1
|
Marmorale LJ, Jin H, Reidy TG, Palomino-Alonso B, Zysnarski CJ, Jordan-Javed F, Lahiri S, Duncan MC. Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 2024; 223:e202309047. [PMID: 38240799 PMCID: PMC10798858 DOI: 10.1083/jcb.202309047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024] Open
Abstract
The highly conserved HEATR5 proteins are best known for their roles in membrane traffic mediated by the adaptor protein complex-1 (AP1). HEATR5 proteins rely on fast-evolving cofactors to bind to AP1. However, how HEATR5 proteins interact with these cofactors is unknown. Here, we report that the budding yeast HEATR5 protein, Laa1, functions in two biochemically distinct complexes. These complexes are defined by a pair of mutually exclusive Laa1-binding proteins, Laa2 and the previously uncharacterized Lft1/Yml037c. Despite limited sequence similarity, biochemical analysis and structure predictions indicate that Lft1 and Laa2 bind Laa1 via structurally similar mechanisms. Both Laa1 complexes function in intra-Golgi recycling. However, only the Laa2-Laa1 complex binds to AP1 and contributes to its localization. Finally, structure predictions indicate that human HEATR5 proteins bind to a pair of fast-evolving interacting partners via a mechanism similar to that observed in yeast. These results reveal mechanistic insight into how HEATR5 proteins bind their cofactors and indicate that Laa1 performs functions besides recruiting AP1.
Collapse
Affiliation(s)
- Lucas J. Marmorale
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Huan Jin
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Thomas G. Reidy
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Brandon Palomino-Alonso
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Christopher J. Zysnarski
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Fatima Jordan-Javed
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Sagar Lahiri
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Mara C. Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Gissot L, Fontaine F, Kelemen Z, Dao O, Bouchez I, Deruyffelaere C, Winkler M, Costa AD, Pierre F, Meziadi C, Faure JD, Froissard M. E and M SARS-CoV-2 membrane protein expression and enrichment with plant lipid droplets. Biotechnol J 2024; 19:e2300512. [PMID: 37986207 DOI: 10.1002/biot.202300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Plants are gaining traction as a cost-effective and scalable platform for producing recombinant proteins. However, expressing integral membrane proteins in plants is challenging due to their hydrophobic nature. In our study, we used transient and stable expression systems in Nicotiana benthamiana and Camelina sativa respectively to express SARS-CoV-2 E and M integral proteins, and target them to lipid droplets (LDs). LDs offer an ideal environment for folding hydrophobic proteins and aid in their purification through flotation. We tested various protein fusions with different linkers and tags and used three dimensional structure predictions to assess their effects. E and M mostly localized in the ER in N. benthamiana leaves but E could be targeted to LDs in oil accumulating tobacco when fused with oleosin, a LD integral protein. In Camelina sativa seeds, E and M were however found associated with purified LDs. By enhancing the accumulation of E and M within LDs through oleosin, we enriched these proteins in the purified floating fraction. This strategy provides an alternative approach for efficiently producing and purifying hydrophobic pharmaceuticals and vaccines using plant systems.
Collapse
Affiliation(s)
- Lionel Gissot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Florent Fontaine
- SAS Core Biogenesis, 850 Bd Sébastien Brant BioParc 3, 67400, Illkirch-Graffenstaden, France
| | - Zsolt Kelemen
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Ousmane Dao
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Isabelle Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Carine Deruyffelaere
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Michèle Winkler
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Anais Da Costa
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Fabienne Pierre
- SAS Core Biogenesis, 850 Bd Sébastien Brant BioParc 3, 67400, Illkirch-Graffenstaden, France
| | - Chouaib Meziadi
- SAS Core Biogenesis, 850 Bd Sébastien Brant BioParc 3, 67400, Illkirch-Graffenstaden, France
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marine Froissard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
3
|
Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization. Cell Rep 2022; 39:110647. [PMID: 35417721 PMCID: PMC9074372 DOI: 10.1016/j.celrep.2022.110647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes have been suggested as undergoing self-inflicted destruction. However, molecular details are sparse compared with the mechanisms of programmed/regulated cell death known for human cells and animal models. Here, we report a molecular cell death pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization. Following a transient cell death stimulus, yeast cells die slowly over several hours, consistent with an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 complex, a vesicle trafficking adapter known to transport and install newly synthesized proteins on the vacuole/lysosome membrane. To promote cell death, AP-3 requires its Arf1-GTPase-dependent vesicle trafficking function and the kinase Yck3, which is selectively transported to the vacuole membrane by AP-3. Video microscopy revealed a sequence of events where vacuole permeability precedes the loss of plasma membrane integrity. AP-3-dependent death appears to be conserved in the human pathogenic yeast Cryptococcus neoformans. Details about how mammalian cells die have yielded effective cancer therapies. Similarly, details about fungal cell death may explain failed responses to anti-fungal agents and inform next-generation anti-fungal strategies. Stolp et al. describe a potential mechanism of yeast cell death subversion, by inhibiting AP-3 vesicle trafficking to block vacuole/lysosome permeability.
