1
|
Guarnera L, Santinelli E, Galossi E, Cristiano A, Fabiani E, Falconi G, Voso MT. Microenvironment in acute myeloid leukemia: focus on senescence mechanisms, therapeutic interactions, and future directions. Exp Hematol 2024; 129:104118. [PMID: 37741607 DOI: 10.1016/j.exphem.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis. In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment. In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Enrico Santinelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elisa Galossi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Saint Camillus International, University of Health Sciences, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Neuro-Oncohematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
2
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
3
|
Malek E, El-Jurdi N, Kröger N, de Lima M. Allograft for Myeloma: Examining Pieces of the Jigsaw Puzzle. Front Oncol 2017; 7:287. [PMID: 29322027 PMCID: PMC5732220 DOI: 10.3389/fonc.2017.00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) cure remains elusive despite the availability of newer anti-myeloma agents. Patients with high-risk disease often suffer from early relapse and short survival. Allogeneic hematopoietic cell transplantation (allo-HCT) is an “immune-based” therapy that has the potential to offer long-term remission in a subgroup of patients, at the expense of high rates of transplant-related morbidity and mortality. Donor lymphocyte infusion (DLI) upon disease relapse after allo-HCT is able to generate an anti-myeloma response suggestive of a graft-versus-myeloma effect. Allo-HCT provides a robust platform for additional immune-based therapy upon relapse including DLI and, maintenance with immunomodulatory drugs and immunosuppressive therapy. There have been conflicting findings from randomized prospective trials questioning the role of allo-HCT. However, to this date, allo-HCT remains the only potential curable treatment for MM and its therapeutic role needs to be better defined especially for patients with high-risk disease. This review examines different aspects of this treatment and summarizes ongoing attempts at improving its therapeutic index.
Collapse
Affiliation(s)
- Ehsan Malek
- Stem Cell Transplant Program, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Najla El-Jurdi
- Stem Cell Transplant Program, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcos de Lima
- Stem Cell Transplant Program, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Allogeneic Hematopoietic Cell Transplantation for Myeloma: When and in Whom Does It Work. Curr Hematol Malig Rep 2017; 12:126-135. [PMID: 28285435 DOI: 10.1007/s11899-017-0374-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The growing list of available therapies for patients with multiple myeloma has resulted in tremendously high response rates and prolonged survival. However, the cure remains elusive. A continued effort at developing strategies to utilize all available treatment modalities in the most effective manner is needed. Allogeneic hematopoietic cell transplantation (allo-HCT) is a robust platform, associated with high response rates, and provides a unique foundation on which immune therapies and novel agents can be employed to improve clinical outcomes. Patients with high-risk myeloma and those relapsing after novel agent-based therapies or early after an autologous HCT should be considered for allo-HCT, ideally in a clinical trial setting. Results from several ongoing studies are expected to provide important information that will help determine the place of allo-HCT in the myeloma treatment algorithm.
Collapse
|
5
|
MacDonald KP, Blazar BR, Hill GR. Cytokine mediators of chronic graft-versus-host disease. J Clin Invest 2017; 127:2452-2463. [PMID: 28665299 DOI: 10.1172/jci90593] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Substantial preclinical and clinical research into chronic graft-versus-host disease (cGVHD) has come to fruition in the last five years, generating a clear understanding of a complex cytokine-driven cellular network. cGVHD is mediated by naive T cells differentiating within IL-17-secreting T cell and follicular Th cell paradigms to generate IL-21 and IL-17A, which drive pathogenic germinal center (GC) B cell reactions and monocyte-macrophage differentiation, respectively. cGVHD pathogenesis includes thymic damage, impaired antigen presentation, and a failure in IL-2-dependent Treg homeostasis. Pathogenic GC B cell and macrophage reactions culminate in antibody formation and TGF-β secretion, respectively, leading to fibrosis. This new understanding permits the design of rational cytokine and intracellular signaling pathway-targeted therapeutics, reviewed herein.
