1
|
Marq JB, Gosetto M, Altenried A, Vadas O, Maco B, Dos Santos Pacheco N, Tosetti N, Soldati-Favre D, Lentini G. Cytokinetic abscission in Toxoplasma gondii is governed by protein phosphatase 2A and the daughter cell scaffold complex. EMBO J 2024; 43:3752-3786. [PMID: 39009675 PMCID: PMC11377541 DOI: 10.1038/s44318-024-00171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Cytokinetic abscission marks the final stage of cell division, during which the daughter cells physically separate through the generation of new barriers, such as the plasma membrane or cell wall. While the contractile ring plays a central role during cytokinesis in bacteria, fungi and animal cells, the process diverges in Apicomplexa. In Toxoplasma gondii, two daughter cells are formed within the mother cell by endodyogeny. The mechanism by which the progeny cells acquire their plasma membrane during the disassembly of the mother cell, allowing daughter cells to emerge, remains unknown. Here we identify and characterize five T. gondii proteins, including three protein phosphatase 2A subunits, which exhibit a distinct and dynamic localization pattern during parasite division. Individual downregulation of these proteins prevents the accumulation of plasma membrane at the division plane, preventing the completion of cellular abscission. Remarkably, the absence of cytokinetic abscission does not hinder the completion of subsequent division cycles. The resulting progeny are able to egress from the infected cells but fail to glide and invade, except in cases of conjoined twin parasites.
Collapse
Affiliation(s)
- Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Margaux Gosetto
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Aline Altenried
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Wang D, Jiang P, Wu X, Zhang Y, Wang C, Li M, Liu M, Yin J, Zhu G. Requirement of microtubules for secretion of a micronemal protein CpTSP4 in the invasive stage of the apicomplexan Cryptosporidium parvum. mBio 2024; 15:e0315823. [PMID: 38265238 PMCID: PMC10865969 DOI: 10.1128/mbio.03158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
The zoonotic Cryptosporidium parvum is a global contributor to infantile diarrheal diseases and opportunistic infections in immunocompromised or weakened individuals. Like other apicomplexans, it possesses several specialized secretory organelles, including micronemes, rhoptry, and dense granules. However, the understanding of cryptosporidial micronemal composition and secretory pathway remains limited. Here, we report a new micronemal protein in C. parvum, namely, thrombospondin (TSP)-repeat domain-containing protein-4 (CpTSP4), providing insights into these ambiguities. Immunostaining and enzyme-linked assays show that CpTSP4 is prestored in the micronemes of unexcysted sporozoites but secreted during sporozoite excystation, gliding, and invasion. In excysted sporozoites, CpTSP4 is also distributed on the two central microtubules unique to Cryptosporidium. The secretion and microtubular distribution could be completely blocked by the selective kinesin-5 inhibitors SB-743921 and SB-715992, resulting in the accumulation of CpTSP4 in micronemes. These support the kinesin-dependent microtubular trafficking of CpTSP4 for secretion. We also localize γ-tubulin, consistent with kinesin-dependent anterograde trafficking. Additionally, recombinant CpTSP4 displays nanomolar binding affinity to the host cell surface, for which heparin acts as one of the host ligands. A novel heparin-binding motif is identified and validated biochemically for its contribution to the adhesive property of CpTSP4 by peptide competition assays and site-directed mutagenesis. These findings shed light on the mechanisms of intracellular trafficking and secretion of a cryptosporidial micronemal protein and the interaction of a TSP-family protein with host cells.IMPORTANCECryptosporidium parvum is a globally distributed apicomplexan parasite infecting humans and/or animals. Like other apicomplexans, it possesses specialized secretory organelles in the zoites, in which micronemes discharge molecules to facilitate the movement and invasion of zoites. Although past and recent studies have identified several proteins in cryptosporidial micronemes, our understanding of the composition, secretory pathways, and domain-ligand interactions of micronemal proteins remains limited. This study identifies a new micronemal protein, namely, CpTSP4, that is discharged during excystation, gliding, and invasion of C. parvum sporozoites. The CpTSP4 secretion depends on the intracellular trafficking on the two Cryptosporidium-unique microtubes that could be blocked by kinesin-5/Eg5 inhibitors. Additionally, a novel heparin-binding motif is identified and biochemically validated, which contributes to the nanomolar binding affinity of CpTSP4 to host cells. These findings indicate that kinesin-dependent microtubular trafficking is critical to CpTSP4 secretion, and heparin/heparan sulfate is one of the ligands for this micronemal protein.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenchen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Vallintine T, van Ooij C. Timing of dense granule biogenesis in asexual malaria parasites. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001389. [PMID: 37647112 PMCID: PMC10482371 DOI: 10.1099/mic.0.001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Malaria is an important infectious disease that continues to claim hundreds of thousands of lives annually. The disease is caused by infection of host erythrocytes by apicomplexan parasites of the genus Plasmodium. The parasite contains three different apical organelles - micronemes, rhoptries and dense granules (DGs) - whose contents are secreted to mediate binding to and invasion of the host cell and the extensive remodelling of the host cell that occurs following invasion. Whereas the roles of micronemes and rhoptries in binding and invasion of the host erythrocyte have been studied in detail, the roles of DGs in Plasmodium parasites are poorly understood. They have been proposed to control host cell remodelling through regulated protein secretion after invasion, but many basic aspects of the biology of DGs remain unknown. Here we describe DG biogenesis timing for the first time, using RESA localization as a proxy for the timing of DG formation. We show that DG formation commences approximately 37 min prior to schizont egress, as measured by the recruitment of the DG marker RESA. Furthermore, using a bioinformatics approach, we aimed to predict additional cargo of the DGs and identified the J-dot protein HSP40 as a DG protein, further supporting the very early role of these organelles in the interaction of the parasite with the host cell.
