1
|
Milosevic K, Milosevic A, Stevanovic I, Zivkovic A, Laketa D, Janjic MM, Bjelobaba I, Lavrnja I, Savic D. Agmatine suppresses glycolysis via the PI3K/Akt/mTOR/HIF-1α signaling pathway and improves mitochondrial function in microglia exposed to lipopolysaccharide. Biofactors 2025; 51:e2149. [PMID: 39888089 PMCID: PMC11780571 DOI: 10.1002/biof.2149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 02/01/2025]
Abstract
Modulating metabolic pathways in activated microglia can alter their phenotype, which is relevant in uncontrolled neuroinflammation as a component of various neurodegenerative diseases. Here, we investigated how pretreatment with agmatine, an endogenous polyamine, affects metabolic changes in an in vitro model of neuroinflammation, a murine microglial BV-2 cell line exposed to lipopolysaccharide (LPS). Hence, we analyzed gene expression using qPCR and protein levels using Western blot and ELISA. Microglial metabolic status was assessed by measuring lactate release and cellular ATP by enzymatic and luminescence spectrophotometry. Mitochondrial functionality was analyzed by fluorescent probes detecting mitochondrial membrane potential (mtMP) and superoxide production. Our findings suggest that kinase pathways associated with hypoxia-inducible factor-1α (HIF-1α) regulate energy metabolism in pro-inflammatory activated microglia. We have shown that LPS induces HIF-1α and genes for glucose transporter and glycolytic rate, increases lactate production and causes mitochondrial dysfunction, suggesting a metabolic shift towards glycolysis. Agmatine inhibits the PI3K/Akt pathway and negatively regulates mammalian target of rapamycin (mTOR) phosphorylation and HIF-1α levels, reducing lactate and tumor necrosis factor (TNF) production, which is supported by pharmacological blockade of PI3K. Pretreatment with agmatine also rescues mitochondrial function by counteracting the LPS-induced decline in mtMP and increase in mitochondrial superoxide, resulting in an anti-apoptotic effect. Agmatine alone increases intracellular ATP levels and maintains this effect even under pro-inflammatory conditions. Our study emphasizes the ability of agmatine to engage in metabolic reprogramming of pro-inflammatory microglia through increased ATP production and modulation of signaling pathway involved in promoting glycolysis and cytokine release.
Collapse
Affiliation(s)
- Katarina Milosevic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Ana Milosevic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Ivana Stevanovic
- Medical Faculty of the Military Medical AcademyUniversity of Defense in BelgradeBelgradeSerbia
| | - Anica Zivkovic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Danijela Laketa
- Department for General Physiology and BiophysicsFaculty of Biology, University of BelgradeBelgradeSerbia
| | - Marija M. Janjic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Ivana Bjelobaba
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Irena Lavrnja
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| | - Danijela Savic
- Department of NeurobiologyInstitute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of BelgradeBelgradeSerbia
| |
Collapse
|
2
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
3
|
Katariya R, Mishra K, Sammeta S, Umekar M, Kotagale N, Taksande B. Agmatine mitigates behavioral abnormalities and neurochemical dysregulation associated with 3-Nitropropionic acid-induced Huntington's disease in rats. Neurotoxicology 2024; 102:12-28. [PMID: 38453033 DOI: 10.1016/j.neuro.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative condition characterized by a severe motor incoordination, cognitive decline, and psychiatric complications. However, a definitive cure for this devastating disorder remains elusive. Agmatine, a biogenic amine, has gain attention for its reported neuromodulatory and neuroprotective properties. The present study was designed to examine the influence of agmatine on the behavioral, biochemical, and molecular aspects of HD in an animal model. A mitochondrial toxin, 3-nitro propionic acid (3-NP), was used to induce HD phenotype and similar symptoms such as motor incoordination, memory impairment, neuro-inflammation, and depressive-like behavior in rats. Rats were pre-treated with 3-NP (10 mg/kg, i.p.) on days 1, 3, 5, 7, and 9 and then continued on agmatine treatment (5 - 20 µg/rat, i.c.v.) from day-8 to day-27 of the treatment protocol. 3-NP-induced cognitive impairment was associated with declined in agmatine levels within prefrontal cortex, striatum, and hippocampus. Further, the 3-NP-treated rats showed an increase in IL-6 and TNF-α and a reduction in BDNF immunocontent within these brain areas. Agmatine treatment not only improved the 3-NP-induced motor incoordination, depression-like behavior, rota-rod performance, and learning and memory impairment but also normalized the GABA/glutamate, BDNF, IL-6, and TNF-α levels in discrete brain areas. Similarly, various agmatine modulators, which increase the endogenous agmatine levels in the brain, such as L-arginine (biosynthetic precursor), aminoguanidine (diamine oxidase inhibitor), and arcaine (agmatinase inhibitor) also demonstrated similar effects exhibiting the importance of endogenous agmatinergic pathway in the pathogenesis of 3-NP-induced HD like symptoms. The present study proposed the possible role of agmatine in the pathogenesis and treatment of HD associated motor incoordination, and psychiatric and cognitive complications.
