1
|
Vredevoogd DW, Apriamashvili G, Levy PL, Sinha S, Huinen ZR, Visser NL, de Bruijn B, Boshuizen J, van Hal-van Veen SE, Ligtenberg MA, Bleijerveld OB, Lin CP, Díaz-Gómez J, Sánchez SD, Markovits E, Simon Nieto J, van Vliet A, Krijgsman O, Markel G, Besser MJ, Altelaar M, Ruppin E, Peeper DS. TMED inhibition suppresses cell surface PD-1 expression and overcomes T cell dysfunction. J Immunother Cancer 2024; 12:e010145. [PMID: 39510795 PMCID: PMC11552591 DOI: 10.1136/jitc-2024-010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Blockade of the programmed cell death protein 1 (PD-1) immune checkpoint (ICB) is revolutionizing cancer therapy, but little is known about the mechanisms governing its expression on CD8 T cells. Because PD-1 is induced during activation of T cells, we set out to uncover regulators whose inhibition suppresses PD-1 abundance without adversely impacting on T cell activation. METHODS To identify PD-1 regulators in an unbiased fashion, we performed a whole-genome, fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in primary murine CD8 T cells. A dual-readout design using the activation marker CD137 allowed us to uncouple genes involved in PD-1 regulation from those governing general T cell activation. RESULTS We found that the inactivation of one of several members of the TMED/EMP24/GP25L/p24 family of transport proteins, most prominently TMED10, reduced PD-1 cell surface abundance, thereby augmenting T cell activity. Another client protein was cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which was also suppressed by TMED inactivation. Treatment with TMED inhibitor AGN192403 led to lysosomal degradation of the TMED-PD-1 complex and reduced PD-1 abundance in tumor-infiltrating CD8 T cells (TIL) in mice, thus reversing T cell dysfunction. Clinically corroborating these findings, single-cell RNA analyses revealed a positive correlation between TMED expression in CD8 TIL, and both a T cell dysfunction signature and lack of ICB response. Similarly, patients receiving a TIL product with high TMED expression had a shorter overall survival. CONCLUSION Our results uncover a novel mechanism of PD-1 regulation, and identify a pharmacologically tractable target whose inhibition suppresses PD-1 abundance and T cell dysfunction.
Collapse
Affiliation(s)
- David W Vredevoogd
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Georgi Apriamashvili
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Pierre L Levy
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Zowi R Huinen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Nils L Visser
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Susan E van Hal-van Veen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Judit Díaz-Gómez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Santiago Duro Sánchez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan Simon Nieto
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alex van Vliet
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michal J Besser
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maarten Altelaar
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Daniel S Peeper
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Roberts BS, Mitra D, Abishek S, Beher R, Satpute-Krishnan P. The p24-family and COPII subunit SEC24C facilitate the clearance of alpha1-antitrypsin Z from the endoplasmic reticulum to lysosomes. Mol Biol Cell 2024; 35:ar45. [PMID: 38294851 PMCID: PMC10916869 DOI: 10.1091/mbc.e23-06-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
A subpopulation of the alpha-1-antitrypsin misfolding Z mutant (ATZ) is cleared from the endoplasmic reticulum (ER) via an ER-to-lysosome-associated degradation (ERLAD) pathway. Here, we report that the COPII subunit SEC24C and the p24-family of proteins facilitate the clearance of ATZ via ERLAD. In addition to the previously reported ERLAD components calnexin and FAM134B, we discovered that ATZ coimmunoprecipitates with the p24-family members TMP21 and TMED9. This contrasts with wild type alpha1-antitrypsin, which did not coimmunoprecipitate with FAM134B, calnexin or the p24-family members. Live-cell imaging revealed that ATZ and the p24-family members traffic together from the ER to lysosomes. Using chemical inhibitors to block ER exit or autophagy, we demonstrated that p24-family members and ATZ co-accumulate at SEC24C marked ER-exit sites or in ER-derived compartments, respectively. Furthermore, depletion of SEC24C, TMP21, or TMED9 inhibited lysosomal trafficking of ATZ and resulted in the increase of intracellular ATZ levels. Conversely, overexpression of these p24-family members resulted in the reduction of ATZ levels. Intriguingly, the p24-family members coimmunoprecipitate with ATZ, FAM134B, and SEC24C. Thus, we propose a model in which the p24-family functions in an adaptor complex linking SEC24C with the ERLAD machinery for the clearance of ATZ.