Collapse
Affiliation(s)
- Tansy Vallintine
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Christiaan van Ooij
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
4
|
Li S, Liu J, Zhang H, Sun Z, Ying Z, Wu Y, Xu J, Liu Q. Toxoplasma gondii glutathione S-transferase 2 plays an important role in partial secretory protein transport. FASEB J 2021; 35:e21352. [PMID: 33543805 DOI: 10.1096/fj.202001987rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
Toxoplasma gondii is an apicomplexan parasite, which has three unique secretory organelles: micronemes, rhoptries, and dense granules. Almost all the secreted proteins are transported through the endoplasmic reticulum (ER) and Golgi system to function in their respective destination by accurate targeting and packaging. Glutathione S-transferase (GST) is a supergene family enzyme that has multiple functions, which include regulation of cell proliferation and death signaling pathways, and participation in transportation and metabolism in mammal cells. However, the role of GST in Toxoplasma gondii has not been explained. In this study, we identified three GST proteins in T gondii, of which GST2 acts as a membrane protein that localizes to the Golgi-endosomal system and colocalizes with proteins involved in vesicle transport as well, including synaptobrevin, putative sortilin (VPS10), Rab5 and Rab6, which function as vesicle transport factors. Moreover, the loss of TgGST2 leads to Rab5 and Rab6 distribution of discrete puncta, and incorrect localization and decreased expression of several secretory proteins, and to significantly reduced invasion capacity and virulence to mice. Consistent with its relation to vesicle transport proteins, the distribution of TgGST2 relies on post-Golgi trafficking. Overall, our findings demonstrated that TgGST2 contributes to vesicle trafficking and plays a critical role in parasite lytic cycle.
Collapse
Affiliation(s)
- Shuang Li
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhepeng Sun
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhu Ying
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihan Wu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianhai Xu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Tagoe DNA, Drozda AA, Falco JA, Bechtel TJ, Weerapana E, Gubbels MJ. Ferlins and TgDOC2 in Toxoplasma Microneme, Rhoptry and Dense Granule Secretion. Life (Basel) 2021; 11:217. [PMID: 33803212 PMCID: PMC7999867 DOI: 10.3390/life11030217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
The host cell invasion process of apicomplexan parasites like Toxoplasma gondii is facilitated by sequential exocytosis of the microneme, rhoptry and dense granule organelles. Exocytosis is facilitated by a double C2 domain (DOC2) protein family. This class of C2 domains is derived from an ancestral calcium (Ca2+) binding archetype, although this feature is optional in extant C2 domains. DOC2 domains provide combinatorial power to the C2 domain, which is further enhanced in ferlins that harbor 5-7 C2 domains. Ca2+ conditionally engages the C2 domain with lipids, membranes, and/or proteins to facilitating vesicular trafficking and membrane fusion. The widely conserved T. gondii ferlins 1 (FER1) and 2 (FER2) are responsible for microneme and rhoptry exocytosis, respectively, whereas an unconventional TgDOC2 is essential for microneme exocytosis. The general role of ferlins in endolysosmal pathways is consistent with the repurposed apicomplexan endosomal pathways in lineage specific secretory organelles. Ferlins can facilitate membrane fusion without SNAREs, again pertinent to the Apicomplexa. How temporal raises in Ca2+ combined with spatiotemporally available membrane lipids and post-translational modifications mesh to facilitate sequential exocytosis events is discussed. In addition, new data on cross-talk between secretion events together with the identification of a new microneme protein, MIC21, is presented.
Collapse
Affiliation(s)
- Daniel N A Tagoe
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Julia A Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
6
|
Koreny L, Zeeshan M, Barylyuk K, Tromer EC, van Hooff JJE, Brady D, Ke H, Chelaghma S, Ferguson DJP, Eme L, Tewari R, Waller RF. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PLoS Biol 2021; 19:e3001081. [PMID: 33705380 PMCID: PMC7951837 DOI: 10.1371/journal.pbio.3001081] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jolien J. E. van Hooff
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Laura Eme
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Barylyuk K, Koreny L, Ke H, Butterworth S, Crook OM, Lassadi I, Gupta V, Tromer E, Mourier T, Stevens TJ, Breckels LM, Pain A, Lilley KS, Waller RF. A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions. Cell Host Microbe 2020; 28:752-766.e9. [PMID: 33053376 PMCID: PMC7670262 DOI: 10.1016/j.chom.2020.09.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Apicomplexan parasites cause major human disease and food insecurity. They owe their considerable success to highly specialized cell compartments and structures. These adaptations drive their recognition, nondestructive penetration, and elaborate reengineering of the host's cells to promote their growth, dissemination, and the countering of host defenses. The evolution of unique apicomplexan cellular compartments is concomitant with vast proteomic novelty. Consequently, half of apicomplexan proteins are unique and uncharacterized. Here, we determine the steady-state subcellular location of thousands of proteins simultaneously within the globally prevalent apicomplexan parasite Toxoplasma gondii. This provides unprecedented comprehensive molecular definition of these unicellular eukaryotes and their specialized compartments, and these data reveal the spatial organizations of protein expression and function, adaptation to hosts, and the underlying evolutionary trajectories of these pathogens.
Collapse
Affiliation(s)
| | - Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Simon Butterworth
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Oliver M Crook
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK; MRC Biostatistics Unit, Cambridge Institute for Public Health, Cambridge CB2 0SR, UK
| | - Imen Lassadi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Vipul Gupta
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Eelco Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Tobias Mourier
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK
| | - Arnab Pain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Global Station for Zoonosis Control, Gi-CoRE, Hokkaido University, Sapporo 060-0808, Japan; Nuffield Division of Clinical Laboratory Sciences (NDCLS), University of Oxford, Oxford OX3 9DU, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
8
|
Bemani P, Amirghofran Z, Mohammadi M. Designing a multi-epitope vaccine against blood-stage of Plasmodium falciparum by in silico approaches. J Mol Graph Model 2020; 99:107645. [PMID: 32454399 DOI: 10.1016/j.jmgm.2020.107645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Plasmodium falciparum causes the most severe form of malaria disease and is the major cause of infection-related mortalities in the world. Due to increasing in P. falciparum resistance to the first-line antimalarial drugs, an effective vaccine for the control and elimination of malaria infection is urgent. Because the pathogenesis of malaria disease results from blood-stage infection, and all of the symptoms and clinical illness of malaria occur during this stage, there is a strong rationale to develop vaccine against this stage. In the present study, different structural-vaccinology and immuno informatics tools were applied to design an effective antibody-inducing multi-epitope vaccine against the blood-stage of P. falciparum. The designed multi-epitope vaccine was composed of three main parts including B cell epitopes, T helper (Th) cell epitopes, and two adjuvant motives (HP91 and RS09), which were linked to each other via proper linkers. B cell and T cell epitopes were derived from four protective antigens expressed on the surface of merozoites, which are critical to invade the erythrocytes. HP91 and RS09 adjuvants and Th cell epitopes were used to induce, enhance and direct the best form of humoral immune-response against P. falciparum surface merozoite antigens. The vaccine construct was modeled, and after model quality evaluation and refinement by different software, the high-quality 3D-structure model of the vaccine was achieved. Analysis of immunological and physicochemical features of the vaccine showed acceptable results. We believe that this multi-epitope vaccine can be effective for preventing malaria disease caused by P. falciparum.