Collapse
Affiliation(s)
- Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Kartikey Mishra
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
4
|
Chen S, Xu Q, Zhao L, Zhang M, Xu H. The prenatal use of agmatine prevents social behavior deficits in VPA-exposed mice by activating the ERK/CREB/BDNF signaling pathway. Birth Defects Res 2024; 116:e2336. [PMID: 38624050 DOI: 10.1002/bdr2.2336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND According to reports, prenatal exposure to valproic acid can induce autism spectrum disorder (ASD)-like symptoms in both humans and rodents. However, the exact cause and therapeutic method of ASD is not fully understood. Agmatine (AGM) is known for its neuroprotective effects, and this study aims to explore whether giving agmatine hydrochloride before birth can prevent autism-like behaviors in mouse offspring exposed prenatally to valproic acid. METHODS In this study, we investigated the effects of AGM prenatally on valproate (VPA)-exposed mice. We established a mouse model of ASD by prenatally administering VPA. From birth to weaning, we evaluated mouse behavior using the marble burying test, open-field test, and three-chamber social interaction test on male offspring. RESULTS The results showed prenatal use of AGM relieved anxiety and hyperactivity behaviors as well as ameliorated sociability of VPA-exposed mice in the marble burying test, open-field test, and three-chamber social interaction test, and this protective effect might be attributed to the activation of the ERK/CREB/BDNF signaling pathway. CONCLUSION Therefore, AGM can effectively reduce the likelihood of offspring developing autism to a certain extent when exposed to VPA during pregnancy, serving as a potential therapeutic drug.
Collapse
Affiliation(s)
- Shihao Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linqian Zhao
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mulan Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
6
|
Önel T, Arıcıoğlu F, Yıldırım E, Zortul H, Yaba A. The effect of maternal separation stress-induced depression on ovarian reserve in Sprague Dawley Rats: The possible role of imipramine and agmatine through a mTOR signal pathway. Physiol Behav 2023:114270. [PMID: 37308044 DOI: 10.1016/j.physbeh.2023.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE To examine the possible role of impramine and agmatine through a mTOR signal pathway on rat ovary after maternal separation stress-induced depression. METHODS Sprague Dawley neonatal female rats were divided into control, maternal separation (MS), MS+imipramine, and MS+agmatine groups. Rats were subjected to MS for 4 hours daily from postnatal day (PND) 2 to PND 21 and pups were exposed to social isolation (SI) on PND23 for 37 days for model establishment treated with imipramine (30 mg/kg; ip) or agmatine (40 mg/kg; ip) for 15 days. In order to examine behavioral changes rats were all subjected to locomotor activity and forced swimming tests (FST). Ovaries were isolated for morphological evaluation, follicle counting and mTOR signal pathway protein expression levels were detected. RESULTS Increased number of primordial follicles and diminished ovarian reserve in the MS groups were detected. Imipramine treatment caused diminished ovarian reserve and atretic follicle; however, agmatine treatment provided the maintenance of ovarian follicular reserve after MS. mTOR signal pathway may have an important role during rat ovarian follicular development in model of MS. CONCLUSIONS Our findings suggest that agmatine may help to protect ovarian reserve during follicular development by controlling cell growth.