Collapse
Affiliation(s)
| | - Debashree Mitra
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Sudhanshu Abishek
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Richa Beher
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | |
Collapse
|
3
|
Bare Y, Matusek T, Vriz S, Deffieu MS, Thérond PP, Gaudin R. TMED10 mediates the loading of neosynthesised Sonic Hedgehog in COPII vesicles for efficient secretion and signalling. Cell Mol Life Sci 2023; 80:266. [PMID: 37624561 PMCID: PMC11072717 DOI: 10.1007/s00018-023-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The morphogen Sonic Hedgehog (SHH) plays an important role in coordinating embryonic development. Short- and long-range SHH signalling occurs through a variety of membrane-associated and membrane-free forms. However, the molecular mechanisms that govern the early events of the trafficking of neosynthesised SHH in mammalian cells are still poorly understood. Here, we employed the retention using selective hooks (RUSH) system to show that newly-synthesised SHH is trafficked through the classical biosynthetic secretory pathway, using TMED10 as an endoplasmic reticulum (ER) cargo receptor for efficient ER-to-Golgi transport and Rab6 vesicles for Golgi-to-cell surface trafficking. TMED10 and SHH colocalized at ER exit sites (ERES), and TMED10 depletion significantly delays SHH loading onto ERES and subsequent exit leading to significant SHH release defects. Finally, we utilised the Drosophila wing imaginal disc model to demonstrate that the homologue of TMED10, Baiser (Bai), participates in Hedgehog (Hh) secretion and signalling in vivo. In conclusion, our work highlights the role of TMED10 in cargo-specific egress from the ER and sheds light on novel important partners of neosynthesised SHH secretion with potential impact on embryonic development.
Collapse
Affiliation(s)
- Yonis Bare
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France
- Université de Montpellier, 34090, Montpellier, France
| | - Tamás Matusek
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, Nice, France
| | - Sophie Vriz
- Laboratoire des Biomolécules (LBM), Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
- Faculty of Science, Université de Paris, Paris, France
| | - Maika S Deffieu
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France
- Université de Montpellier, 34090, Montpellier, France
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, Nice, France
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France.
- Université de Montpellier, 34090, Montpellier, France.
| |
Collapse
|
4
|
Roberts BS, Satpute-Krishnan P. The many hats of transmembrane emp24 domain protein TMED9 in secretory pathway homeostasis. Front Cell Dev Biol 2023; 10:1096899. [PMID: 36733337 PMCID: PMC9888432 DOI: 10.3389/fcell.2022.1096899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The secretory pathway is an intracellular highway for the vesicular transport of newly synthesized proteins that spans the endoplasmic reticulum (ER), Golgi, lysosomes and the cell surface. A variety of cargo receptors, chaperones, and quality control proteins maintain the smooth flow of cargo along this route. Among these is vesicular transport protein TMED9, which belongs to the p24/transmembrane emp24 domain (TMED) family of proteins, and is expressed across vertebrate species. The TMED family is comprised of structurally-related type I transmembrane proteins with a luminal N-terminal Golgi-dynamics domain, a luminal coiled-coil domain, a transmembrane domain and a short cytosolic C-terminal tail that binds COPI and COPII coat proteins. TMED9, like other members of the TMED family, was first identified as an abundant constituent of the COPI and COPII coated vesicles that mediate traffic between the ER and the Golgi. TMED9 is typically purified in hetero-oligomers together with TMED family members, suggesting that it may function as part of a complex. Recently, TMED family members have been discovered to play various roles in secretory pathway homeostasis including secreted protein processing, quality control and degradation of misfolded proteins, and post-Golgi trafficking. In particular, TMED9 has been implicated in autophagy, lysosomal sorting, viral replication and cancer, which we will discuss in this Mini-Review.
Collapse
|
5
|
Lis N, Hein Z, Ghanwat SS, Ramnarayan VR, Chambers BJ, Springer S. The murine cytomegalovirus immunoevasin gp40/m152 inhibits NKG2D receptor RAE-1γ by intracellular retention and cell surface masking. J Cell Sci 2021; 134:269012. [PMID: 34085696 DOI: 10.1242/jcs.257428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
NKG2D (also known as KLRK1) is a crucial natural killer (NK) cell-activating receptor, and the murine cytomegalovirus (MCMV) employs multiple immunoevasins to avoid NKG2D-mediated activation. One of the MCMV immunoevasins, gp40 (m152), downregulates the cell surface NKG2D ligand RAE-1γ (also known as Raet1c) thus limiting NK cell activation. This study establishes the molecular mechanism by which gp40 retains RAE-1γ in the secretory pathway. Using flow cytometry and pulse-chase analysis, we demonstrate that gp40 retains RAE-1γ in the early secretory pathway, and that this effect depends on the binding of gp40 to a host protein, TMED10, a member of the p24 protein family. We also show that the TMED10-based retention mechanism can be saturated, and that gp40 has a backup mechanism as it masks RAE-1γ on the cell surface, blocking the interaction with the NKG2D receptor and thus NK cell activation.
Collapse
Affiliation(s)
- Natalia Lis
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Swapnil S Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Venkat R Ramnarayan
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Benedict J Chambers
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm 14152, Sweden
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| |
Collapse
|
6
|
Abstract
Regulated transport through the secretory pathway is essential for embryonic development and homeostasis. Disruptions in this process impact cell fate, differentiation and survival, often resulting in abnormalities in morphogenesis and in disease. Several congenital malformations are caused by mutations in genes coding for proteins that regulate cargo protein transport in the secretory pathway. The severity of mutant phenotypes and the unclear aetiology of transport protein-associated pathologies have motivated research on the regulation and mechanisms through which these proteins contribute to morphogenesis. This review focuses on the role of the p24/transmembrane emp24 domain (TMED) family of cargo receptors in development and disease.
