1
|
Puskar A, Saadah B, Rauf A, Kasperek SR, Umair M. A primer on contrast agents for magnetic resonance imaging of post‐procedural and follow‐up imaging of islet cell transplant. NANO SELECT 2023. [DOI: 10.1002/nano.202200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Anessa Puskar
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Bara Saadah
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Asad Rauf
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | | | - Muhammad Umair
- Department of Radiology Johns Hopkins Baltimore Maryland USA
- Department of Biomedical Engineering University of Illinois Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
2
|
Jin SM, Lee HS, Haque MR, Kim HN, Kim HJ, Oh BJ, Lee KW, Kim G, Kim HS, Lee DY, Park JB, Kim SJ, Byun Y, Kim JH. Multi-layer surface modification of pancreatic islets for magnetic resonance imaging using ferumoxytol. Biomaterials 2019; 214:119224. [PMID: 31153093 DOI: 10.1016/j.biomaterials.2019.119224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
Ferumoxytol is the only clinically available ultrasmall superparamagnetic iron oxide. However, the labeling efficacy of islet magnetic resonance imaging (MRI) using ferumoxytol is not suitable for use in clinical pancreatic islet transplantation (PIT). We evaluated the feasibility of pancreatic islet MRI using ferumoxytol through multi-layer surface modification. A four-layer nanoshield with poly (ethylene) glycol (PEG, 2 layers), ferumoxytol, and heparin was formed on the pancreatic islets. We compared pancreatic islet function, viability, and labeling efficacy of control, ferumoxytol alone-labeled, heparin-PEGylated, and ferumoxytol-heparin-PEGylated islets. With optimization of the ferumoxytol concentration during the ferumoxytol-heparin-PEGylation process, the labeling contrast in ex vivo MRI of ferumoxytol-heparin-PEGylated pancreatic islets was stronger than that of pancreatic islets labeled with ferumoxytol alone, without decreasing ex vivo islet viability or function. In a syngeneic mouse renal subcapsular PIT model, heparin-PEGylation and ferumoxytol-heparin-PEGylation delayed the revascularization of pancreatic islet grafts but did not impair glucose tolerance or revascularization of pancreatic islet grafts four weeks post-transplantation. Pancreatic islet visibility after labeling was also confirmed in a syngeneic mouse intraportal PIT model and in preliminary analysis of a non-human primate intraportal PIT model. In conclusion, multi-layer islet surface modification is a promising option for pancreatic islet MRI in intraportal PIT.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Sin Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Muhammad R Haque
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hun Nyun Kim
- Animal Research and Molecular Imaging Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Bae Jun Oh
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK21 PLUS Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Oh BJ, Jin SM, Hwang Y, Choi JM, Lee HS, Kim G, Kim G, Park HJ, Kim P, Kim SJ, Kim JH. Highly Angiogenic, Nonthrombogenic Bone Marrow Mononuclear Cell-Derived Spheroids in Intraportal Islet Transplantation. Diabetes 2018; 67:473-485. [PMID: 29298810 DOI: 10.2337/db17-0705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/24/2017] [Indexed: 11/13/2022]
Abstract
Highly angiogenic bone marrow mononuclear cell-derived spheroids (BM-spheroids), formed by selective proliferation of the CD31+CD14+CD34+ monocyte subset via three-dimensional (3D) culture, have had robust angiogenetic capacity in rodent syngeneic renal subcapsular islet transplantation. We wondered whether the efficacy of BM-spheroids could be demonstrated in clinically relevant intraportal islet transplantation models without increasing the risk of portal thrombosis. The thrombogenic potential of intraportally infused BM-spheroids was compared with that of mesenchymal stem cells (MSCs) and MSC-derived