Collapse
Affiliation(s)
- Tuğçe Önel
- Yeditepe University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Türkiye
| | - Feyza Arıcıoğlu
- Marmara University, Institute of Health Sciences, İstanbul, Türkiye
| | - Ecem Yıldırım
- Yeditepe University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Türkiye
| | - Hacer Zortul
- Marmara University, Institute of Health Sciences, İstanbul, Türkiye
| | - Aylin Yaba
- Yeditepe University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Türkiye..
| |
Collapse
|
7
|
Valverde AP, Camargo A, Rodrigues ALS. Agmatine as a novel candidate for rapid-onset antidepressant response. World J Psychiatry 2021; 11:981-996. [PMID: 34888168 PMCID: PMC8613765 DOI: 10.5498/wjp.v11.i11.981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a disabling and highly prevalent mood disorder as well as a common cause of suicide. Chronic stress, inflammation, and intestinal dysbiosis have all been shown to play crucial roles in the pathophysiology of MDD. Although conventional antidepressants are widely used in the clinic, they can take weeks to months to produce therapeutic effects. The discovery that ketamine promotes fast and sustaining antidepressant responses is one of the most important breakthroughs in the pharmacotherapy of MDD. However, the adverse psychomimetic/dissociative and neurotoxic effects of ketamine discourage its chronic use. Therefore, agmatine, an endogenous glutamatergic modulator, has been postulated to elicit fast behavioral and synaptogenic effects by stimulating the mechanistic target of rapamycin complex 1 signaling pathway, similar to ketamine. However, recent evidence has demonstrated that the modulation of the NLR family pyrin domain containing 3 inflammasome and gut microbiota, which have been shown to play a crucial role in the pathophysiology of MDD, may also participate in the antidepressant-like effects of both ketamine and agmatine. This review seeks to provide evidence about the mechanisms that may underlie the fast antidepressant-like responses of agmatine in preclinical studies. Considering the anti-inflammatory properties of agmatine, it may also be further investigated as a useful compound for the management of MDD associated with a pro-inflammatory state. Moreover, the fast antidepressant-like response of agmatine noted in animal models should be investigated in clinical studies.
Collapse
Affiliation(s)
- Ana Paula Valverde
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| |
Collapse
|
8
|
Freitas AE, Heinrich IA, Moura TM, Fraga DB, Costa AP, Azevedo D, Brocardo PS, Kaster MP, Leal RB, Rodrigues ALS. Agmatine potentiates antidepressant and synaptic actions of ketamine: Effects on dendritic arbors and spines architecture and Akt/S6 kinase signaling. Exp Neurol 2020; 333:113398. [DOI: 10.1016/j.expneurol.2020.113398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
|
9
|
Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 2020; 21:717-731. [DOI: 10.1038/s41583-020-00381-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
|
10
|
Sari SA, Ulger D, Ersan S, Bakir D, Uzun Cicek A, Ismailoglu F. Effects of agmatine, glutamate, arginine, and nitric oxide on executive functions in children with attention deficit hyperactivity disorder. J Neural Transm (Vienna) 2020; 127:1675-1684. [PMID: 33026491 DOI: 10.1007/s00702-020-02261-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
Abstract
In this study, we aimed to investigate the effects of agmatine, nitric oxide (NO), arginine, and glutamate, which are the metabolites in the polyamine pathway, on the performance of executive functions (EF) in attention deficit hyperactivity disorder (ADHD). The ADHD group included 35 treatment-naive children (6-14 years old) who were ewly diagnosed with ADHD. The control group consisted of 35 healthy children with the same age and sex, having no previous psychiatric disorders. In the study groups, Stroop test (ST) and trail making test (TMT) were used to monitor EF, and blood samples were collected to measure agmatine with ultra-high-performance liquid chromatography and NO, glutamate, and arginine with enzyme-linked immunosorbent assay (ELISA). The EFs were significantly impaired in the ADHD group. The agmatine and arginine levels of the ADHD group were significantly higher than their peers. The NO and glutamate levels were also higher in the ADHD group compared to the control group, but these differences did not reach statistical significance. Children with ADHD had more difficulties during EF tasks compared to healthy children. The elevated NO and glutamate levels may be related with the impairment during EF tasks. Therefore, agmatine and arginine may increase to improve EF tasks through its inhibitory effect on the synthesis of NO and glutamate. Further studies are needed about polyamine pathway molecules to shed light on the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Seda Aybuke Sari
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Sivas Cumhuriyet University, Imaret Village, 58140, Sivas, Turkey.