Collapse
|
4
|
A new pH sensor localized in the Golgi apparatus of Saccharomyces cerevisiae reveals unexpected roles of Vph1p and Stv1p isoforms. Sci Rep 2020; 10:1881. [PMID: 32024908 PMCID: PMC7002768 DOI: 10.1038/s41598-020-58795-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
The gradual acidification of the secretory pathway is conserved and extremely important for eukaryotic cells, but until now there was no pH sensor available to monitor the pH of the early Golgi apparatus in Saccharomyces cerevisiae. Therefore, we developed a pHluorin-based sensor for in vivo measurements in the lumen of the Golgi. By using this new tool we show that the cis- and medial-Golgi pH is equal to 6.6–6.7 in wild type cells during exponential phase. As expected, V-ATPase inactivation results in a near neutral Golgi pH. We also uncover that surprisingly Vph1p isoform of the V-ATPase is prevalent to Stv1p for Golgi acidification. Additionally, we observe that during changes of the cytosolic pH, the Golgi pH is kept relatively stable, mainly thanks to the V-ATPase. Eventually, this new probe will allow to better understand the mechanisms involved in the acidification and the pH control within the secretory pathway.
Collapse
|
5
|
Kim HS, Park W, Lee HS, Shin JH, Ahn SJ. Subcellular Journey of Rare Cold Inducible 2 Protein in Plant Under Stressful Condition. FRONTIERS IN PLANT SCIENCE 2020; 11:610251. [PMID: 33510753 PMCID: PMC7835403 DOI: 10.3389/fpls.2020.610251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 05/07/2023]
Abstract
Rare cold inducible 2 (RCI2) proteins are small hydrophobic membrane proteins in plants, and it has been widely reported that RCI2 expressions are dramatically induced by salt, cold, and drought stresses in many species. The RCI2 proteins have been shown to regulate plasma membrane (PM) potential and enhance abiotic stress tolerance when over-expressed in plants. RCI2 protein structures contain two transmembrane domains that are thought to be PM intrinsic proteins and have been observed at the PM and endomembranes. However, cellular trafficking of RCI2s are not fully understood. In this review, we discussed (i) general properties of RCI2s characterized in many species, (ii) the uses of RCI2s as a tracer in live cell imaging analyses and when they are fused to fluorescence proteins during investigations into vesicle trafficking, and (iii) RCI2 functionalities such as their involvement in rapid diffusion, endocytosis, and protein interactions. Consequently, the connection between physiological characteristics of RCI2s and traffic of RCI2s interacting membrane proteins might be helpful to understand role of RCI2s contributing abiotic stresses tolerance.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Won Park
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, South Korea
| | - Hyeon-Sook Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jung-Ho Shin
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Sung-Ju Ahn
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- *Correspondence: Sung-Ju Ahn,
| |
Collapse
|
6
|
Zysnarski CJ, Lahiri S, Javed FT, Martínez-Márquez JY, Trowbridge JW, Duncan MC. Adaptor protein complex-1 (AP-1) is recruited by the HEATR5 protein Laa1 and its co-factor Laa2 in yeast. J Biol Chem 2018; 294:1410-1419. [PMID: 30523155 DOI: 10.1074/jbc.ra118.005253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/03/2018] [Indexed: 11/06/2022] Open
Abstract
Cellular membrane trafficking mediated by the clathrin adaptor protein complex-1 (AP-1) is important for the proper composition and function of organelles of the endolysosomal system. Normal AP-1 function requires proteins of the HEAT repeat-containing 5 (HEATR5) family. Although HEATR5 proteins were first identified based on their ability to interact with AP-1, the functional significance of this interaction was unknown. We used bioinformatics-based phenotypic profiling and information from genome-wide fluorescence microscopy studies in the budding yeast Saccharomyces cerevisiae to identify a protein, Laa2, that mediates the interaction between AP-1 and the yeast HEATR5 protein Laa1. Further characterization of Laa2 revealed that it binds to both Laa1 and AP-1. Laa2 contains a motif similar to the characterized γ-ear-binding sites found in other AP-1-binding proteins. This motif in Laa2 is essential for the Laa1-AP-1 interaction. Moreover, mutation of this motif disrupted AP-1 localization and function and caused effects similar to mutations that remove the γ-ear of AP-1. These results indicate that Laa2 mediates the interaction between Laa1 and AP-1 and reveal that this interaction promotes the stable association of AP-1 with membranes in yeast.