spheroids (MSC-spheroids). The angiogenic efficacy and persistence in portal sinusoids of BM-spheroids were examined in rodent syngeneic and primate allogeneic intraportal islet transplantation models. In contrast to MSCs and MSC-spheroids, intraportal infusion of BM-spheroids did not evoke portal thrombosis. BM-spheroids had robust angiogenetic capacity in both the rodent and primate intraportal islet transplantation models and improved posttransplant glycemic outcomes. MRI and intravital microscopy findings revealed the persistence of intraportally infused BM-spheroids in portal sinusoids. Intraportal cotransplantation of allogeneic islets with autologous BM-spheroids in nonhuman primates further confirmed the clinical feasibility of this approach. In conclusion, cotransplantation of BM-spheroids enhances intraportal islet transplantation outcome without portal thrombosis in mice and nonhuman primates. Generating BM-spheroids by 3D culture prevented the rapid migration and disappearance of intraportally infused therapeutic cells.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Marrow Transplantation/adverse effects
- Cell Tracking
- Cells, Cultured
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/transplantation
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Macaca fascicularis
- Male
- Mesenchymal Stem Cell Transplantation/adverse effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Portal Vein
- Spheroids, Cellular/cytology
- Spheroids, Cellular/immunology
- Spheroids, Cellular/transplantation
- Streptozocin
- Thrombosis/etiology
- Thrombosis/immunology
- Thrombosis/pathology
- Thrombosis/prevention & control
- Transplantation, Heterotopic/adverse effects
- Transplantation, Isogeneic/adverse effects
Collapse
Affiliation(s)
- Bae Jun Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin Myung Choi
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Han-Sin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Geunsoo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo Jun Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|
4
|
MRI tracking of autologous pancreatic progenitor-derived insulin-producing cells in monkeys. Sci Rep 2017; 7:2505. [PMID: 28566744 PMCID: PMC5451407 DOI: 10.1038/s41598-017-02775-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/19/2017] [Indexed: 12/04/2022] Open
Abstract
Insulin-producing cells (IPCs) derived from a patient’s own stem cells offer great potential for autologous transplantation in diabetic patients. However, the limited survival of engrafted cells remains a bottleneck in the application of this strategy. The present study aimed to investigate whether nanoparticle-based magnetic resonance (MR) tracking can be used to detect the loss of grafted stem cell-derived IPCs in a sensitive and timely manner in a diabetic monkey model. Pancreatic progenitor cells (PPCs) were isolated from diabetic monkeys and labeled with superparamagnetic iron oxide nanoparticles (SPIONs). The SPION-labeled cells presented as hypointense signals on MR imaging (MRI). The labeling procedure did not affect the viability or IPC differentiation of PPCs. Importantly, the total area of the hypointense signal caused by SPION-labeled IPCs on liver MRI decreased before the decline in C-peptide levels after autotransplantation. Histological analysis revealed no detectable immune response to the grafts and many surviving insulin- and Prussian blue-positive cell clusters on liver sections at one year post-transplantation. Collectively, this study demonstrates that SPIO nanoparticles can be used to label stem cells for noninvasive, sensitive, longitudinal monitoring of stem cell-derived IPCs in large animal models using a conventional MR imager.
Collapse
|
5
|
Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ. Cellular Imaging With MRI. Top Magn Reson Imaging 2016; 25:177-186. [PMID: 27748707 DOI: 10.1097/rmr.0000000000000101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.