Collapse
|
7
|
Shin JH, Cho DH. TMP21 regulates autophagy by modulating ROS production and mTOR activation. Biochem Biophys Res Commun 2019; 518:746-751. [PMID: 31472964 DOI: 10.1016/j.bbrc.2019.08.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
Autophagy is a catabolic cellular response to stress that has been liked to various human diseases. However, the precise involvement of autophagy in health and disease remains unclear. To explore the molecular mechanisms of autophagy, we investigated the effect of TMP21. We found that the down-regulation of TMP21 induced autophagy in SH-SY5Y cells. In addition, the enhanced autophagy observed upon TMP21 depletion was almost completely blocked in ATG5 knockout (KO) or ATG7-KO HeLa cells. Silencing of TMP21 in SH-SY5Y cells also increased the production of cellular reactive oxygen species (ROS). Accordingly, treatment with the ROS scavenger NAC suppressed autophagy activation as well as ROS production in TMP21-depleted cells. In addition, the inhibition of mTOR by treatment with Torin1 was mitigated in TMP21 overexpressing cells compared with that in control cells. Taken together, these results indicated that TMP21 could regulate autophagy by modulating ROS production and mTOR activation.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
8
|
Del Olmo T, Lacarrière-Keïta C, Normandin C, Jean D, Boisvert FM, Jean S. RAB21 interacts with TMED10 and modulates its localization and abundance. Biol Open 2019; 8:bio.045336. [PMID: 31455601 PMCID: PMC6777364 DOI: 10.1242/bio.045336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Membrane trafficking controls vesicular transport of cargo between cellular compartments. Vesicular trafficking is essential for cellular homeostasis and dysfunctional trafficking is linked to several pathologies such as neurodegenerative diseases. Following endocytosis, early endosomes act as sorting stations of internalized materials, routing cargo toward various fates. One important class of membrane trafficking regulators are RAB GTPases. RAB21 has been associated with multiple functions and regulates integrin internalization, endosomal sorting of specific clathrin-independent cargo and autophagy. Although RAB21 is mostly associated with early endosomes, it has been shown to mediate a specific sorting event at the Golgi. From mass spectrometry data, we identified a GTP-favored interaction between RAB21 and TMED10 and 9, essential regulators of COPI and COPII vesicles. Using RAB21 knockout cells, we describe the role of RAB21 in modulating TMED10 Golgi localization. Taken together, our study suggests a new potential function of RAB21 in modulating TMED10 trafficking, with relevance to neurodegenerative disorders. Summary: A small early endosomal RAB GTPase is found to interact with p24 family members, with potential impacts on p24 functions.
Collapse
Affiliation(s)
- Tomas Del Olmo
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - Camille Lacarrière-Keïta
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - Caroline Normandin
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - Dominique Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - François-Michel Boisvert
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'anatomie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, Canada J1E 4K8
| |
Collapse
|
9
|
Qiu K, Zhang X, Wang S, Li C, Wang X, Li X, Wu Y. TMP21 in Alzheimer's Disease: Molecular Mechanisms and a Potential Target. Front Cell Neurosci 2019; 13:328. [PMID: 31379512 PMCID: PMC6651510 DOI: 10.3389/fncel.2019.00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/03/2019] [Indexed: 01/28/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly, which is characterized by progressive cognitive impairment. Neuritic plaques, neurofibrillary tangles and neuronal loss are the major neuropathological hallmarks in AD brains. TMP21 is a key molecule for protein trafficking in cells. Growing evidence indicates that TMP21 is dysregulated in AD, which plays a pivotal role in neuritic plaque formation. Therefore, we aim to review the dysregulation of TMP21 in AD, the role of TMP21 in neuritic plaque formation and underlying mechanisms. Moreover, the potential role of TMP21 in neurofibrillary tangle formation, synaptic impairment and neuronal loss is discussed. It will provide an outlook into the potential of regulating TMP21 as a therapeutic approach for AD treatment.
Collapse
Affiliation(s)
- Kaixin Qiu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Chunyan Li
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuezhi Li
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
10
|
Luteijn RD, van Diemen F, Blomen VA, Boer IGJ, Manikam Sadasivam S, van Kuppevelt TH, Drexler I, Brummelkamp TR, Lebbink RJ, Wiertz EJ. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. J Virol 2019; 93:e02160-18. [PMID: 30996093 PMCID: PMC6580964 DOI: 10.1128/jvi.02160-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.