| | - Dilara Ulger
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Serpil Ersan
- Department of Biochemistry, Faculty of Medicine, Nigde Omer Halis University, Nigde, Turkey
| | - Deniz Bakir
- Department of Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayla Uzun Cicek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Sivas Cumhuriyet University, Imaret Village, 58140, Sivas, Turkey
| | - Firat Ismailoglu
- Department of Computer Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
11
|
Accumulation of Agmatine, Spermidine, and Spermine in Sprouts and Microgreens of Alfalfa, Fenugreek, Lentil, and Daikon Radish. Foods 2020; 9:foods9050547. [PMID: 32369919 PMCID: PMC7278799 DOI: 10.3390/foods9050547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Sprouts and microgreens are a rich source of various bioactive compounds. Seeds of lentil, fenugreek, alfalfa, and daikon radish seeds were germinated and the contents of the polyamines agmatine (AGM), putrescine (PUT), cadaverine (CAD), spermidine (SPD), and spermine (SPM) in ungerminated seeds, sprouts, and microgreens were determined. In general, sprouting led to the accumulation of the total polyamine content. The highest levels of AGM (5392 mg/kg) were found in alfalfa microgreens, PUT (1079 mg/kg) and CAD (3563 mg/kg) in fenugreek sprouts, SPD (579 mg/kg) in lentil microgreens, and SPM (922 mg/kg) in fenugreek microgreens. A large increase in CAD content was observed in all three legume sprouts. Conversely, the nutritionally beneficial polyamines AGM, SPD, and SPM were accumulated in microgreens, while their contents of CAD were significantly lower. In contrast, daikon radish sprouts exhibited a nutritionally better profile of polyamines than the microgreens. Freezing and thawing of legume sprouts resulted in significant degradation of CAD, PUT, and AGM by endogenous diamine oxidases. The enzymatic potential of fenugreek sprouts can be used to degrade exogenous PUT, CAD, and tyramine at pH values above 5.
Collapse
|
12
|
Evidence for Dietary Agmatine Sulfate Effectiveness in Neuropathies Associated with Painful Small Fiber Neuropathy. A Pilot Open-Label Consecutive Case Series Study. Nutrients 2020; 12:nu12020576. [PMID: 32102167 PMCID: PMC7071502 DOI: 10.3390/nu12020576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies associated with painful small fiber neuropathy (SFN) are complex conditions, resistant to treatment with conventional medications. Previous clinical studies strongly support the use of dietary agmatine as a safe and effective treatment for neuropathic pain. Based on this evidence, we conducted an open-label consecutive case series study to evaluate the effectiveness of agmatine in neuropathies associated with painful SFN (Study Registry: ClinicalTrials.gov, System Identifier: NCT01524666). Participants diagnosed with painful SFN and autonomic dysfunctions were treated with 2.67 g/day agmatine sulfate (AgmaSet® capsules containing G-Agmatine® brand of agmatine sulfate) for a period of 2 months. Before the beginning (baseline) and at the end of the treatment period, participants answered the established 12-item neuropathic pain questionnaire specifically developed to distinguish symptoms associated with neuropathy and to quantify their severity. Secondary outcomes included other treatment options and a safety assessment. Twelve patients were recruited, and 11 patients—8 diagnosed with diabetic neuropathy, two with idiopathic neuropathy and one with inflammatory neuropathy—completed the study. All patients showed improvement in neuropathic pain to a varied extent. The average decrease in pain intensity was 26.0 rating points, corresponding to a 46.4% reduction in overall pain (p < 0.00001). The results suggest that dietary agmatine sulfate has a significant effect in reducing neuropathic pain intensity associated with painful SFN resistant to treatment with conventional neuropathic pain medications. Larger randomized placebo-controlled studies are expected to establish agmatine sulfate as a preferred treatment.
Collapse
|
13
|
Ozden A, Angelos H, Feyza A, Elizabeth W, John P. Altered plasma levels of arginine metabolites in depression. J Psychiatr Res 2020; 120:21-28. [PMID: 31629205 DOI: 10.1016/j.jpsychires.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
L-Arginine pathway metabolites appear to play differential roles in the pathogenesis of major depressive disorder (MDD). Studies have revealed an antidepressant and anxiolytic effect of agmatine and putrescine. Possible mechanisms of these effects include inhibition of nitric oxide synthase and N-methyl-D-aspartate receptors. The present study sought to determine whether MDD is associated with altered levels of arginine metabolites and whether these metabolites are associated with depression, anxiety and stress severity. Seventy seven MDD patients 21-65 years of age with a minimum score of 18 on the Hamilton Depression Scale, and 27 age and sex matched healthy controls (HC) were included. Patients with uncontrolled physical diseases, abnormal routine lab tests, other psychiatric diagnoses, or under psychotropic medication were excluded. HC subjects were recruited from the community. Rating instruments included Hamilton Depression and Anxiety Scales, Beck Depression and Anxiety Inventory and Perceived Stress Scale. Fasting blood was drawn between 8:30 and 11:00 a.m. and High Performance Liquid Chromatography (HPLC) was used to measure plasma arginine metabolites. ADMA (Asymmetrical dimethylarginine) and putrescine were significantly lower while SDMA (Symmetric dimethylarginine), agmatine and ornithine were significantly higher in MDD patients (p˂0.05). Depression, anxiety and stress severity were negatively correlated with ADMA and putrescine (p˂0.05). Stress was positively correlated with citrulline, NOHA (N-omega-hydroxy-nor-l-arginine), SDMA, agmatine and ornithine (p˂0.05). Lower putrescine levels predicted depression diagnosis (p = 0.039) and depression severity (p = 0.003). Low ADMA level predicted depression severity as well. Arginine pathway metabolites are associated with the pathophysiology of depression. Putrescine may be a biomarker to predict MDD.