Collapse
Affiliation(s)
- Peyman Bemani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Amirghofran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Siddiqui G, Proellochs NI, Cooke BM. Identification of essential exported
Plasmodium falciparum
protein kinases in malaria‐infected red blood cells. Br J Haematol 2019; 188:774-783. [DOI: 10.1111/bjh.16219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Ghizal Siddiqui
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| | - Nicholas I. Proellochs
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Department of Medical Microbiology Radboud University Medical Center Nijmegen the Netherlands
| | - Brian M. Cooke
- Department of Microbiology Biomedicine Discovery Institute Monash University Clayton Victoria Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| |
Collapse
|
10
|
Lentini G, Dubois DJ, Maco B, Soldati-Favre D, Frénal K. The roles of Centrin 2 and Dynein Light Chain 8a in apical secretory organelles discharge of Toxoplasma gondii. Traffic 2019; 20:583-600. [PMID: 31206964 DOI: 10.1111/tra.12673] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
Abstract
To efficiently enter host cells, apicomplexan parasites such as Toxoplasma gondii rely on an apical complex composed of tubulin-based structures as well as two sets of secretory organelles named micronemes and rhoptries. The trafficking and docking of these organelles to the apical pole of the parasite is crucial for the discharge of their contents. Here, we describe two proteins typically associated with microtubules, Centrin 2 (CEN2) and Dynein Light Chain 8a (DLC8a), that are required for efficient host cell invasion. CEN2 localizes to four different compartments, and remarkably, conditional depletion of the protein occurs in stepwise manner, sequentially depleting the protein pools from each location. This phenomenon allowed us to discern the essential function of the apical pool of CEN2 for microneme secretion, motility, invasion and egress. DLC8a localizes to the conoid, and its depletion also perturbs microneme exocytosis in addition to the apical docking of the rhoptry organelles, causing a severe defect in host cell invasion. Phenotypic characterization of CEN2 and DLC8a indicates that while both proteins participate in microneme secretion, they likely act at different steps along the cascade of events leading to organelle exocytosis.
Collapse
Affiliation(s)
- Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - David J Dubois
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.,Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, CNRS UMR 5234, Bordeaux Cedex, France
| |
Collapse
|
11
|
Hammoudi PM, Maco B, Dogga SK, Frénal K, Soldati-Favre D. Toxoplasma gondiiTFP1 is an essential transporter family protein critical for microneme maturation and exocytosis. Mol Microbiol 2018; 109:225-244. [DOI: 10.1111/mmi.13981] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| |
Collapse
|
12
|
Hallée S, Thériault C, Gagnon D, Kehrer J, Frischknecht F, Mair GR, Richard D. Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum. Cell Microbiol 2018; 20:e12843. [PMID: 29579782 DOI: 10.1111/cmi.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/01/2022]
Abstract
Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages.
Collapse
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Catherine Thériault
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Dominic Gagnon
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Jessica Kehrer
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Dave Richard
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
13
|
Ito D, Schureck MA, Desai SA. An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites. eLife 2017; 6. [PMID: 28221136 PMCID: PMC5349850 DOI: 10.7554/elife.23485] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/16/2017] [Indexed: 11/27/2022] Open
Abstract
Malaria parasites evade immune detection by growth and replication within erythrocytes. After erythrocyte invasion, the intracellular pathogen must increase host cell uptake of nutrients from plasma. Here, we report that the parasite-encoded RhopH complex contributes to both invasion and channel-mediated nutrient uptake. As rhoph2 and rhoph3 gene knockouts were not viable in the human P. falciparum pathogen, we used conditional knockdowns to determine that the encoded proteins are essential and to identify their stage-specific functions. We exclude presumed roles for RhopH2 and CLAG3 in erythrocyte invasion but implicate a RhopH3 contribution either through ligand-receptor interactions or subsequent parasite internalization. These proteins then traffic via an export translocon to the host membrane, where they form a nutrient channel. Knockdown of either RhopH2 or RhopH3 disrupts the entire complex, interfering with organellar targeting and subsequent trafficking. Therapies targeting this complex should attack the pathogen at two critical points in its cycle. DOI:http://dx.doi.org/10.7554/eLife.23485.001 The parasites that cause malaria in humans and other animals infect and live inside red blood cells to escape attack by their hosts’ immune systems. Malaria parasites grow and multiply in red blood cells before bursting out and invading new red blood cells. To fuel this growth, the parasite needs access to sugars and other nutrients that are found outside in the bloodstream. Malaria parasites achieve this by inserting some of their own proteins into the membrane of the red blood cell to form an unusual channel that allows the nutrients to enter the cell. A parasite protein called CLAG3 (also known as RhopH1) is involved in formation of the unusual nutrient channel. Unlike most other proteins, malaria parasites make the CLAG3 protein while they are inside one cell and release it later when they invade a new red blood cell. The CLAG3 protein also binds to two other parasite proteins, called RhopH2 and RhopH3, to form a larger protein complex. However, it was not known what roles these other proteins played, or why the complex was made in the preceding red blood cell. Ito et al. have now addressed these unknowns by editing the genes of the parasite that causes the most dangerous form of malaria in people, a parasite called Plasmodium falciparum. These experiments revealed that the parasites could still invade host cells as normal if they lost CLAG3 and RhopH2. This suggests, that contrary to what was expected, CLAG3 and RhopH2 are not needed for the invasion process. Instead, the experiments revealed that RhopH3 serves a major role in invasion, either by helping the parasite to interact with or enter the new red blood cell. After the parasite has invaded the cell, this complex of three proteins is shuttled to the red blood cell’s membrane, where it inserts to help form the nutrient channel. The findings of Ito et al. reveal that one protein complex serves two unrelated but essential roles at different locations and time points in the life cycle of a malaria parasite. Since a parasite will not survive if it cannot enter a host cell and obtain nutrients, interfering with these processes by targeting this protein complex could lead to new therapies against malaria in the future. DOI:http://dx.doi.org/10.7554/eLife.23485.002
Collapse
Affiliation(s)
- Daisuke Ito
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, United States
| | - Marc A Schureck
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, United States
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, United States
| |
Collapse
|
14
|