Collapse
Affiliation(s)
- Kelli Pa MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce R Blazar
- Masonic Cancer Center; and Division of Blood and Marrow Transplantation, Department of Pediatrics; University of Minnesota, Minneapolis, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
6
|
Kyluik-Price DL, Scott MD. Effects of methoxypoly (Ethylene glycol) mediated immunocamouflage on leukocyte surface marker detection, cell conjugation, activation and alloproliferation. Biomaterials 2016; 74:167-77. [PMID: 26457834 DOI: 10.1016/j.biomaterials.2015.09.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023]
Abstract
Tissue rejection occurs subsequent to the recognition of foreign antigens via receptor-ligand contacts between APC (antigen presenting cells) and T cells, resulting in initialization of signaling cascades and T cell proliferation. Bioengineering of donor cells by the covalent attachment of methoxypolyethylene glycol (mPEG) to membrane proteins (PEGylation) provides a novel means to attenuate these interactions consequent to mPEG-induced charge and steric camouflage. While previous studies demonstrated that polymer-mediated immunocamouflage decreased immune recognition both in vitro and in vivo, these studies monitored late events in immune recognition and activation such as T cell proliferation. Consequently little information has been provided concerning the early cellular events governing this response. Therefore, the effect of PEGylation was assessed by examining initial cell-cell interactions, changes to activation pathways, and apoptosis to understand the role that each may play in the decreased proliferative response observed in modified cells during the course of a mixed lymphocyte reaction (MLR). The mPEG-modified T cells resulted in significant immunocamouflage of lymphocyte surface proteins and decreased interactions with APC. Furthermore, mPEG-MLR exhibited decreased NFκB pathway activation, while exhibiting no significant differences in degree of cell death compared to the control MLR. These results suggest that PEGylation may prevent the direct recognition of foreign alloantigens by decreasing the stability and duration of initial cell-cell interactions.
Collapse
Affiliation(s)
- Dana L Kyluik-Price
- Canadian Blood Services, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine at the University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mark D Scott
- Canadian Blood Services, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine at the University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
7
|
miR-146b antagomir-treated human Tregs acquire increased GVHD inhibitory potency. Blood 2016; 128:1424-35. [PMID: 27485827 DOI: 10.1182/blood-2016-05-714535] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022] Open
Abstract
CD4(+)CD25(+)FoxP3(+) thymic-derived regulatory T cells (tTregs) are indispensable for maintaining immune system equilibrium. Adoptive transfer of tTregs is an effective means of suppressing graft-versus-host disease (GVHD) in murine models and in early human clinical trials. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an ubiquitin-conjugating enzyme that mediates nuclear factor κB (NF-κB) activation, plays an essential role in modulating regulatory T cell survival and function. MicroRNAs (miRNAs) are noncoding RNAs, which mediate RNA silencing and posttranscriptional gene repression. By performing comprehensive TaqMan Low Density Array miRNA assays, we identified 10 miRNAs differentially regulated in human tTreg compared with control T cells. One candidate, miR-146b, is preferentially and highly expressed in human naive tTregs compared with naive CD4 T cells. miRNA prediction software revealed that TRAF6 was the one of the top 10 scored mRNAs involved tTreg function with the highest probability as a potential miR-146b target. Antagomir-mediated knockdown of miRNA-146b, but not another miRNA-146 family member (miRNA-146a), enhanced TRAF6 expression. TRAF6, in turn, increases NF-κB activation, which is essential for tTreg function as well as Foxp3 protein and antiapoptotic gene expression, and downregulates proapoptotic gene expression. miR-146b knockdown increased the nuclear localization and expression of genes regulated by NF-κB, which was associated with enhanced tTreg survival, proliferation, and suppressive function measured in vitro and in vivo. TRAF6 inhibition had the opposite effects. We conclude that an miR-146b-TRAF6-NF-κB-FoxP3 signaling pathway restrains regulatory T cell survival, proliferation, and suppressor function. In vitro exposure of human tTregs to miR-146b antagomirs can be exploited to improve the clinical efficacy of human adoptive tTreg transfer in a GVHD setting.
