoskeleton. Using a molecular approach, we identified, cloned and characterized the first complete open reading frame for the gene (LdK39) encoding this large (> 358 kDa) motor protein in L. donovani. Based on these observations, we subsequently used a homologous episomal expression system to dissect and express the functional domains that constitute the native molecule. Cell fractionation experiments demonstrated that LdK39 was soluble and that it bound to detergent-extracted cytoskeletons of these parasites in an ATP-dependent manner. The cumulative results of these experiments are consistent with LdK39 functioning as an ATP-dependent kinesin which binds to and travels along the cortical cytoskeleton of this important human pathogen.
Collapse
Affiliation(s)
- Noel J Gerald
- Cell Biology Section, Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
7
|
Joshi MB, Dwyer DM. Molecular and functional analyses of a novel class I secretory nuclease from the human pathogen, Leishmania donovani. J Biol Chem 2007; 282:10079-10095. [PMID: 17276983 DOI: 10.1074/jbc.m610770200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primitive protozoan pathogen of humans, Leishmania donovani, resides and multiplies in highly restricted micro-environments within their hosts (i.e. as promastigotes in the gut lumen of their sandfly vectors and as amastigotes in the phagolysosomal compartments of infected mammalian macrophages). Like other trypanosomatid parasites, they are purine auxotrophs (i.e. lack the ability to synthesize purines de novo) and therefore are totally dependent upon salvaging these essential nutrients from their hosts. In that context, in this study we identified a unique 35-kDa, dithiothreitol-sensitive nuclease and showed that it was constitutively released/secreted by both promastigote and amastigote developmental forms of this parasite. By using several different molecular approaches, we identified and characterized the structure of LdNuc(s), a gene that encodes this new 35-kDa class I nuclease family member in these organisms. Homologous episomal expression of an epitope-tagged LdNuc(s) chimeric construct was used in conjunction with an anti-LdNuc(s) peptide antibody to delineate the functional and biochemical properties of this unique 35-kDa parasite released/secreted enzyme. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that this "secretory" enzyme could hydrolyze a variety of synthetic polynucleotides as well as several natural nucleic acid substrates, including RNA and single- and double-stranded DNA. Based on these cumulative observations, we hypothesize that within the micro-environments of its host, this leishmanial "secretory" nuclease could function at a distance away from the parasite to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine requirements of these organisms. Thus, this enzyme might play an important role(s) in facilitating the survival, growth, and development of this important human pathogen.
Collapse
Affiliation(s)
- Manju B Joshi
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425
| | - Dennis M Dwyer
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425.
| |
Collapse
|