Collapse
Affiliation(s)
| | - Sagar Lahiri
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Fatima T Javed
- Cell and Developmental Biology Department, Ann Arbor, Michigan 48109
| | | | | | - Mara C Duncan
- Cell and Developmental Biology Department, Ann Arbor, Michigan 48109.
| |
Collapse
|
7
|
Secretory Vesicle Polar Sorting, Endosome Recycling and Cytoskeleton Organization Require the AP-1 Complex in Aspergillus nidulans. Genetics 2018; 209:1121-1138. [PMID: 29925567 DOI: 10.1534/genetics.118.301240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
The AP-1 complex is essential for membrane protein traffic via its role in the pinching-off and sorting of secretory vesicles (SVs) from the trans-Golgi and/or endosomes. While its essentiality is undisputed in metazoa, its role in simpler eukaryotes seems less clear. Here, we dissect the role of AP-1 in the filamentous fungus Aspergillus nidulans and show that it is absolutely essential for growth due to its role in clathrin-dependent maintenance of polar traffic of specific membrane cargoes toward the apex of growing hyphae. We provide evidence that AP-1 is involved in both anterograde sorting of RabERab11-labeled SVs and RabA/BRab5-dependent endosome recycling. Additionally, AP-1 is shown to be critical for microtubule and septin organization, further rationalizing its essentiality in cells that face the challenge of cytoskeleton-dependent polarized cargo traffic. This work also opens a novel issue on how nonpolar cargoes, such as transporters, are sorted to the eukaryotic plasma membrane.
Collapse
|
8
|
Colinet AS, Thines L, Deschamps A, Flémal G, Demaegd D, Morsomme P. Acidic and uncharged polar residues in the consensus motifs of the yeast Ca2+
transporter Gdt1p are required for calcium transport. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/12/2016] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Anne-Sophie Colinet
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Louise Thines
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Antoine Deschamps
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Gaëlle Flémal
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Didier Demaegd
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Pierre Morsomme
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
9
|
Whitfield ST, Burston HE, Bean BDM, Raghuram N, Maldonado-Báez L, Davey M, Wendland B, Conibear E. The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting. Mol Biol Cell 2015; 27:588-98. [PMID: 26658609 PMCID: PMC4751606 DOI: 10.1091/mbc.e15-09-0621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
Adaptor complexes are important for cargo sorting in clathrin-coated vesicles. The µ adaptor subunits Apm1 and Apm2 create functionally distinct versions of the yeast AP-1 complex. A novel regulatory protein is identified that selectively binds Apm2-containing complexes and contributes to their membrane recruitment. Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes.
Collapse
Affiliation(s)
- Shawn T Whitfield
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Helen E Burston
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nandini Raghuram
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218-2685
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
10
|
The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane. Sci Rep 2015; 5:16665. [PMID: 26577948 PMCID: PMC4649669 DOI: 10.1038/srep16665] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/19/2015] [Indexed: 01/31/2023] Open
Abstract
The limiting membrane of lysosomes in animal cells and that of the vacuole in yeast
include a wide variety of transporters, but little is known about how these proteins
reach their destination membrane. The mammalian PQLC2 protein catalyzes efflux of
basic amino acids from the lysosome, and the similar Ypq1, −2, and
−3 proteins of yeast perform an equivalent function at the vacuole. We
here show that the Ypq proteins are delivered to the vacuolar membrane via the
alkaline phosphatase (ALP) trafficking pathway, which requires the AP-3 adaptor
complex. When traffic via this pathway is deficient, the Ypq proteins pass through
endosomes from where Ypq1 and Ypq2 properly reach the vacuolar membrane whereas Ypq3
is missorted to the vacuolar lumen via the multivesicular body pathway. When
produced in yeast, PQLC2 also reaches the vacuolar membrane via the ALP pathway, but
tends to sort to the vacuolar lumen if AP-3 is defective. Finally, in HeLa cells,
inhibiting the synthesis of an AP-3 subunit also impairs sorting of PQLC2 to
lysosomes. Our results suggest the existence of a conserved AP-3-dependent
trafficking pathway for proper delivery of basic amino acid exporters to the yeast
vacuole and to lysosomes of human cells.