Collapse
|
8
|
Risk stratification of organ-specific GVHD can be improved by single-nucleotide polymorphism-based risk models. Bone Marrow Transplant 2014; 49:649-56. [DOI: 10.1038/bmt.2014.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
|
9
|
Yu Y, Wang D, Kaosaard K, Liu C, Fu J, Haarberg K, Anasetti C, Beg AA, Yu XZ. c-Rel is an essential transcription factor for the development of acute graft-versus-host disease in mice. Eur J Immunol 2013; 43:2327-37. [PMID: 23716202 DOI: 10.1002/eji.201243282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/12/2013] [Accepted: 05/24/2013] [Indexed: 11/11/2022]
Abstract
Transcription factors of the Rel/NF-κB family are known to play different roles in immunity and inflammation, although the putative role of c-Rel in transplant tolerance and graft-versus-host disease (GVHD) remains elusive. We report here that T cells deficient for c-Rel have a dramatically reduced ability to cause acute GVHD after allogeneic bone marrow transplantation using major and minor histocompatibility mismatched murine models. In the study to understand the underlying mechanisms, we found that c-Rel(-/-) T cells had a reduced ability to expand in lymphoid organs and to infiltrate in GVHD target organs in allogeneic recipients. c-Rel(-/-) T cells were defective in the differentiation into Th1 cells after encountering alloantigens, but were enhanced in the differentiation toward Foxp3(+) regulatory T (Treg) cells. Furthermore, c-Rel(-/-) T cells had largely preserved activity to mediate graft-versus-leukemia response. Taken together, our findings indicate that c-Rel plays an essential role in T cells in the induction of acute GVHD, and suggest that c-Rel can be a potential target for therapeutic intervention in allogeneic hematopoietic cell transplantation in the clinic.
Collapse
Affiliation(s)
- Yu Yu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang CW, Chung WH, Cheng YF, Ying NW, Peck K, Chen YT, Hung SI. A new nucleic acid-based agent inhibits cytotoxic T lymphocyte-mediated immune disorders. J Allergy Clin Immunol 2013; 132:713-722.e11. [PMID: 23791505 DOI: 10.1016/j.jaci.2013.04.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/16/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and graft-versus-host disease (GVHD) are distinct immune reactions elicited by drugs or allogeneic antigens; however, they share a pathomechanism with the activation of cytotoxic T lymphocytes (CTLs). CTLs produce cytotoxic proteins, cytokines, chemokines, or immune alarmins, such as granulysin (GNLY), leading to the extensive tissue damage and systemic inflammation seen in patients with SJS/TEN or GVHD. Currently, there is no effective therapeutic agent specific for CTL-mediated immune disorders. OBJECTIVES By targeting GNLY(+) CTLs, we aimed to develop a nucleic acid-based agent consisting of an anti-CD8 aptamer with GNLY small interfering RNA (siRNA). METHODS We performed systematic evolution of ligands using exponential enrichment to select and identify effective anti-CD8 aptamers. We developed an aptamer-siRNA chimera using a "sticky bridge" method by conjugating the aptamer with siRNA. We analyzed the inhibitory effects of the aptamer-siRNA chimera on CTL responses in patients with SJS/TEN or GVHD. RESULTS We identified a novel DNA aptamer (CD8AP17s) targeting CTLs. This aptamer could be specifically internalized into human CTLs. We generated the CD8AP17s aptamer-GNLY siRNA chimera, which showed a greater than 79% inhibitory effect on the production of GNLY by drug/alloantigen-activated T cells. The CD8AP17s aptamer-GNLY siRNA chimera decreased cytotoxicity in in vitro models of both SJS/TEN (elicited by drug-specific antigen) and GVHD (elicited by allogeneic antigens). CONCLUSIONS Our results identified a new nucleic acid-based agent (CD8 aptamer-GNLY siRNA chimera) that can significantly inhibit CTL-mediated drug hypersensitivity, such as that seen in patients with SJS/TEN, as well as the alloreactivity seen in patients with GVHD. This study provides a novel therapeutic strategy for CTL-mediated immune disorders.