Collapse
Affiliation(s)
- Arisoy Ozden
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Psychiatry, Bolu Abant Izzet Baysal University Medical Faculty, Bolu, Turkey
| | - Halaris Angelos
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - Aricioglu Feyza
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Pharmacology, Faculty of Pharmacy and Psychopharmacology Research Unit, Marmara University, Haydarpasa, Istanbul, Turkey
| | - Wild Elizabeth
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Louisiana State University Health Sciences Center Shreveport, Department of Neurosurgery, USA
| | - Piletz John
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Stritch School of Medicine, Maywood, IL, USA; Department of Biology, Missisipi College, Jackson, Missisipi, USA
| |
Collapse
|
14
|
Sahin Ozkartal C, Tuzun E, Kucukali CI, Ulusoy C, Giris M, Aricioglu F. Antidepressant-like effects of agmatine and NOS inhibitors in chronic unpredictable mild stress model of depression in rats: The involvement of NLRP inflammasomes. Brain Res 2019; 1725:146438. [DOI: 10.1016/j.brainres.2019.146438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
|
15
|
Abstract
Although recent years have seen large decreases in the overall global rate of suicide fatalities, this trend is not reflected everywhere. Suicide and suicidal behaviour continue to present key challenges for public policy and health services, with increasing suicide deaths in some countries such as the USA. The development of suicide risk is complex, involving contributions from biological (including genetics), psychological (such as certain personality traits), clinical (such as comorbid psychiatric illness), social and environmental factors. The involvement of multiple risk factors in conveying risk of suicide means that determining an individual's risk of suicide is challenging. Improving risk assessment, for example, by using computer testing and genetic screening, is an area of ongoing research. Prevention is key to reduce the number of suicide deaths and prevention efforts include universal, selective and indicated interventions, although these interventions are often delivered in combination. These interventions, combined with psychological (such as cognitive behavioural therapy, caring contacts and safety planning) and pharmacological treatments (for example, clozapine and ketamine) along with coordinated social and public health initiatives, should continue to improve the management of individuals who are suicidal and decrease suicide-associated morbidity.
Collapse
|
16
|
AY O, OI O, FO Y, AM A, IO A, OJ O. Oral Monosodium Glutamate Differentially Affects Open-Field Behaviours, Behavioural Despair and Place Preference in Male and Female Mice. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2211556008666181213160527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background:
Monosodium glutamate (MSG) is a flavour enhancer which induces
behavioural changes in animals. However the influence of sex on the behavioural response
to MSG has not been investigated.
Objective:
The sex-differential effects of MSG on open-field behaviours, anxiety-related
behaviour, behavioural despair, place-preference, and plasma/brain glutamate levels in
adult mice were assessed.
Methods:
Mice were assigned to three groups (1-3), based on the models used to assess
behaviours. Animals in group 1 were for the elevated-plus maze and tail-suspension paradigms,
group 2 for the open-field and forced-swim paradigms, while mice in group 3 were
for observation in the conditioned place preference paradigm. Mice in all groups were further
assigned into five subgroups (10 males and 10 females), and administered vehicle (distilled
water at 10 ml/kg) or one of four doses of MSG (20, 40, 80 and 160 mg/kg) daily for
6 weeks, following which they were exposed to the behavioural paradigms. At the end of
the behavioural tests, the animals were sacrificed, and blood was taken for estimation of
glutamate levels. The brains were also homogenised for estimation of glutamate levels.