Collapse
|
11
|
De Block J, Szopinska A, Guerriat B, Dodzian J, Villers J, Hochstenbach JF, Morsomme P. Yeast Pmp3p has an important role in plasma membrane organization. J Cell Sci 2015; 128:3646-59. [PMID: 26303201 DOI: 10.1242/jcs.173211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/18/2015] [Indexed: 01/24/2023] Open
Abstract
Pmp3p-related proteins are highly conserved proteins that exist in bacteria, yeast, nematodes and plants, and its transcript is regulated in response to abiotic stresses, such as low temperature or high salinity. Pmp3p was originally identified in Saccharomyces cerevisiae, and it belongs to the sensitive to Na(+) (SNA)-protein family, which comprises four members--Pmp3p/Sna1p, Sna2p, Sna3p and Sna4p. Deletion of the PMP3 gene conferred sensitivity to cytotoxic cations, whereas removal of the other SNA genes did not lead to clear phenotypic effects. It has long been believed that Pmp3p-related proteins have a common and important role in the modulation of plasma membrane potential and in the regulation of intracellular ion homeostasis. Here, we show that several growth phenotypes linked to PMP3 deletion can be modulated by the removal of specific genes involved in sphingolipid synthesis. These genetic interactions, together with lipid binding assays and epifluorescence microscopy, as well as other biochemical experiments, suggest that Pmp3p could be part of a phosphoinositide-regulated stress sensor.
Collapse
Affiliation(s)
- Julien De Block
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Aleksandra Szopinska
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Bérengère Guerriat
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Joanna Dodzian
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Jennifer Villers
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Jean-François Hochstenbach
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Pierre Morsomme
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
12
|
Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S, Diallinas G. Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. J Mol Biol 2015; 427:2679-96. [DOI: 10.1016/j.jmb.2015.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
|
13
|
Karachaliou M, Amillis S, Evangelinos M, Kokotos AC, Yalelis V, Diallinas G. The arrestin-like protein ArtA is essential for ubiquitination and endocytosis of the UapA transporter in response to both broad-range and specific signals. Mol Microbiol 2013; 88:301-17. [DOI: 10.1111/mmi.12184] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Mayia Karachaliou
- Faculty of Biology; University of Athens; Panepistimiopolis 15784; Athens; Greece
| | - Sotiris Amillis
- Faculty of Biology; University of Athens; Panepistimiopolis 15784; Athens; Greece
| | - Minoas Evangelinos
- Faculty of Biology; University of Athens; Panepistimiopolis 15784; Athens; Greece
| | | | - Vassilis Yalelis
- Faculty of Biology; University of Athens; Panepistimiopolis 15784; Athens; Greece
| | - George Diallinas
- Faculty of Biology; University of Athens; Panepistimiopolis 15784; Athens; Greece
| |
Collapse
|
14
|
Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast. PLoS One 2012; 7:e46386. [PMID: 23056294 PMCID: PMC3463608 DOI: 10.1371/journal.pone.0046386] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022] Open
Abstract
Traffic of the integral yeast membrane protein chitin synthase III (Chs3p) from the trans-Golgi network (TGN) to the cell surface and to and from the early endosomes (EE) requires active protein sorting decoded by a number of protein coats. Here we define overlapping signals on Chs3p responsible for sorting in both exocytic and intracellular pathways by the coats exomer and AP-1, respectively. Residues 19DEESLL24, near the N-terminal cytoplasmically-exposed domain, comprise both an exocytic di-acidic signal and an intracellular di-leucine signal. Additionally we show that the AP-3 complex is required for the intracellular retention of Chs3p. Finally, residues R374 and W391, comprise another signal responsible for an exomer-independent alternative pathway that conveys Chs3p to the cell surface. These results establish a role for active protein sorting at the trans-Golgi en route to the plasma membrane (PM) and suggest a possible mechanism to regulate protein trafficking.