Collapse
Affiliation(s)
- Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ferdy van Diemen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ingrid G J Boer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingo Drexler
- Institute for Virology, Universitätsklinikum Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Zavodszky E, Hegde RS. Misfolded GPI-anchored proteins are escorted through the secretory pathway by ER-derived factors. eLife 2019; 8:46740. [PMID: 31094677 PMCID: PMC6541436 DOI: 10.7554/elife.46740] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
We have used misfolded prion protein (PrP*) as a model to investigate how mammalian cells recognize and degrade misfolded GPI-anchored proteins. While most misfolded membrane proteins are degraded by proteasomes, misfolded GPI-anchored proteins are primarily degraded in lysosomes. Quantitative flow cytometry analysis showed that at least 85% of PrP* molecules transiently access the plasma membrane en route to lysosomes. Unexpectedly, time-resolved quantitative proteomics revealed a remarkably invariant PrP* interactome during its trafficking from the endoplasmic reticulum (ER) to lysosomes. Hence, PrP* arrives at the plasma membrane in complex with ER-derived chaperones and cargo receptors. These interaction partners were critical for rapid endocytosis because a GPI-anchored protein induced to misfold at the cell surface was not recognized effectively for degradation. Thus, resident ER factors have post-ER itineraries that not only shield misfolded GPI-anchored proteins during their trafficking, but also provide a quality control cue at the cell surface for endocytic routing to lysosomes.
Collapse
|
12
|
Shin JH, Park SJ, Jo DS, Park NY, Kim JB, Bae JE, Jo YK, Hwang JJ, Lee JA, Jo DG, Kim JC, Jung YK, Koh JY, Cho DH. Down-regulated TMED10 in Alzheimer disease induces autophagy via ATG4B activation. Autophagy 2019; 15:1495-1505. [PMID: 30821607 DOI: 10.1080/15548627.2019.1586249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that dysfunction of macroautophagy/autophagy is associated with many human diseases, including neurodegenerative disease and cancer. To explore the molecular mechanisms of autophagy, we performed a cell-based functional screening with SH-SY5Y cells stably expressing GFP-LC3, using an siRNA library and identified TMED10 (transmembrane p24 trafficking protein 10), previously known as the γ-secretase-modulating protein, as a novel regulator of autophagy. Further investigations revealed that depletion of TMED10 induced the activation of autophagy. Interestingly, protein-protein interaction assays showed that TMED10 directly binds to ATG4B (autophagy related gene 4B cysteine peptidase), and the interaction is diminished under autophagy activation conditions such as rapamycin treatment and serum deprivation. In addition, inhibition of TMED10 significantly enhanced the proteolytic activity of ATG4B for LC3 cleavage. Importantly, the expression of TMED10 in AD (Alzheimer disease) patients was considerably decreased, and downregulation of TMED10 increased amyloid-β (Aβ) production. Treatment with Aβ increased ATG4B proteolytic activity as well as dissociation of TMED10 and ATG4B. Taken together, our results suggest that the AD-associated protein TMED10 negatively regulates autophagy by inhibiting ATG4B activity.Abbreviations: Aβ: amyloid-β; AD: Alzheimer disease; ATG: autophagy related; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CD: cytosolic domain; GFP: green fluorescent protein; GLUC: Gaussia luciferase; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LD: luminal domain; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SNP: single-nucleotide polymorphisms; TD: transmembrane domain; TMED10: transmembrane p24 trafficking protein 10; VC: C terminus of Venus fluorescent protein; VN: N terminus of Venus fluorescent protein.
Collapse
Affiliation(s)
- Ji Hyun Shin
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea.,b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - So Jung Park
- b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Doo Sin Jo
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Na Yeon Park
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Joon Bum Kim
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Ji-Eun Bae
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea.,b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Yoon Kyung Jo
- b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Jung Jin Hwang
- c Asan Institute for Life Sciences, Asan Medical Center , Seoul , South Korea
| | - Jin-A Lee
- d College of Life Sciences and Nanotechnology, Hannam University , Daejeon , South Korea
| | - Dong-Gyu Jo
- e School of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Jin Cheon Kim
- f Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center , Seoul , South Korea
| | - Yong Keun Jung
- g School of Biological Sciences, Seoul National University , Seoul , South Korea
| | - Jae-Young Koh
- h Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center , Seoul , South Korea
| | - Dong-Hyung Cho
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
13
|
In search of chondrocyte-specific antigen. Cent Eur J Immunol 2018; 43:132-138. [PMID: 30135624 PMCID: PMC6102620 DOI: 10.5114/ceji.2018.77382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
The purpose of this work was to establish, whether rat chondrocyte associated antigen, transmembrane Tmp21 protein belonging to the p24 protein family may immunize rats and thus be included into the panel of immunogens potentially involved in cartilage pathology. For immunization of rats extract from cultured chondrocytes containing surface chondrocyte proteins suspended in incomplete Freund's adjuvant was used. Control animals were injected with incomplete Freund's adjuvant without chondrocyte extract. Morphological observations indicated that both in control and experimental animals occurred subperiosteal resorption of bone, suggesting that it arised as the response to adjuvant. In trachea, however, resorption of cartilage and inflammatory changes in the respiratory epithelium and lamina propria were present only in animals exposed to antigen. Unexpectedly, sera from immunized rats strongly reacted with other antigen, which we were able to identify by Western blot and protein sequencing as cartilage oligomeric matrix protein (COMP). COMP is attached to chondrocyte membrane by integrins and its presence in chondrocyte extract is not surprising. Antibody response to COMP raises a question whether the observed changes in tracheal cartilage and epithelium represent anti-COMP reaction or were caused by some other, no specified factors. COMP is used as the marker of osteoarthritis progression, but its role in polychondritis, cartilage pathology involving i.a. tracheal cartilage resorption remains unknown. Thus, our observations may serve as the starting point for future studies in this direction.