Results:
MSG was associated with a reduction in locomotion in males and females (except
at 160 mg/kg, male), an anxiolytic response in females, an anxiogenic response in males,
and decreased behavioural despair in both sexes (females more responsive). Postconditioning
MSG-associated place-preference was significantly higher in females. Plasma/
brain glutamate was not significantly different between sexes.
Conclusion:
Repeated MSG administration alters a range of behaviours in a sex-dependent
manner in mice.
Collapse
Affiliation(s)
- Onaolapo AY
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olawore OI
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Yusuf FO
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adeyemo AM
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adewole IO
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Onaolapo OJ
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
17
|
Kulikova EA, Kulikov AV. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models. Expert Opin Ther Targets 2019; 23:655-667. [PMID: 31216212 DOI: 10.1080/14728222.2019.1634691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Tryptophan hydroxylase 2 (TPH2) is the key, rate-limiting enzyme of serotonin (5-HT) synthesis in the brain. Some polymorphic variants of the human Tph2 gene are associated with psychiatric disorders. Area covered: This review focuses on the mechanisms underlying the association between the TPH2 activity and behavioral disturbances in models of psychiatric disorders. Specifically, it discusses: 1) genetic and posttranslational mechanisms defining the TPH2 activity, 2) behavioral effects of knockout and loss-of-function mutations in the mouse Tph2 gene, 3) pharmacological inhibition and the activation of the TPH2 activity and 4) alterations in the brain TPH2 activity in animal models of psychiatric disorders. We show the dual role of the TPH2 activity: both deficit and excess of the TPH2 activity cause significant behavioral disturbances in animal models of depression, anxiety, aggression, obsessive-compulsive disorders, schizophrenia, and catalepsy. Expert opinion: Pharmacological chaperones correcting the structure of the TPH2 molecule are promising tools for treatment of some hereditary psychiatric disorders caused by loss-of-function mutations in the human Tph2 gene; while some stress-induced affective disorders, associated with the elevated TPH2 activity, may be effectively treated by TPH2 inhibitors. This dual role of TPH2 should be taken into consideration during therapy of psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Kulikova
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| | - Alexander V Kulikov
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| |
Collapse
|
18
|
The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 2019; 52:181-197. [DOI: 10.1007/s00726-019-02720-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
19
|
Watts D, Pfaffenseller B, Wollenhaupt-Aguiar B, Paul Géa L, Cardoso TDA, Kapczinski F. Agmatine as a potential therapeutic intervention in bipolar depression: the preclinical landscape. Expert Opin Ther Targets 2019; 23:327-339. [DOI: 10.1080/14728222.2019.1581764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Devon Watts
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | - Luiza Paul Géa
- Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Flavio Kapczinski
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
20
|
Selakovic V, Arsenijevic L, Jovanovic M, Sivcev S, Jovanovic N, Leontijevic M, Stojanovic M, Radenkovic M, Andjus P, Radenovic L. Functional and pharmacological analysis of agmatine administration in different cerebral ischemia animal models. Brain Res Bull 2019; 146:201-212. [PMID: 30641119 DOI: 10.1016/j.brainresbull.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
Abstract
Agmatine (AgM, 100 mg/kg i.p.) effect was tested in parallel at two animal models of cerebral ischemia - rat MCAO model (60'/24 h, 60'/48 h, 90'/24 h, 90'/48 h) and gerbil global ischemia (10') model, administrated 5 min after reperfusion. Aim was to evaluate AgM effect on functional outcome 24 and 48 h after MCAO on neurological and sensor-motor function, and coordination in rats. AgM administration significantly reduced infarct volume, improved neurological score and improved post-ischemic oxidative status. Results of behavioral tests (cylinder test, beam walking test, and adhesive removal test) have shown very effective functional recovery after AgM administration. Efficiency of AgM administration in gerbils was observed in forebrain cortex, striatum, hippocampus, and cerebellum at the level of each examined oxidative stress parameter (nitric oxide level, superoxide production, superoxide dismutase activity, and index of lipid peroxidation) measured in four different time points starting at 3 h up to 48 h after reperfusion. The highest levels were obtained 6 h after the insult. The most sensitive oxidative stress parameter to AgM was nitric oxide. Additionally, we performed pharmacological analysis of AgM on rat isolated common carotid arteries. The findings imply that mixed population of potassium channels located on the smooth muscle cells was involved in common carotid artery response to AgM, with predominance of inward rectifying K+ channels. In our comparative experimental approach, judged by behavioral, biochemical, as well as pharmacological data, the AgM administration showed an effective reduction of ischemic neurological damage and oxidative stress, hence indicating a direction towards improving post-stroke recovery.