de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 2016; 14:494-507. [DOI: 10.1038/nrmicro.2016.79] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Rawa MSA, Fong MY, Lau YL. Genetic diversity and natural selection in the rhoptry-associated protein 1 (RAP-1) of recent Plasmodium knowlesi clinical isolates from Malaysia. Malar J 2016; 15:62. [PMID: 26847346 PMCID: PMC4743133 DOI: 10.1186/s12936-016-1127-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Plasmodium rhoptry-associated protein 1 (RAP-1) plays a role in the formation of the parasitophorous vacuole following the parasite's invasion of red blood cells. Although there is some evidence that the protein is recognized by the host's immune system, study of Plasmodium falciparum RAP-1 (PfRAP-1) suggests that it is not under immune pressure. A previous study on five old (1953-1962) P. knowlesi strains suggested that RAP-1 has limited genetic polymorphism and might be under negative selection. In the present study, 30 recent P. knowlesi isolates were studied to obtain a better insight into the polymorphism and natural selection of PkRAP-1. METHODS Blood samples from 30 knowlesi malaria patients were used. These samples were collected between 2010 and 2014. The PkRAP-1 gene, which contains two exons, was amplified by PCR, cloned into Escherichia coli and sequenced. Genetic diversity and phylogenetic analyses were performed using MEGA6 and DnaSP ver. 5.10.00 programs. RESULTS Thirty PkRAP-1 sequences were obtained. The nucleotide diversity (π) of exons 1, 2 and the total coding region (0.00915, 0.01353 and 0.01298, respectively) were higher than those of the old strains. Further analysis revealed a lower rate of non-synonymous (dN) than synonymous (dS) mutations, suggesting negative (purifying) selection of PkRAP-1. Tajima's D test and Fu and Li's D test values were not significant. At the amino acid level, 22 haplotypes were established with haplotype H7 having the highest frequency (7/34, 20.5 %). In the phylogenetic analysis, two distinct haplotype groups were observed. The first group contained the majority of the haplotypes, whereas the second had fewer haplotypes. CONCLUSIONS The present study found higher genetic polymorphism in the PkRAP-1 gene than the polymorphism level reported in a previous study. This observation may stem from the difference in sample size between the present (n = 30) and the previous (n = 5) study. Synonymous and non-synonymous mutation analysis indicated purifying (negative) selection of the gene. The separation of PkRAP-1haplotypes into two groups provides further evidence to the postulation of two distinct P. knowlesi types or lineages.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mun-Yik Fong
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yee-Ling Lau
- Faculty of Medicine, Department of Parasitology, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Kaddumukasa M, Lwanira C, Lugaajju A, Katabira E, Persson KEM, Wahlgren M, Kironde F. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria. PLoS One 2015; 10:e0124297. [PMID: 25906165 PMCID: PMC4408068 DOI: 10.1371/journal.pone.0124297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.
Collapse
Affiliation(s)
- Mark Kaddumukasa
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Elly Katabira
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kristina E M Persson
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Lund University, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Kironde
- College of Health Sciences, Makerere University, Kampala, Uganda; Habib Medical School, IUIU, Kampala, Uganda
| |
Collapse
|
17
|
Tomavo S, Slomianny C, Meissner M, Carruthers VB. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion. PLoS Pathog 2013; 9:e1003629. [PMID: 24204248 PMCID: PMC3812028 DOI: 10.1371/journal.ppat.1003629] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles.
Collapse
Affiliation(s)
- Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université Lille Nord de France, Villeneuve d'Ascq, Lille, France
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
18
|
Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PLoS One 2013; 8:e76278. [PMID: 24086721 PMCID: PMC3785458 DOI: 10.1371/journal.pone.0076278] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
Apicomplexa are obligate intracellular parasites that cause tremendous disease burden world-wide. They utilize a set of specialized secretory organelles in their invasive process that require delivery of components for their biogenesis and function, yet the precise mechanisms underpinning such processes remain unclear. One set of potentially important components is the multi-subunit tethering complexes (MTCs), factors increasingly implicated in all aspects of vesicle-target interactions. Prompted by the results of previous studies indicating a loss of membrane trafficking factors in Apicomplexa, we undertook a bioinformatic analysis of MTC conservation. Building on knowledge of the ancient presence of most MTC proteins, we demonstrate the near complete retention of MTCs in the newly available genomes for Guillardiatheta and Bigelowiellanatans. The latter is a key taxonomic sampling point as a basal sister taxa to the group including Apicomplexa. We also demonstrate an ancient origin of the CORVET complex subunits Vps8 and Vps3, as well as the TRAPPII subunit Tca17. Having established that the lineage leading to Apicomplexa did at one point possess the complete eukaryotic complement of MTC components, we undertook a deeper taxonomic investigation in twelve apicomplexan genomes. We observed excellent conservation of the VpsC core of the HOPS and CORVET complexes, as well as the core TRAPP subunits, but sparse conservation of TRAPPII, COG, Dsl1, and HOPS/CORVET-specific subunits. However, those subunits that we did identify appear to be expressed with similar patterns to the fully conserved MTC proteins, suggesting that they may function as minimal complexes or with analogous partners. Strikingly, we failed to identify any subunits of the exocyst complex in all twelve apicomplexan genomes, as well as the dinoflagellate Perkinsus marinus. Overall, we demonstrate reduction of MTCs in Apicomplexa and their ancestors, consistent with modification during, and possibly pre-dating, the move from free-living marine algae to deadly human parasites.
Collapse
|
19
|
Hans N, Singh S, Pandey AK, Reddy KS, Gaur D, Chauhan VS. Identification and characterization of a novel Plasmodium falciparum adhesin involved in erythrocyte invasion. PLoS One 2013; 8:e74790. [PMID: 24058628 PMCID: PMC3772933 DOI: 10.1371/journal.pone.0074790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/05/2013] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a major health problem worldwide. All clinical symptoms of malaria are attributed to the asexual blood stages of the parasite life cycle. Proteins resident in apical organelles and present on the surface of P. falciparum merozoites are considered promising candidates for the development of blood stage malaria vaccines. In the present study, we have identified and characterized a microneme associated antigen, PfMA [PlasmoDB Gene ID: PF3D7_0316000, PFC0700c]. The gene was selected by applying a set of screening criteria such as transcriptional upregulation at late schizogony, inter-species conservation and the presence of signal sequence or transmembrane domains. The gene sequence of PfMA was found to be conserved amongst various Plasmodium species. We experimentally demonstrated that the transcript for PfMA was expressed only in the late blood stages of parasite consistent with a putative role in erythrocyte invasion. PfMA was localized by immunofluorescence and immuno-electron microscopy to be in the micronemes, an apical organelle of merozoites. The functional role of the PfMA protein in erythrocyte invasion was identified as a parasite adhesin involved in direct attachment with the target erythrocyte. PfMA was demonstrated to bind erythrocytes in a sialic acid independent, chymotrypsin and trypsin resistant manner and its antibodies inhibited P. falciparum erythrocyte invasion. Invasion of erythrocytes is a complex multistep process that involves a number of redundant ligand-receptor interactions many of which still remain unknown and even uncharacterized. Our work has identified and characterized a novel P. falciparum adhesin involved in erythrocyte invasion.