Collapse
Affiliation(s)
- Ashley V Makela
- *Imaging Research Laboratories, Robarts Research Institute †Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Malosio ML, Esposito A, Brigatti C, Palmisano A, Piemonti L, Nano R, Maffi P, De Cobelli F, Del Maschio A, Secchi A. MR Imaging Monitoring of Iron-Labeled Pancreatic Islets in a Small Series of Patients: Islet Fate in Successful, Unsuccessful, and Autotransplantation. Cell Transplant 2015; 24:2285-96. [DOI: 10.3727/096368914x684060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Islet transplantation is one of the most promising and effective therapies for restoring normoglycemia in type 1 diabetes (T1D) patients, but islet engraftment is one of the main obstacles hampering long-term success. Monitoring graft loss, caused either by immunological or nonimmunological events, occurring in the first phase after transplantation and at later stages of a patient's life is a very important issue. Among the imaging approaches previously applied, magnetic resonance imaging (MRI) monitoring of islet fate following labeling with superparamagnetic iron oxide agents yielded promising results. The aim of this study was to translate into patients the method of islet labeling and MRI monitoring developed in our preclinical setting and to compare imaging results with graft clinical outcome. Three T1D patients and one nondiabetic patient undergoing autotransplantation following subtotal pancreatectomy received Endorem®-labeled islets. Patients were monitored by MRI and metabolically (HbA1c, exogenous insulin requirement, and C-peptide, TEF) at 1, 3, and 7 days following transplantation and once a month up to 10 months. Labeled transplanted islets appeared as hypointense areas scattered within the liver parenchyma, whose absolute number at 24 h after transplantation reflected the labeling efficiency. In patients #1 and #3 with good midterm graft function, MRI follow-up showed an important early loss of hypointense spots followed by a slow and progressive disappearance at later timepoints. Graft loss of function in patient #2 4 weeks after transplantation was associated with the complete disappearance of all hypointense signals. The autotransplanted patient, stably insulin free, showed no significant signal reduction during the first 3 days, followed by loss of spots similar to a patient with good midterm graft function. These results suggest that MRI monitoring of islet transplantation at early time points could represent a meaningful readout for helping in predicting transplant failure or success, but its relevance for mid/long-term islet function assessment appears evanescent.
Collapse
Affiliation(s)
- Maria Luisa Malosio
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- CNR Institute of Neuroscience, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Antonio Esposito
- Radiology Department, San Raffaele Scientific Institute, Milan, Italy
- Center of Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Brigatti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Palmisano
- Radiology Department, San Raffaele Scientific Institute, Milan, Italy
- Center of Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Human Islet Isolation and Transplantation Program, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Human Islet Isolation and Transplantation Program, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maffi
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Radiology Department, San Raffaele Scientific Institute, Milan, Italy
- Center of Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Del Maschio
- Radiology Department, San Raffaele Scientific Institute, Milan, Italy
- Center of Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Secchi
- Vita-Salute San Raffaele University, Milan, Italy
- Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Feasibility of islet magnetic resonance imaging using ferumoxytol in intraportal islet transplantation. Biomaterials 2015; 52:272-80. [PMID: 25818433 DOI: 10.1016/j.biomaterials.2015.02.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 02/07/2023]
Abstract
There is a clinical need for an alternative labeling agent for magnetic resonance imaging (MRI) in islet transplantation. We aimed to evaluate the feasibility of islet MRI using ferumoxytol, which is the only clinically-available ultrasmall superparamagnetic iron oxide. We compared islet function and viability of control islets and islets labeled with ferumoxytol and/or a heparin-protamine complex (HPF). Efficacy of ferumoxytol labeling was assessed in both ex vivo and in vivo models. Labeling for 48 h with HPF, but not up to 800 μg/mL ferumoxytol, deranged ex vivo islet viability and function. The T2∗ relaxation time was optimal when islets were labeled with 800 μg/mL of ferumoxytol for 48 h. Prussian blue stain, iron content assay, transmission electron microscopy (TEM) supported internalization of ferumoxytol particles. However, the labeling intensity in the ex vivo MRI of islets labeled with ferumoxytol was much weaker than that of islets labeled with ferucarbotran. In syngeneic intraportal islet transplantation, there was a correlation between the total area of visualized islets and the transplanted islet mass. In conclusion, islet MRI using ferumoxytol was feasible in terms of in vitro and in vivo efficacy and safety. However, the weak labeling efficacy is still a hurdle for the clinical application.