Collapse
Affiliation(s)
- Chuang-Wei Wang
- Department and Institute of Pharmacology, School of Medicine, Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan; Molecular Medicine Program, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospitals, Keelung, Linko, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Fang Cheng
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Nien-Wen Ying
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Konan Peck
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Shuen-Iu Hung
- Department and Institute of Pharmacology, School of Medicine, Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan; Molecular Medicine Program, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
Bartee E, Meacham A, Wise E, Cogle CR, McFadden G. Virotherapy using myxoma virus prevents lethal graft-versus-host disease following xeno-transplantation with primary human hematopoietic stem cells. PLoS One 2012; 7:e43298. [PMID: 22905251 PMCID: PMC3419197 DOI: 10.1371/journal.pone.0043298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a potentially lethal clinical complication arising from the transfer of alloreactive T lymphocytes into immunocompromised recipients. Despite conventional methods of T cell depletion, GVHD remains a major challenge in allogeneic hematopoietic cell transplant. Here, we demonstrate a novel method of preventing GVHD by ex vivo treatment of primary human hematopoietic cell sources with myxoma virus, a rabbit specific poxvirus currently under development for oncolytic virotherapy. This pretreatment dramatically increases post-transplant survival of immunocompromised mice injected with primary human bone marrow or peripheral blood cells and prevents the expansion of human CD3(+) lymphocytes in major recipient organs. Similar viral treatment also prevents human-human mixed alloreactive T lymphocyte reactions in vitro. Our data suggest that ex vivo virotherapy with myxoma virus can be a simple and effective method for preventing GVHD following infusion of hematopoietic products containing alloreactive T lymphocytes such as: allogeneic hematopoietic stem and progenitor cells, donor leukocyte infusions and blood transfusions.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Amy Meacham
- Division of Hematology/Oncology, Department of Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Elizabeth Wise
- Division of Hematology/Oncology, Department of Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Christopher R. Cogle
- Division of Hematology/Oncology, Department of Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
12
|
Lupino E, Ramondetti C, Piccinini M. IκB kinase β is required for activation of NF-κB and AP-1 in CD3/CD28-stimulated primary CD4(+) T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2545-55. [PMID: 22331067 DOI: 10.4049/jimmunol.1102938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of the TCR and CD28 coreceptor by their respective ligands activates signal transduction cascades that ultimately lead to the activation of the transcription factors NFAT, AP-1, and NF-κB, which are required for the expression of cytokines and T cell clonal expansion. Previous studies have demonstrated that in mature T cells, activation of AP-1 and NF-κB is dependent on protein kinase C θ, suggesting the existence of a common signaling pathway. In this study, we show that in human primary CD4(+) T cells, exposure to the cell-permeable IKKβ inhibitor PS-1145 or genetic ablation of IKKβ abrogates cell proliferation and impairs the activation of NF-κB and AP-1 transcription factors in response to engagement of CD3 and CD28 coreceptor. In addition, we show that stimulation of T cells in the absence of IKKβ activity promotes the time-dependent and cyclosporine-sensitive expression of negative regulators of T cell signaling leading to a hyporesponsive state of T cells.