Collapse
|
14
|
Nakano N, Tsuchiya Y, Kako K, Umezaki K, Sano K, Ikeno S, Otsuka E, Shigeta M, Nakagawa A, Sakata N, Itoh F, Nakano Y, Iemura SI, van Dinther M, Natsume T, Ten Dijke P, Itoh S. TMED10 Protein Interferes with Transforming Growth Factor (TGF)-β Signaling by Disrupting TGF-β Receptor Complex Formation. J Biol Chem 2017; 292:4099-4112. [PMID: 28115518 DOI: 10.1074/jbc.m116.769109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/13/2017] [Indexed: 01/17/2023] Open
Abstract
The intensity and duration of TGF-β signaling determine the cellular biological response. How this is negatively regulated is not well understood. Here, we identified a novel negative regulator of TGF-β signaling, transmembrane p24-trafficking protein 10 (TMED10). TMED10 disrupts the complex formation between TGF-β type I (also termed ALK5) and type II receptors (TβRII). Misexpression studies revealed that TMED10 attenuated TGF-β-mediated signaling. A 20-amino acid-long region from Thr91 to Glu110 within the extracellular region of TMED10 was found to be crucial for TMED10 interaction with both ALK5 and TβRII. Synthetic peptides corresponding to this region inhibit both TGF-β-induced Smad2 phosphorylation and Smad-dependent transcriptional reporter activity. In a xenograft cancer model, where previously TGF-β was shown to elicit tumor-promoting effects, gain-of-function and loss-of-function studies for TMED10 revealed a decrease and increase in the tumor size, respectively. Thus, we determined herein that TMED10 expression levels are the key determinant for efficiency of TGF-β receptor complex formation and signaling.
Collapse
Affiliation(s)
- Naoko Nakano
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yuki Tsuchiya
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kenro Kako
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kenryu Umezaki
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Keigo Sano
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Souichi Ikeno
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Eri Otsuka
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Masashi Shigeta
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Ai Nakagawa
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Nobuo Sakata
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Fumiko Itoh
- the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yota Nakano
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shun-Ichiro Iemura
- the Translational Research Center, Fukushima Medical University, 11-25 Sakaemachi, Fukushima City, Fukushima 960-8031, Japan
| | - Maarten van Dinther
- the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, S-1-P, 2300 RC Leiden, The Netherlands
| | - Tohru Natsume
- the Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan, and
| | - Peter Ten Dijke
- the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, S-1-P, 2300 RC Leiden, The Netherlands.,the Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala SE-751 24, Sweden
| | - Susumu Itoh
- From the Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan,
| |
Collapse
|
15
|
Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, Marcote MJ, Aniento F. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. PROTOPLASMA 2016; 253:967-985. [PMID: 26224213 DOI: 10.1007/s00709-015-0858-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Juan Carlos Montesinos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
16
|
Liu L, Fujino K, Nishimura M. Pre-synaptic localization of the γ-secretase-inhibiting protein p24α2 in the mammalian brain. J Neurochem 2015; 133:422-31. [PMID: 25438880 DOI: 10.1111/jnc.13000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 12/13/2022]
Abstract
Dysregulated metabolism and consequent extracellular accumulation of amyloid-β (Aβ) peptides in the brain underlie the pathogenesis of Alzheimer's disease. Extracellular Aβ in the brain parenchyma is mainly secreted from the pre-synaptic terminals of neuronal cells in a synaptic activity-dependent manner. The p24 family member p24α2 reportedly attenuates Aβ generation by inhibiting γ-secretase processing of amyloid precursor protein; however, the pattern of expression and localization of p24α2 in the brain remains unknown. We performed immunohistochemical staining and subcellular fractionation for p24α2 in the mouse brain. Immunostaining showed that p24α2 is broadly distributed in the gray matter of the central nervous system and is predominantly localized to synapses. Subcellular fractionation revealed prominent localization of p24α2 in the pre-synaptic terminals. Immunoisolation of synaptic vesicles (SV) indicated that p24α2 is condensed at active zone-docked SV. During development, p24α2 expression is highest in the post-natal period and gradually decreases with age. We also confirmed that amyloid precursor protein and γ-secretase components are localized at active zone-docked SV. Our results suggest a novel functional role for p24α2 in the regulation of synaptic transmission and synaptogenesis, and provide evidence for the participation of p24α2 in the regulation of Aβ generation and secretion in the brain. The p24 family member p24α2 attenuates amyloid-β (Aβ) generation by inhibiting the γ-secretase processing. We report that p24α2 is condensed at active zone-docked synaptic vesicles in the brain. p24α2 expression is highest in the post-natal period and gradually decreases with age. Our results suggest a novel function for p24α2 at the synapse, including the regulation of brain Aβ generation.