Collapse
|
15
|
Babu M, Vlasblom J, Pu S, Guo X, Graham C, Bean BDM, Burston HE, Vizeacoumar FJ, Snider J, Phanse S, Fong V, Tam YYC, Davey M, Hnatshak O, Bajaj N, Chandran S, Punna T, Christopolous C, Wong V, Yu A, Zhong G, Li J, Stagljar I, Conibear E, Wodak SJ, Emili A, Greenblatt JF. Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 2012; 489:585-9. [PMID: 22940862 DOI: 10.1038/nature11354] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/27/2012] [Indexed: 01/03/2023]
Abstract
Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we report a complete survey of 1,590 putative integral, peripheral and lipid-anchored MPs from Saccharomyces cerevisiae, which were affinity purified in the presence of non-denaturing detergents. The identities of the co-purifying proteins were determined by tandem mass spectrometry and subsequently used to derive a high-confidence physical interaction map encompassing 1,726 membrane protein-protein interactions and 501 putative heteromeric complexes associated with the various cellular membrane systems. Our analysis reveals unexpected physical associations underlying the membrane biology of eukaryotes and delineates the global topological landscape of the membrane interactome.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, Donnelly Centre, 160 College Street, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
DeRocher AE, Karnataki A, Vaney P, Parsons M. Apicoplast targeting of a Toxoplasma gondii transmembrane protein requires a cytosolic tyrosine-based motif. Traffic 2012; 13:694-704. [PMID: 22288938 DOI: 10.1111/j.1600-0854.2012.01335.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/16/2022]
Abstract
Toxoplasma gondii, like most apicomplexan parasites, possesses an essential relict chloroplast, the apicoplast. Several apicoplast membrane proteins lack the bipartite targeting sequences of luminal proteins. Vesicles bearing these membrane proteins are detected during apicoplast enlargement, but the means of cargo selection remains obscure. We used a combination of deletion mutagenesis, point mutations and protein chimeras to identify a short motif prior to the first transmembrane domain of the T. gondii apicoplast phosphate transporter 1 (APT1) that is necessary for apicoplast trafficking. Tyrosine 16 was essential for proper localization; any substitution resulted in misdirection of APT1 to the Golgi body. Glycine 17 was also important, with significant Golgi body accumulation in the alanine mutant. Separation of at least eight amino acids from the transmembrane domain was required for full motif function. Similarly placed YG motifs are present in apicomplexan APT1 orthologs and the corresponding N-terminal domain from Plasmodium vivax was able to route T. gondii APT1 to the apicoplast. Differential permeabilization showed that both the N- and C-termini of APT1 are exposed to the cytosol. We propose that this YG motif facilitates APT1 trafficking via interactions that occur on the cytosolic face of nascent vesicles destined for the apicoplast.
Collapse
Affiliation(s)
- Amy E DeRocher
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Seattle, WA 98109-5219, USA
| | | | | | | |
Collapse
|
17
|
Sorieul M, Santoni V, Maurel C, Luu DT. Mechanisms and Effects of Retention of Over-Expressed Aquaporin AtPIP2;1 in the Endoplasmic Reticulum. Traffic 2011; 12:473-82. [DOI: 10.1111/j.1600-0854.2010.01154.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Vanhee C, Guillon S, Masquelier D, Degand H, Deleu M, Morsomme P, Batoko H. A TSPO-related protein localizes to the early secretory pathway in Arabidopsis, but is targeted to mitochondria when expressed in yeast. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:497-508. [PMID: 20847098 PMCID: PMC3003801 DOI: 10.1093/jxb/erq283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
AtTSPO is a TspO/MBR domain-protein potentially involved in multiple stress regulation in Arabidopsis. As in most angiosperms, AtTSPO is encoded by a single, intronless gene. Expression of AtTSPO is tightly regulated both at the transcriptional and post-translational levels. It has been shown previously that overexpression of AtTSPO in plant cell can be detrimental, and the protein was detected in the endoplasmic reticulum (ER) and Golgi stacks, contrasting with previous findings and suggesting a mitochondrial subcellular localization for this protein. To ascertain these findings, immunocytochemistry and ABA induction were used to demonstrate that, in plant cells, physiological levels of AtTSPO colocalized with AtArf1, a mainly Golgi-localized protein in plant cells. In addition, fluorescent protein-tagged AtTSPO was targeted to the secretory pathway and did not colocalize with MitoTracker-labelled mitochondria. These results suggest that the polytopic membrane protein AtTSPO is cotranslationally targeted to the ER in plant cells and accumulates in the Trans-Golgi Network. Heterologous expression of AtTSPO in Saccharomyces cerevisiae, yeast devoid of TSPO-related protein, resulted in growth defects. However, subcellular fractionation and immunoprecipitation experiments showed that AtTSPO was targeted to mitochondria where it colocalized and interacted with the outer mitochondrial membrane porin VDAC1p, reminiscent of the subcellular localization and activity of mammalian translocator protein 18 kDa TSPO. The evolutionarily divergent AtTSPO appears therefore to be switching its sorting mode in a species-dependent manner, an uncommon peculiarity for a polytopic membrane protein in eukaryotic cells. These results are discussed in relation to the recognition and organelle targeting mechanisms of polytopic membrane proteins in eukaryotic cells.
Collapse
Affiliation(s)
- Celine Vanhee
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Stéphanie Guillon
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Danièle Masquelier
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Magali Deleu
- Unité de Chimie Biologique Industrielle, Université de Liège, Gembloux Agro-BioTech (GxABT), Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Pierre Morsomme
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|