Collapse
|
8
|
Jin SM, Oh SH, Oh BJ, Suh S, Bae JC, Lee JH, Lee MS, Lee MK, Kim KW, Kim JH. Benefits of PEGylation in the early post-transplant period of intraportal islet transplantation as assessed by magnetic resonance imaging of labeled islets. Islets 2014; 6:e27827. [PMID: 25483878 PMCID: PMC4593568 DOI: 10.4161/isl.27827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
While a few studies have demonstrated the benefit of PEGylation in islet transplantation, most have employed renal subcapsular models and none have performed direct comparisons of islet mass in intraportal islet transplantation using islet magnetic resonance imaging (MRI). In this study, our aim was to demonstrate the benefit of PEGylation in the early post-transplant period of intraportal islet transplantation with a novel algorithm for islet MRI. Islets were PEGylated after ferucarbotran labeling in a rat syngeneic intraportal islet transplantation model followed by comparisons of post-transplant glycemic levels in recipient rats infused with PEGylated (n = 12) and non-PEGylated (n = 13) islets. The total area of hypointense spots and the number of hypointense spots larger than 1.758 mm(2) of PEGylated and non-PEGylated islets were quantitatively compared. The total area of hypointense spots (P < 0.05) and the number of hypointense spots larger than 1.758 mm(2) (P < 0.05) were higher in the PEGylated islet group 7 and 14 days post translation (DPT). These results translated into better post-transplant outcomes in the PEGylated islet group 28 DPT. In validation experiments, MRI parameters obtained 1, 7, and 14 DPT predicted normoglycemia 4 wk post-transplantation. We directly demonstrated the benefit of islet PEGylation in protection against nonspecific islet destruction in the early post-transplant period of intraportal islet transplantation using a novel algorithm for islet MRI. This novel algorithm could serve as a useful tool to demonstrate such benefit in future clinical trials of islet transplantation using PEGylated islets.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Seung-Hoon Oh
- Samsung Biomedical Research Institute; Samsung Medical Center; Seoul, Republic of Korea
| | - Bae Jun Oh
- Samsung Biomedical Research Institute; Samsung Medical Center; Seoul, Republic of Korea
| | - Sunghwan Suh
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Ji Cheol Bae
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology and Center for Imaging Science; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Myung-Shik Lee
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
| | - Kwang-Won Kim
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
- Correspondence to: Kwang-Won Kim, and Jae Hyeon Kim,
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism; Department of Medicine; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul, Republic of Korea
- Correspondence to: Kwang-Won Kim, and Jae Hyeon Kim,
| |
Collapse
|
9
|
Quantification of Islet Loss and Graft Functionality During Immune Rejection by 3-Tesla MRI in a Rat Model. Transplantation 2013; 96:438-44. [DOI: 10.1097/tp.0b013e31829b080f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Sakata N, Yoshimatsu G, Tsuchiya H, Aoki T, Mizuma M, Motoi F, Katayose Y, Kodama T, Egawa S, Unno M. Imaging of transplanted islets by positron emission tomography, magnetic resonance imaging, and ultrasonography. Islets 2013; 5:179-87. [PMID: 24231367 PMCID: PMC4010569 DOI: 10.4161/isl.26980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
While islet transplantation is considered a useful therapeutic option for severe diabetes mellitus (DM), the outcome of this treatment remains unsatisfactory. This is largely due to the damage and loss of islets in the early transplant stage. Thus, it is important to monitor the condition of the transplanted islets, so that a treatment can be selected to rescue the islets from damage if needed. Recently, numerous trials have been performed to investigate the efficacy of different imaging modalities for visualizing transplanted islets. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for this purpose. Some groups, including ours, have also tried to visualize transplanted islets by ultrasonography (US). In this review article, we discuss the recent progress in islet imaging.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Correspondence to: Naoaki Sakata,
| | - Gumpei Yoshimatsu
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Haruyuki Tsuchiya
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Takeshi Aoki
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Masamichi Mizuma
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Yu Katayose
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Division of Integrated Surgery and Oncology; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Tetsuya Kodama
- Department of Biomedical Engineering; Graduate School of Biomedical Engineering; Tohoku University; Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Medicine; International Research Institute of Disaster Science; Tohoku University; Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| |
Collapse
|
11
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|