Collapse
Affiliation(s)
- Lei Liu
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | | | | |
Collapse
|
17
|
Osiecka-Iwan A, Niderla-Bielinska J, Hyc A, Moskalewski S. Rat chondrocyte-associated antigen identified as sialylated transmembrane protein Tmp21 belonging to the p24 protein family. Calcif Tissue Int 2014; 94:348-52. [PMID: 24271503 PMCID: PMC3918385 DOI: 10.1007/s00223-013-9816-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022]
Abstract
Rabbit serum produced after transplantation of isolated rat chondrocytes [sensitized rabbit serum (SRS)] demonstrated M r ~ 74- and ~23-kDa (western blot analysis) antigens in rat chondrocyte extracts. Only the latter remained after reduction in 2-mercaptoethanol. Protein sequence analysis of 23-kDa chondrocyte-associated antigen (CAA) revealed that it corresponds to transmembrane Tmp21 protein belonging to the p24 protein family. These proteins mainly participate in the traffic between the endoplasmic reticulum and Golgi complex and in some cells appear also in the membrane of secretory granules and plasmalemma. Tmp21 extracted from chondrocytes was sialylated and ceased to bind SRS after deglycosylation. A previous study from our laboratory indicated that expression of CAA, now identified as sialylated Tmp21, decreased in cultured chondrocytes concomitantly with the decline of collagen type II and aggrecan and the rise of collagen type I and versican expression. Since the sialylated form of Tmp21 (also known as emp24) was not described in other tissues and seems to be specific for chondrocytes, we assume that CAA may be considered a chondrocyte differentiation antigen.
Collapse
Affiliation(s)
- Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Chalubińskiego 5, 02004, Warsaw, Poland,
| | | | | | | |
Collapse
|
18
|
Serra-Soriano M, Pallás V, Navarro JA. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:863-79. [PMID: 24438546 DOI: 10.1111/tpj.12435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 05/19/2023]
Abstract
Viral movement proteins exploit host endomembranes and the cytoskeleton to move within the cell via routes that, in some cases, are dependent on the secretory pathway. For example, melon necrotic spot virus p7B, a type II transmembrane protein, leaves the endoplasmic reticulum (ER) through the COPII-dependent Golgi pathway to reach the plasmodesmata. Here we investigated the sequence requirements and putative mechanisms governing p7B transport through the early secretory pathway. Deletion of either the cytoplasmic N-terminal region (CR) or the luminal C-terminal region (LR) led to ER retention, suggesting that they are both essential for ER export. Through alanine-scanning mutagenesis, we identified residues in the CR and LR that are critical for both ER export and for viral cell-to-cell movement. Within the CR, alanine substitution of aspartic and proline residues in the DSSP β-turn motif (D7 AP10 A) led to movement of discrete structures along the cortical ER in an actin-dependent manner. In contrast, alanine substitution of a lysine residue in the LR (K49 A) resulted in a homogenous ER distribution of the movement protein and inhibition of ER-Golgi traffic. Moreover, the ability of p7B to recruit Sar1 to the ER membrane is lost in the D7 AP10 A mutant, but enhanced in the K49 A mutant. In addition, fluorescence recovery after photobleaching revealed that K49 A but not D7 AP10 A dramatically diminished protein lateral mobility. From these data, we propose a model whereby the LR directs actin-dependent mobility toward the cortical ER, where the cytoplasmic DSSP β-turn favors assembly of COPII vesicles for export of p7B from the ER.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València/Consejo Superior de Investigaciones Científicas, Avenida Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | | |
Collapse
|
19
|
The enterohemorrhagic Escherichia coli effector protein NleF binds mammalian Tmp21. Vet Microbiol 2013; 164:164-70. [PMID: 23434013 DOI: 10.1016/j.vetmic.2013.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/21/2022]
Abstract
The human pathogens enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC), as well as the mouse pathogen Citrobacter rodentium encode type III secretion system (T3SS) effector proteins to promote their survival in the infected host. The mechanisms of action and the host targets of T3SS effectors are under active investigation because of their importance to bacterial virulence. The non-locus of enterocyte effacement (LEE)-encoded protein F, NleF, contributes to E. coli and C. rodentium colonization of piglets and mice, respectively. Here we sought to characterize the host binding partners of NleF. Using a yeast two-hybrid screen, we identified Tmp21, a type-I integral membrane protein and COPI-vesicle receptor involved in trans-Golgi network function, as an NleF-binding partner. We confirmed this interaction using immunoprecipitation and bimolecular fluorescence complementation (BiFC). We expressed a temperature-sensitive vesicular stomatitis virus glycoprotein (tsVSVG) to monitor protein trafficking and determined that NleF slows the intracellular trafficking of tsVSVG from the endoplasmic reticulum to the Golgi.