Collapse
Affiliation(s)
- Nidhi Hans
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shailja Singh
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Alok K. Pandey
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - K. Sony Reddy
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Deepak Gaur
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Virander S. Chauhan
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- * E-mail:
| |
Collapse
|
20
|
Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013; 29:228-36. [PMID: 23570755 DOI: 10.1016/j.pt.2013.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/26/2022]
Abstract
Apicomplexan parasites, including the Plasmodium species that cause malaria, contain three unusual apical secretory organelles (micronemes, rhoptries, and dense granules) that are required for the infection of new host cells. Because of their specialized nature, the majority of proteins secreted from these organelles are unique to Apicomplexans and are consequently poorly characterized. Although rhoptry proteins of Plasmodium have been implicated in events central to invasion, there is growing evidence to suggest that proteins originating from this organelle play key roles downstream of parasite entry into the host cell. Here we discuss recent work that has advanced our knowledge of rhoptry protein trafficking and function, and highlight areas of research that require further investigation.
Collapse
|
21
|
Improving N-terminal protein annotation of Plasmodium species based on signal peptide prediction of orthologous proteins. Malar J 2012; 11:375. [PMID: 23153225 PMCID: PMC3529677 DOI: 10.1186/1475-2875-11-375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species. METHODS Signal peptide (SignalP) and orthology (OrthoMCL) were combined in an innovative strategy to identify orthologous groups showing discrepancies in signal peptide prediction among their protein members (Mixed groups). In a comparative analysis, multiple alignments for each of these groups and gene models were visually inspected in search of misannotated proteins and, whenever possible, alternative gene models were proposed. Thresholds for signal peptide prediction parameters were also modified to reduce their impact as a possible source of discrepancy among orthologs. Validation of new gene models was based on RT-PCR (few examples) or on experimental evidence already published (ApiLoc). RESULTS The rate of misannotated proteins was significantly higher in Mixed groups than in Positive or Negative groups, corroborating the proposed hypothesis. A total of 478 proteins were reannotated and change of signal peptide prediction from negative to positive was the most common. Reannotations triggered the conversion of almost 50% of all Mixed groups, which were further reduced by optimization of signal peptide prediction parameters. CONCLUSIONS The methodological novelty proposed here combining orthology and signal peptide prediction proved to be an effective strategy for the identification of proteins showing wrongly N-terminal annotated sequences, and it might have an important impact in the available data for genome-wide searching of potential vaccine and drug targets and proteins involved in host/parasite interactions, as demonstrated for five Plasmodium species.
Collapse
|
22
|
Wang B, Lu F, Cheng Y, Li J, Ito D, Sattabongkot J, Tsuboi T, Han ET. Identification and characterization of the Plasmodium falciparum RhopH2 ortholog in Plasmodium vivax. Parasitol Res 2012; 112:585-93. [PMID: 23097184 DOI: 10.1007/s00436-012-3170-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/08/2012] [Indexed: 11/28/2022]
Abstract
Plasmodium vivax is one of the most important human malaria species that is geographically widely endemic and potentially affects a larger number of people than its more notorious cousin, Plasmodium falciparum. During invasion of red blood cells, the parasite requires the intervention of high molecular weight complex rhoptry proteins (RhopH) that are also essential for cytoadherence. PfRhopH2, a member of the RhopH multigene family, has been characterized as being crucial during P. falciparum infection. This study describes identifying and characterizing the pfrhoph2 orthologous gene in P. vivax (hereinafter named pvrhoph2). The PvRhopH2 is a 1,369-amino acid polypeptide encoded by PVX_099930 gene, for which orthologous genes have been identified in other Plasmodium species by bioinformatic approaches. Both P. falciparum and P. vivax genes contain nine introns, and there is a high degree of similarity between the deduced amino acid sequences of the two proteins. Moreover, PvRhopH2 contains a signal peptide at its N-terminus and 12 cysteines predominantly in its C-terminal half. PvRhopH2 is localized in one of the apical organelles of the merozoite, the rhoptry, and the localization pattern is similar to that of PfRhopH2 in P. falciparum. The recombinant PvRhopH2 protein is recognized by serum antibodies of patients naturally exposed to P. vivax, suggesting that PvRhopH2 is immunogenic in humans.
Collapse
Affiliation(s)
- Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Hyoja2-dong, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Evolution of apicomplexan secretory organelles. Int J Parasitol 2012; 42:1071-81. [PMID: 23068912 DOI: 10.1016/j.ijpara.2012.09.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 12/26/2022]
Abstract
The alveolate superphylum includes many free-living and parasitic organisms, which are united by the presence of alveolar sacs lying proximal to the plasma membrane, providing cell structure. All species comprising the apicomplexan group of alveolates are parasites and have adapted to the unique requirements of the parasitic lifestyle. Here the evolution of apicomplexan secretory organelles that are involved in the critical process of egress from one cell and invasion of another is explored. The variations within the Apicomplexa and how these relate to species-specific biology will be discussed. In addition, recent studies have identified specific calcium-sensitive molecules that coordinate the various events and regulate the release of these secretory organelles within apicomplexan parasites. Some aspects of this machinery are conserved outside the Apicomplexa, and are beginning to elucidate the conserved nature of the machinery. Briefly, the relationship of this secretion machinery within the Apicomplexa will be discussed, compared with free-living and predatory alveolates, and how these might have evolved from a common ancestor.