Collapse
Affiliation(s)
- V Selakovic
- Institute of Medical Research, Medical Faculty Military Medical Academy, University of Defense, Serbia
| | | | - M Jovanovic
- Faculty of Biology, University of Belgrade, Serbia
| | - S Sivcev
- Faculty of Biology, University of Belgrade, Serbia
| | - N Jovanovic
- Faculty of Biology, University of Belgrade, Serbia
| | | | - M Stojanovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - M Radenkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia
| | - P Andjus
- Faculty of Biology, University of Belgrade, Serbia
| | - L Radenovic
- Faculty of Biology, University of Belgrade, Serbia.
| |
Collapse
|
21
|
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem Res 2019; 44:735-750. [PMID: 30610652 DOI: 10.1007/s11064-018-02712-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.
Collapse
|
22
|
Cobos-Puc L, Aguayo-Morales H. Cardiovascular Effects Mediated by Imidazoline Drugs: An Update. Cardiovasc Hematol Disord Drug Targets 2019; 19:95-108. [PMID: 29962350 DOI: 10.2174/1871529x18666180629170336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Clonidine is a centrally acting antihypertensive drug. Hypotensive effect of clonidine is mediated mainly by central α2-adrenoceptors and/or imidazoline receptors located in a complex network of the brainstem. Unfortunately, clonidine produces side effects such as sedation, mouth dry, and depression. Moxonidine and rilmenidine, compounds of the second generation of imidazoline drugs, with fewer side effects, display a higher affinity for the imidazoline receptors compared with α2-adrenoceptors. The antihypertensive action of these drugs is due to inhibition of the sympathetic outflow primarily through central I1-imidazoline receptors in the RVLM, although others anatomical sites and mechanisms/receptors are involved. Agmatine is regarded as the endogenous ligand for imidazoline receptors. This amine modulates the cardiovascular function. Indeed, when administered in the RVLM mimics the hypotension of clonidine. RESULTS Recent findings have shown that imidazoline drugs also exert biological response directly on the cardiovascular tissues, which can contribute to their antihypertensive response. Currently, new imidazoline receptors ligands are in development. CONCLUSION In the present review, we provide a brief update on the cardiovascular effects of clonidine, moxonidine, rilmenidine, and the novel imidazoline agents since representing an important therapeutic target for some cardiovascular diseases.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hilda Aguayo-Morales
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|
23
|
Camargo A, Rodrigues ALS. Novel Targets for Fast Antidepressant Responses: Possible Role of Endogenous Neuromodulators. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019858083. [PMID: 32440595 PMCID: PMC7219953 DOI: 10.1177/2470547019858083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
The available medications for the treatment of major depressive disorder have limitations, particularly their limited efficacy, delayed therapeutic effects, and the side effects associated with treatment. These issues highlight the need for better therapeutic agents that provide more efficacious and faster effects for the management of this disorder. Ketamine, an N-methyl-D-aspartate receptor antagonist, is the prototype for novel glutamate-based antidepressants that has been shown to cause a rapid and sustained antidepressant effect even in severe refractory depressive patients. Considering the importance of these findings, several studies have been conducted to elucidate the molecular targets for ketamine's effect. In addition, efforts are under way to characterize ketamine-like drugs. This review focuses particularly on evidence that endogenous glutamatergic neuromodulators may be able to modulate mood and to elicit fast antidepressant responses. Among these molecules, agmatine and creatine stand out as those with more published evidence of similarities with ketamine, but guanosine and ascorbic acid have also provided promising results. The possibility that these neuromodulators and ketamine have common neurobiological mechanisms, mainly the ability to activate mechanistic target of rapamycin and brain-derived neurotrophic factor signaling, and synthesis of synaptic proteins in the prefrontal cortex and/or hippocampus is presented and discussed.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program,
Center of Biological Sciences, Universidade Federal de Santa Catarina,
Florianópolis, Brazil
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of
Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis,
Brazil
| |
Collapse
|
24
|
Guerra de Souza AC, Gonçalves CL, de Souza V, Hartwig JM, Farina M, Prediger RD. Agmatine attenuates depressive-like behavior and hippocampal oxidative stress following amyloid β (Aβ1-40) administration in mice. Behav Brain Res 2018; 353:51-56. [DOI: 10.1016/j.bbr.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 01/16/2023]