Collapse
|
20
|
Fujita M, Kinoshita T. GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1050-8. [DOI: 10.1016/j.bbalip.2012.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 01/08/2023]
|
21
|
Montesinos JC, Sturm S, Langhans M, Hillmer S, Marcote MJ, Robinson DG, Aniento F. Coupled transport of Arabidopsis p24 proteins at the ER-Golgi interface. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4243-61. [PMID: 22577184 PMCID: PMC3398454 DOI: 10.1093/jxb/ers112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
p24 proteins are a family of type I membrane proteins localized to compartments of the early secretory pathway and to coat protein I (COPI)- and COPII-coated vesicles. They can be classified, by sequence homology, into four subfamilies, named p24α, p24β, p24γ, and p24δ. In contrast to animals and fungi, plants contain only members of the p24β and p24δ subfamilies. It has previously been shown that transiently expressed red fluorescent protein (RFP)-p24δ5 localizes to the endoplasmic reticulum (ER) as a consequence of highly efficient COPI-based recycling from the Golgi apparatus. Using specific antibodies, endogenous p24δ5 has now been localized to the ER and p24β2 to the Golgi apparatus in Arabidopsis root tip cells by immunogold electron microscopy. The relative contributions of the cytosolic tail and the luminal domains to p24δ5 trafficking have also been characterized. It is demonstrated that whereas the dilysine motif in the cytoplasmic tail determines the location of p24δ5 in the early secretory pathway, the luminal domain may contribute to its distribution downstream of the Golgi apparatus. By using knock-out mutants and co-immunoprecipitation experiments, it is shown that p24δ5 and p24β2 interact with each other. Finally, it is shown that p24δ5 and p24β2 exhibit coupled trafficking at the ER-Golgi interface. It is proposed that p24δ5 and p24β2 interact with each other at ER export sites for ER exit and coupled transport to the Golgi apparatus. Once in the Golgi, p24δ5 interacts very efficiently with the COPI machinery for retrograde transport back to the ER.
Collapse
Affiliation(s)
- Juan Carlos Montesinos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Spain
| | - Silke Sturm
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Germany
| | - Markus Langhans
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Germany
| | - Stefan Hillmer
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Germany
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Spain
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Germany
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Spain
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Drosophila melanogaster p24 trafficking proteins have vital roles in development and reproduction. Mech Dev 2012; 129:177-91. [PMID: 22554671 DOI: 10.1016/j.mod.2012.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/02/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
p24 proteins comprise a family of type-I transmembrane proteins of ~24kD that are present in yeast and plants as well as metazoans ranging from Drosophila to humans. These proteins are most commonly localized to the endoplasmic reticulum (ER)-Golgi interface and are incorporated in anterograde and retrograde transport vesicles. Little is known about how disruption of p24 signaling affects individual tissue function or whole animals. Drosophila melanogaster express nine p24 genes, grouped into four subfamilies. Based upon our mRNA and protein expression data, Drosophila p24 family members are expressed in a variety of tissues. To identify functions for particular Drosophila p24 proteins, we used RNA interference (RNAi) to reduce p24 expression. Ubiquitous reduction of most p24 genes resulted in complete or partial lethality during development. We found that reducing p24 levels in adults caused defects in female fecundity (egg laying) and also reduced male fertility. We attributed reduced female fecundity to decreased neural p24 expression. These results provide the first genetic analysis of all p24 family members in a multicellular animal and indicate vital roles for Drosophila p24s in development and reproduction, implicating neural expression of p24s in the regulation of female behavior.
Collapse
|
23
|
Chen J, Qi X, Zheng H. Subclass-specific localization and trafficking of Arabidopsis p24 proteins in the ER-Golgi interface. Traffic 2012; 13:400-15. [PMID: 22132757 DOI: 10.1111/j.1600-0854.2011.01317.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
We describe a comprehensive analysis of the subcellular localization and in vivo trafficking of Arabidopsis p24 proteins. In Arabidopsis, there are 11 p24 proteins, which fall into only δ and β subfamilies. Interestingly, the δ subfamily of p24 proteins in Arabidopsis is elaborated spectacularly in evolution, which can be grouped into two subclasses: p24δ1 and p24δ2. We found that, although all p24δ proteins possess classic COPII/COPI binding motifs in their cytosolic C-termini, p24δ1 proteins are localized to the endoplasmic reticulum (ER), p24δ2 proteins are localized to both ER and Golgi. Two p24β proteins reside largely in Golgi. Similar to Atp24 (termed p24δ1c in this study), p24δ2d also cycles between the ER and Golgi. Interestingly, coexpression with p24β1 could retain p24δ2d, but not p24δ1d in Golgi. We revealed that the lumenal coiled-coil domain of p24δ2d is required for its steady-state localization in Golgi, probably through its interaction with p24β1. In p24β1, there is no classic COPII or COPI binding motif in its C-terminus. However, the protein also cycles between the ER and Golgi. We found that a conserved RV motif located at the extreme end of the C-terminus of p24β1 plays an important role in its Golgi target.