Collapse
|
24
|
Sannella AR, Olivieri A, Bertuccini L, Ferrè F, Severini C, Pace T, Alano P. Specific tagging of the egress-related osmiophilic bodies in the gametocytes of Plasmodium falciparum. Malar J 2012; 11:88. [PMID: 22452991 PMCID: PMC3342164 DOI: 10.1186/1475-2875-11-88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/27/2012] [Indexed: 11/11/2022] Open
Abstract
Background Gametocytes, the blood stages responsible for Plasmodium falciparum transmission, contain electron dense organelles, traditionally named osmiophilic bodies, that are believed to be involved in gamete egress from the host cell. In order to provide novel tools in the cellular and molecular studies of osmiophilic body biology, a P. falciparum transgenic line in which these organelles are specifically marked by a reporter protein was produced and characterized. Methodology A P. falciparum transgenic line expressing an 80-residue N-terminal fragment of the osmiophilic body protein Pfg377 fused to the reporter protein DsRed, under the control of pfg377 upstream and downstream regulatory regions, was produced. Results The transgenic fusion protein is expressed at the appropriate time and stage of sexual differentiation and is trafficked to osmiophilic bodies as the endogenous Pfg377 protein. These results indicate that a relatively small N-terminal portion of Pfg377 is sufficient to target the DsRed reporter to the gametocyte osmiophilic bodies. Conclusions This is the first identification of a P. falciparum aminoacid sequence able to mediate trafficking to such organelles. To fluorescently tag such poorly characterized organelles opens novel avenues in cellular and imaging studies on their biogenesis and on their role in gamete egress.
Collapse
Affiliation(s)
- Anna Rosa Sannella
- Infectious Diseases Department, Istituto Superiore di Sanità, v.le Regina Elena 299, Rome 00161, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Rached FB, Ndjembo‐Ezougou C, Chandran S, Talabani H, Yera H, Dandavate V, Bourdoncle P, Meissner M, Tatu U, Langsley G. Construction of a
Plasmodium falciparum
Rab‐interactome identifies CK1 and PKA as Rab‐effector kinases in malaria parasites. Biol Cell 2011; 104:34-47. [PMID: 22188458 PMCID: PMC3437490 DOI: 10.1111/boc.201100081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/28/2011] [Indexed: 12/30/2022]
Affiliation(s)
- Fathia Ben Rached
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Carinne Ndjembo‐Ezougou
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Syama Chandran
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India
| | - Hana Talabani
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Hélène Yera
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
| | - Vrushali Dandavate
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India
| | - Pierre Bourdoncle
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Markus Meissner
- Division of Infection and Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India
| | - Gordon Langsley
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| |
Collapse
|
26
|
Restrepo-Montoya D, Becerra D, Carvajal-Patiño JG, Mongui A, Niño LF, Patarroyo ME, Patarroyo MA. Identification of Plasmodium vivax proteins with potential role in invasion using sequence redundancy reduction and profile hidden Markov models. PLoS One 2011; 6:e25189. [PMID: 21984903 PMCID: PMC3184965 DOI: 10.1371/journal.pone.0025189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background This study describes a bioinformatics approach designed to identify Plasmodium vivax proteins potentially involved in reticulocyte invasion. Specifically, different protein training sets were built and tuned based on different biological parameters, such as experimental evidence of secretion and/or involvement in invasion-related processes. A profile-based sequence method supported by hidden Markov models (HMMs) was then used to build classifiers to search for biologically-related proteins. The transcriptional profile of the P. vivax intra-erythrocyte developmental cycle was then screened using these classifiers. Results A bioinformatics methodology for identifying potentially secreted P. vivax proteins was designed using sequence redundancy reduction and probabilistic profiles. This methodology led to identifying a set of 45 proteins that are potentially secreted during the P. vivax intra-erythrocyte development cycle and could be involved in cell invasion. Thirteen of the 45 proteins have already been described as vaccine candidates; there is experimental evidence of protein expression for 7 of the 32 remaining ones, while no previous studies of expression, function or immunology have been carried out for the additional 25. Conclusions The results support the idea that probabilistic techniques like profile HMMs improve similarity searches. Also, different adjustments such as sequence redundancy reduction using Pisces or Cd-Hit allowed data clustering based on rational reproducible measurements. This kind of approach for selecting proteins with specific functions is highly important for supporting large-scale analyses that could aid in the identification of genes encoding potential new target antigens for vaccine development and drug design. The present study has led to targeting 32 proteins for further testing regarding their ability to induce protective immune responses against P. vivax malaria.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Bioinformatics and Intelligent Systems Research Laboratory - BIOLISI, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
| | - David Becerra
- Bioinformatics and Intelligent Systems Research Laboratory - BIOLISI, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Juan G. Carvajal-Patiño
- Bioinformatics and Intelligent Systems Research Laboratory - BIOLISI, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
| | - Alvaro Mongui
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
| | - Luis F. Niño
- Bioinformatics and Intelligent Systems Research Laboratory - BIOLISI, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
- School of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Manuel A. Patarroyo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
- * E-mail:
| |
Collapse
|
27
|
Field MC, Sali A, Rout MP. Evolution: On a bender--BARs, ESCRTs, COPs, and finally getting your coat. J Cell Biol 2011; 193:963-72. [PMID: 21670211 PMCID: PMC3115789 DOI: 10.1083/jcb.201102042] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/05/2011] [Indexed: 11/22/2022] Open
Abstract
Tremendous variety in form and function is displayed among the intracellular membrane systems of different eukaryotes. Until recently, few clues existed as to how these internal membrane systems had originated and diversified. However, proteomic, structural, and comparative genomics studies together have revealed extensive similarities among many of the protein complexes used in controlling the morphology and trafficking of intracellular membranes. These new insights have had a profound impact on our understanding of the evolutionary origins of the internal architecture of the eukaryotic cell.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology, University of Cambridge, Cambridge CB2 1QT, England, UK.
| | | | | |
Collapse
|
28
|
Crivellato E, Nico B, Gallo VP, Ribatti D. Cell secretion mediated by granule-associated vesicle transport: a glimpse at evolution. Anat Rec (Hoboken) 2010; 293:1115-24. [PMID: 20340095 DOI: 10.1002/ar.21146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Regulated secretion allows extrusion of cell products stored in specialized membrane-bound organelles called secretory granules or secretory vesicles. Regulated secretion provides basic functions in living organisms, and in a phylogenetic perspective, it is recognizable in the most primitive eukaryotic forms. This article is an attempt to trace the evolutionary history of a special type of secretory pattern, which has been referred to as vesicle-mediated degranulation or piecemeal degranulation (PMD). First described in the early 70s of the last century in inflammatory cells, such as the basophils, mast cells, and eosinophils, this regulated secretory route has subsequently been recognized in endocrine cells, in particular in the chromaffin cells of the adrenal medulla. This vesicle-mediated degranulation is held to mobilize small and specific aliquots of granule-associated material for selective paracrine or endocrine transport to the cell exterior. PMD has been identified in many vertebrate classes. By contrast, no data are available for invertebrates. We speculate that this pattern of cell secretion emerged early in phylogenesis, when the first metazoans appeared. In this review article, we will first revise the concept of vesicle-mediated degranulation in the light of the most recent experimental discoveries and theoretical implications. Then, the distribution of this secretory mode among vertebrates and its molecular basis will be highlighted. Finally, the potential occurrence of PMD in invertebrates, its biological significance from an evolutionary perspective and the future direction of investigations will be briefly sketched.