Collapse
Affiliation(s)
- Elisa Lupino
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, 10126 Turin, Italy
| | | | | |
Collapse
|
13
|
Flood PM, Qian L, Peterson LJ, Zhang F, Shi JS, Gao HM, Hong JS. Transcriptional Factor NF-κB as a Target for Therapy in Parkinson's Disease. PARKINSONS DISEASE 2011; 2011:216298. [PMID: 21603248 PMCID: PMC3095232 DOI: 10.4061/2011/216298] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/21/2011] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by chronic inflammation. Nuclear factor κB (NF-κB) is a family of inducible transcription factors that are expressed in a wide variety of cells and tissues, including microglia, astrocytes, and neurons, and the classical NF-κB pathway plays a key role in the activation and regulation of inflammatory mediator production during inflammation. Activation of the classical NF-κB pathway is mediated through the activity of the IKK kinase complex, which consists of a heterotrimer of IKKα, IKKβ, and IKKγ subunits. Targeting NF-κB has been proposed as an approach to the treatment of acute and chronic inflammatory conditions, and the use of inhibitors specific for either IKKβ or IKKγ has now been found to inhibit neurodegeneration of TH+ DA-producing neurons in murine and primate models of Parkinson's disease. These studies suggest that targeting the classical pathway of NF-κB through the inhibition of the IKK complex can serve as a useful therapeutic approach to the treatment of PD.
Collapse
Affiliation(s)
- Patrick M Flood
- Department of Periodontology and the Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599-7454, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Breccia M, Alimena G. NF-κB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia. Expert Opin Ther Targets 2011; 14:1157-76. [PMID: 20858024 DOI: 10.1517/14728222.2010.522570] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD The inactive NF-κB-inhibitor of NF-κB (IκB) complex is activated by stimuli including pro-inflammatory cytokines, mitogens, growth factors and stress-inducing agents. The release of NF-κB facilitates its translocation to the nucleus, where it promotes cell survival by initiating transcription of genes encoding stress-response enzymes, cell-adhesion molecules, pro-inflammatory cytokines and anti-apoptotic proteins. NF-κB and associated regulatory factors (IκB kinase subunits and bcl-3) are implicated in hematological and solid tumour malignancies. NF-κB appears to be involved in cell proliferation control, apoptosis control, angiogenesis promotion and possibly regulation of diffusion of metastases. There are several reports that inhibition of NF-κB as a therapeutic target may have a role in tumour cell death or growth inhibition. AREA COVERED IN THIS REVIEW We review data about inhibition of NF-κB in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). We describe the molecular mechanisms underlying NF-κB deregulation in these haematological malignancies. WHAT THE READER WILL GAIN Constitutive activation of NF-κB in the nucleus has been reported in some varieties of MDS/AML. The in vitro and in vivo results of NF-κB inhibition in myeloid malignancies are highlighted. TAKE HOME MESSAGE NF-κB selective inhibitory drugs may be useful, either as single agents or associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Massimo Breccia
- Sapienza University, Department of Human Biotechnologies and Hematology, Rome, Italy.
| | | |
Collapse
|
15
|
Li L, Kim J, Boussiotis VA. IL-1β-mediated signals preferentially drive conversion of regulatory T cells but not conventional T cells into IL-17-producing cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4148-53. [PMID: 20817874 DOI: 10.4049/jimmunol.1001536] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulatory T cells (Tregs) are committed to suppressive functions. Recently, it was proposed that Tregs could produce IL-17 under proinflammatory, polarizing conditions. We studied the role of Tregs on IL-17 production in the absence of exogenous cytokines and insults. Using in vitro and in vivo approaches, we determined that under neutral conditions, simultaneous activation of Tregs and naive CD4(+) conventional T cells in the presence of APCs resulted in conversion of Tregs into IL-17-producing cells, and endogenous IL-1β was mandatory in this process. Mechanistic analysis revealed that the IL-1R1 was highly expressed on Tregs and that IL-1β induced marked activation of p38 and JNK, which were involved in IL-17 production. These observations could have important implications on therapeutic strategies using Tregs.
Collapse
Affiliation(s)
- Lequn Li
- Department of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02215, USA
| | | | | |
Collapse
|