Collapse
Affiliation(s)
- Jun Chen
- Developmental Biology Research Initiatives, Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada
| | | | | |
Collapse
|
24
|
|
25
|
Jun Y, Ahn K. Tmp21, a novel MHC-I interacting protein, preferentially binds to Β2-microglobulin-free MHC-I heavy chains. BMB Rep 2011; 44:369-74. [PMID: 21699748 DOI: 10.5483/bmbrep.2011.44.6.369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MHC-I molecules play a critical role in immune surveillance against viruses by presenting peptides to cytotoxic T lymphocytes. Although the mechanisms by which MHC-I molecules assemble and acquire peptides in the ER are well characterized, how MHC-I molecules traffic to the cell surface remains poorly understood. To identify novel proteins that regulate the intracellular transport of MHC-I molecules, MHC-I-interacting proteins were isolated by affinity purification, and their identity was determined by mass spectrometry. Among the identified MHC-I-associated proteins was Tmp21, the human ortholog of yeast Emp24p, which mediates the ER-Golgi trafficking of a subset of proteins. Here, we show that Tmp21 binds to human classical and non-classical MHC-I molecules. The Tmp21-MHC-I complex lacks Β(2)-microglobulin, and the number of the complexes is increased when free MHC-I heavy chains are more abundant. Taken together, these results suggest that Tmp21 is a novel protein that preferentially binds to Β(2)-microglobulin-free MHC-I heavy chains.
Collapse
Affiliation(s)
- Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea.
| | | |
Collapse
|
26
|
Fujita M, Watanabe R, Jaensch N, Romanova-Michaelides M, Satoh T, Kato M, Riezman H, Yamaguchi Y, Maeda Y, Kinoshita T. Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. ACTA ACUST UNITED AC 2011; 194:61-75. [PMID: 21727194 PMCID: PMC3135397 DOI: 10.1083/jcb.201012074] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
p24 complexes act as cargo receptors for sorting GPI-anchored proteins into COPII vesicles. Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.
Collapse
Affiliation(s)
- Morihisa Fujita
- Research Institute for Microbial Diseases and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bonnon C, Wendeler MW, Paccaud JP, Hauri HP. Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J Cell Sci 2010; 123:1705-15. [PMID: 20427317 DOI: 10.1242/jcs.062950] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Selective export of transmembrane proteins from the endoplasmic reticulum (ER) relies on recognition of cytosolic-domain-localized transport signals by the Sec24 subunit of the COPII vesicle coat. Human cells express four Sec24 isoforms, termed Sec24A, Sec24B, Sec24C and Sec24D that are differentially required for selective, signal-mediated ER export of transmembrane proteins. By contrast, luminally exposed glycosylphosphatidylinositol (GPI)-anchored membrane proteins cannot bind directly to Sec24 and must either use membrane-spanning cargo receptors or alternative mechanisms for ER export. Little is known about the mechanism underlying export of GPI-anchored proteins from the ER in higher eukaryotes. Using siRNA-based silencing, we identified that ER-to-Golgi transport of the human GPI-anchored protein CD59 requires Sec24, with preference for the Sec24C and Sec24D isoforms, and the recycling transmembrane protein complex p24-p23 that exhibited the same Sec24C-Sec24D isoform preference for ER export. Co-immunoprecipitation indicated unprecedented physical interaction of CD59 as well as a GFP-folate-receptor-GPI-anchor hybrid with a p24-p23 complex. Density gradient centrifugation revealed co-partitioning of CD59 and p24-p23 into biosynthetically early lipid raft fractions, and CD59 transport to the Golgi was cholesterol dependent. The results suggest that the 24p-23p complex acts as a cargo receptor for GPI-anchored proteins by facilitating their export from the ER in a Sec24-isoform-selective manner involving lipid rafts as early sorting platforms.
Collapse
Affiliation(s)
- Carine Bonnon
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
28
|
Wang H, Kazanietz MG. p23/Tmp21 differentially targets the Rac-GAP beta2-chimaerin and protein kinase C via their C1 domains. Mol Biol Cell 2010; 21:1398-408. [PMID: 20164256 PMCID: PMC2854097 DOI: 10.1091/mbc.e09-08-0735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ER/Golgi protein p23/Tmp21 acts as a C1 domain-docking protein that mediates perinuclear translocation of β-chimaerin. C1 domains from PKC isozymes can also interact with p23/Tmp21. Our study highlights the relevance of C1 domains in protein-protein interactions in addition to their well-established lipid-binding properties. The C1 domains in protein kinase C (PKC) isozymes and other signaling molecules are responsible for binding the lipid second messenger diacylglycerol and phorbol esters, and for mediating translocation to membranes. Previous studies revealed that the C1 domain in α- and β-chimaerins, diacylglycerol-regulated Rac-GAPs, interacts with the endoplasmic reticulum/Golgi protein p23/Tmp21. Here, we found that p23/Tmp21 acts as a C1 domain-docking protein that mediates perinuclear translocation of β2-chimaerin. Glu227 and Leu248 in the β2-chimaerin C1 domain are crucial for binding p23/Tmp21 and perinuclear targeting. Interestingly, isolated C1 domains from individual PKC isozymes differentially interact with p23/Tmp21. For PKCε, it interacts with p23/Tmp21 specifically via its C1b domain; however, this association is lost in response to phorbol esters. These results demonstrate that p23/Tmp21 acts as an anchor that distinctively modulates compartmentalization of C1 domain-containing proteins, and it plays an essential role in β2-chimaerin relocalization. Our study also highlights the relevance of C1 domains in protein–protein interactions in addition to their well-established lipid-binding properties.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | | |
Collapse
|