Collapse
Affiliation(s)
- Enrico Crivellato
- Department of Medical and Morphological Research, Section of Anatomy, University of Udine School of Medicine, Udine, Italy.
| | | | | | | |
Collapse
|
29
|
Hanssen E, McMillan PJ, Tilley L. Cellular architecture of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 2010; 40:1127-35. [DOI: 10.1016/j.ijpara.2010.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 01/11/2023]
|
30
|
Van Geertruyden JP, Van Eijk E, Yosaatmadja F, Kasongo W, Mulenga M, D'Alessandro U, Rogerson S. The relationship of Plasmodium falciparum humeral immunity with HIV-1 immunosuppression and treatment efficacy in Zambia. Malar J 2009; 8:258. [PMID: 19922664 PMCID: PMC2784793 DOI: 10.1186/1475-2875-8-258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/18/2009] [Indexed: 11/19/2022] Open
Abstract
Background HIV-1 infection affects malaria humeral immunity during pregnancy, but data for non-pregnant adults are lacking. This study reports the impact of HIV-1 infection and other variables on the level of malaria humeral immunity in adults with clinical malaria and whether humeral immune suppression was a risk factor for treatment failure. Methods Sera of 224 HIV-1 infected and 115 uninfected adults were compared for IgG to merozoite antigens AMA-1 and MSP2 (3D7 and FC27 types) determined by ELISA, and for IgG to the Variant Surface Antigens (VSA) of three different parasite line E8B, A4 and HCD6 determined by flow cytometry. Results Compared to HIV-1 uninfected adults, AMA-1 IgG was lower in HIV-1 infected (P = 0.02) and associated with low CD4 count AMA-1 IgG (P = 0.003). Low IgG to all three merozoite antigens was associated with less anemia (P = 0.03). High parasite load was associated with low MSP2 IgG 3D7 and FC27 types (P = 0.02 and P = 0.08). Antibody levels to VSA did not differ between HIV-1 infected and uninfected adults. However, low VSA IgGs were associated with high parasite load (P ≤ 0.002 for each parasite line) and with treatment failure (P ≤ 0.04 for each parasite line). Conclusion HIV-1 affects humeral responses to AMA-1, but seems to marginally or not affect humeral responses to other merozoite antigens and VSAs. The latter were important for controlling parasite density and predict treatment outcome.
Collapse
|
31
|
Tufet-Bayona M, Janse CJ, Khan SM, Waters AP, Sinden RE, Franke-Fayard B. Localisation and timing of expression of putative Plasmodium berghei rhoptry proteins in merozoites and sporozoites. Mol Biochem Parasitol 2009; 166:22-31. [DOI: 10.1016/j.molbiopara.2009.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/22/2009] [Accepted: 02/17/2009] [Indexed: 02/05/2023]
|
32
|
Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR, Wastling JM, Tomley FM, Sinden RE. Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 2009; 9:1142-51. [PMID: 19206106 DOI: 10.1002/pmic.200800404] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Secretion of microneme proteins is essential to Plasmodium invasion but the molecular composition of these secretory organelles remains poorly defined. Here, we describe the first Plasmodium microneme proteome. Purification of micronemes by subcellular fractionation from cultured ookinetes was confirmed by enrichment of known micronemal proteins and electron microscopy. Quantitation of electron micrographs showed >14-fold microneme enrichment compared to the intact ookinete, such that micronemes comprised 85% of the identifiable organelles in the fraction. Gel LC-MS/MS of the most abundant protein constituents of the fraction identified three known micronemal proteins chitinase, CTRP, SOAP, together with protein disulphide isomerase (PDI) and HSP70. Highly sensitive MudPIT shotgun proteomics described a total of 345 proteins in the fraction. M1 aminopeptidase and PDI, the former a recognised target of drug development, were both shown to have a micronemal location by IFA. We further identified numerous proteins with established vesicle trafficking and signaling functions consistent with micronemes being part of a regulated secretory pathway. Previously uncharacterised proteins comprise the largest functional group of the microneme proteome and will include secreted proteins important to invasion.
Collapse
Affiliation(s)
- Kalpana Lal
- Division of Cell and Molecular Biology, Imperial College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 2009; 7:341-54. [PMID: 19369950 DOI: 10.1038/nrmicro2110] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exported proteins of the malaria parasite Plasmodium falciparum interact with proteins of the erythrocyte membrane and induce substantial changes in the morphology, physiology and function of the host cell. These changes underlie the pathology that is responsible for the deaths of 1-2 million children every year due to malaria infections. The advent of molecular transfection technology, including the ability to generate deletion mutants and to introduce fluorescent reporter proteins that track the locations and dynamics of parasite proteins, has increased our understanding of the processes and machinery for export of proteins in P. falciparum-infected erythrocytes and has provided us with insights into the functions of the parasite protein exportome. We review these developments, focusing on parasite proteins that interact with the erythrocyte membrane skeleton or that promote delivery of the major virulence protein, PfEMP1, to the erythrocyte membrane.
Collapse
Affiliation(s)
- Alexander G Maier
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
34
|
Identification of rhoptry trafficking determinants and evidence for a novel sorting mechanism in the malaria parasite Plasmodium falciparum. PLoS Pathog 2009; 5:e1000328. [PMID: 19266084 PMCID: PMC2648313 DOI: 10.1371/journal.ppat.1000328] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 02/04/2009] [Indexed: 01/15/2023] Open
Abstract
The rhoptry of the malaria parasite Plasmodium falciparum is an unusual secretory organelle that is thought to be related to secretory lysosomes in higher eukaryotes. Rhoptries contain an extensive collection of proteins that participate in host cell invasion and in the formation of the parasitophorous vacuole, but little is known about sorting signals required for rhoptry protein targeting. Using green fluorescent protein chimeras and in vitro pull-down assays, we performed an analysis of the signals required for trafficking of the rhoptry protein RAP1. We provide evidence that RAP1 is escorted to the rhoptry via an interaction with the glycosylphosphatidyl inositol-anchored rhoptry protein RAMA. Once within the rhoptry, RAP1 contains distinct signals for localisation within a sub-compartment of the organelle and subsequent transfer to the parasitophorous vacuole after invasion. This is the first detailed description of rhoptry trafficking signals in Plasmodium.
Collapse
|
35
|
Breinich MS, Ferguson DJ, Foth BJ, van Dooren GG, Lebrun M, Quon DV, Striepen B, Bradley PJ, Frischknecht F, Carruthers VB, Meissner M. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr Biol 2009; 19:277-86. [PMID: 19217293 PMCID: PMC3941470 DOI: 10.1016/j.cub.2009.01.039] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/14/2009] [Accepted: 01/16/2009] [Indexed: 12/29/2022]
Abstract
BACKGROUND Apicomplexans contain only a core set of factors involved in vesicular traffic. Yet these obligate intracellular parasites evolved a set of unique secretory organelles (micronemes, rhoptries, and dense granules) that are required for invasion and modulation of the host cell. Apicomplexa replicate by budding from or within a single mother cell, and secretory organelles are synthesized de novo at the final stage of division. To date, the molecular basis for their biogenesis is unknown. RESULTS We demonstrate that the apicomplexan dynamin-related protein B (DrpB) belongs to an alveolate specific family of dynamins that is expanded in ciliates. DrpB accumulates in a cytoplasmic region close to the Golgi that breaks up during replication and reforms after assembly of the daughter cells. Conditional ablation of DrpB function results in mature daughter parasites that are devoid of micronemes and rhoptries. In the absence of these organelles, invasion-related secretory proteins are mistargeted to the constitutive secretory pathway. Mutant parasites are able to replicate but are unable to escape from or invade into host cells. CONCLUSIONS DrpB is the essential mechanoenzyme for the biogenesis of secretory organelles in Apicomplexa. We suggest that DrpB is required during replication to generate vesicles for the regulated secretory pathway that form the unique secretory organelles. Our study supports a role of an alveolate-specific dynamin that was required for the evolution of novel, secretory organelles. In the case of Apicomplexa, these organelles further evolved to enable a parasitic lifestyle.
Collapse
Affiliation(s)
- Manuela S. Breinich
- Hygiene Institute, Department of Parasitology, Heidelberg University School of Medicine, Heidelberg, Germany
| | - David J.P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Bernardo J. Foth
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Giel G. van Dooren
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, 30602, GA, USA
| | - Maryse Lebrun
- INSERM, UMR 55235 CNRS, Université de Montpellier 2, CP 107, Place Eugène Bataillon, 34090 Montpellier, France
| | - Doris V. Quon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles CA 90095-1489 USA
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, 30602, GA, USA
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles CA 90095-1489 USA
| | - Friedrich Frischknecht
- Hygiene Institute, Department of Parasitology, Heidelberg University School of Medicine, Heidelberg, Germany
| | - Vernon B. Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | - Markus Meissner
- Hygiene Institute, Department of Parasitology, Heidelberg University School of Medicine, Heidelberg, Germany
| |
Collapse
|
36
|
Morahan BJ, Wang L, Coppel RL. No TRAP, no invasion. Trends Parasitol 2008; 25:77-84. [PMID: 19101208 DOI: 10.1016/j.pt.2008.11.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 11/19/2022]
Abstract
Host-cell invasion by apicomplexan parasites is a unique process that is powered by the gliding motility motor and requires a transmembrane link between the parasite cytoskeleton and the host cell. The thrombospondin-related anonymous protein (TRAP) from Plasmodium plays such a part during sporozoite invasion by linking to actin through its cytoplasmic tail while binding to hepatocytes via its extracellular portion. In recent years, there have been major advances in the identification and characterization of TRAP-family proteins in the other invasive stages of Plasmodium as well as other Apicomplexa. This review summarizes the recent experimental data on these TRAP-family proteins, focusing on their structure and function.
Collapse
Affiliation(s)
- Belinda J Morahan
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
37
|
Plasmodium yoelii: novel rhoptry proteins identified within the body of merozoite rhoptries in rodent Plasmodium malaria. Exp Parasitol 2008; 120:113-7. [PMID: 18606406 DOI: 10.1016/j.exppara.2008.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 11/22/2022]
Abstract
The biogenesis, organization and function of the rhoptries are not well understood. Antisera were prepared to synthetic peptides prepared as multiple antigenic peptides (MAPs) obtained from a Plasmodium yoelii merozoite rhoptry proteome analysis. The antisera were used in immunofluorescence and immunoelectron microscopy of schizont-infected erythrocytes. Twenty-seven novel rhoptry proteins representing proteases, metabolic enzymes, secreted proteins and hypothetical proteins, were identified in the body of the rhoptries by immunoelectron microscopy. The merozoite rhoptries contain a heterogeneous mixture of proteins that may initiate host cell invasion and establish intracellular parasite development.
Collapse
|
38
|
|
39
|
Sheiner L, Dowse TJ, Soldati-Favre D. Identification of Trafficking Determinants for Polytopic Rhomboid Proteases in Toxoplasma gondii. Traffic 2008; 9:665-77. [DOI: 10.1111/j.1600-0854.2008.00736.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Cesbron-Delauw MF, Gendrin C, Travier L, Ruffiot P, Mercier C. Apicomplexa in mammalian cells: trafficking to the parasitophorous vacuole. Traffic 2008; 9:657-64. [PMID: 18315533 DOI: 10.1111/j.1600-0854.2008.00728.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most Apicomplexa reside and multiply in the cytoplasm of their host cell, within a parasitophorous vacuole (PV) originating from both parasite and host cell components. Trafficking of parasite-encoded proteins destined to membrane compartments beyond the confine of the parasite plasma membrane is a process that offers a rich territory to explore novel mechanisms of protein-membrane interactions. Here, we focus on the PVs formed by the asexual stages of two pathogens of medical importance, Plasmodium and Toxoplasma. We compare the PVs of both parasites, with a particular emphasis on their evolutionary divergent compartmentalization within the host cell. We also discuss the existence of peculiar export mechanisms and/or sorting determinants that are potentially involved in the post-secretory targeting of parasite proteins to the PV subcompartments.
Collapse
Affiliation(s)
- Marie-France Cesbron-Delauw
- Laboratoire Adaptation et Pathogénie des Microorganismes, CNRS UMR 5163, Université Joseph Fourier - Grenoble 1, BP 170, 38042 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|