|
25
|
Neis VB, Bettio LB, Moretti M, Rosa PB, Olescowicz G, Fraga DB, Gonçalves FM, Freitas AE, Heinrich IA, Lopes MW, Leal RB, Rodrigues ALS. Single administration of agmatine reverses the depressive-like behavior induced by corticosterone in mice: Comparison with ketamine and fluoxetine. Pharmacol Biochem Behav 2018; 173:44-50. [DOI: 10.1016/j.pbb.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
|
26
|
Tavares MK, dos Reis S, Platt N, Heinrich IA, Wolin IA, Leal RB, Kaster MP, Rodrigues ALS, Freitas AE. Agmatine potentiates neuroprotective effects of subthreshold concentrations of ketamine via mTOR/S6 kinase signaling pathway. Neurochem Int 2018; 118:275-285. [DOI: 10.1016/j.neuint.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
|
27
|
Chen GG, Almeida D, Fiori L, Turecki G. Evidence of Reduced Agmatine Concentrations in the Cerebral Cortex of Suicides. Int J Neuropsychopharmacol 2018; 21:895-900. [PMID: 29986038 PMCID: PMC6165952 DOI: 10.1093/ijnp/pyy058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The polyamines are a group of ubiquitous low-molecular-weight aliphatic molecules that play an essential role in various physiological functions of the mammalian CNS. Previous literature has indicated alterations in the expression of polyamine-related genes in the brains of individuals who died by suicide, including downregulation of spermidine/spermine N1-acetyltransferase, a key enzyme involved in polyamine catabolism. One such polyamine, agmatine, has been shown to act as an antidepressant in animal models of depressive-like behavior. However, agmatine concentrations have not been explored in postmortem human brain of individuals who died by suicide. METHODS To measure agmatine in postmortem human brain tissue, we employed our previously published high-resolution capillary gas chromatography in combination with mass spectrometry method. Using this method, we analyzed agmatine levels in a total of 120 tissue samples from Brodmann areas 4, 11, and 44 of 40 male subjects comprising controls (n=13), individuals who died by suicide and met criteria for major depressive disorder (n=14), and subjects who died by suicide and did not meet criteria for major depressive disorder (n=13). RESULTS Agmatine fell within the expected nanomolar range and was significantly reduced in the cortex of suicides, irrespective of meeting criteria for major depressive disorder compared with controls. CONCLUSIONS This is the first gas chromatography-mass spectrometry study to analyze agmatine concentrations in human postmortem brain of individuals who died by suicide. These results add to our mechanistic understanding of the role that the polyamine stress response pathway may play in the neurobiology of major depression and/or suicide.
Collapse
Affiliation(s)
- Gary G Chen
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Laura Fiori
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Verdun, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Correspondence: Gustavo Turecki, MD, PhD, Douglas Mental Health University Institute, Frank B Common Pavilion, Room F-3125, 6875 LaSalle Boulevard, Montreal, Quebec, H4H 1R3 ()
| |
Collapse
|
28
|
Inhibitory effects of agmatine on monoamine oxidase (MAO) activity: Reconciling the discrepancies. THE EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract
Agmatine has been functionally characterized as an important hormone and co-neurotransmitter in mammals. Given its ability in binding Imidazoline sites, a regolatory site of monoaminoxydase, it has been suggested to be involved in many neurological aspects. However, its inhibitory effect on this enzyme still remains an unanswered question. This present study is aimed to asses whether different experimental conditions could affect the agmatine action on monoaminoxydase activity. We demonstrate that the monoaminoxydase inhibition by agmatine is obtained under alkaline conditions and a long time of incubation. No inhibitiory action was found for shorter times of reaction at elevated pH, or at neutral condition and long time of incubation. No inhibition was also detected by substituting the monoamineoxydase substrate tyramine with kynuramine, however, while in these conditions a remarkable inhibition was shown by two aminoxydase inhibitors tranylcypromine and idazoxan. Herein, we discuss a mechanism model and the functional consequences of agmatine action on monoaminoxydase.
Collapse
|
29
|
Çelik VK, Kapancık S, Kaçan T, Kaçan SB, Kapancık S, Kılıçgün H. Serum levels of polyamine synthesis enzymes increase in diabetic patients with breast cancer. Endocr Connect 2017; 6:574-579. [PMID: 28870974 PMCID: PMC5636939 DOI: 10.1530/ec-17-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this study, it was aimed to investigate the relationship between diabetes and breast cancer and the detection of enzymes and ornithine levels in polyamine synthesis pathway in diabetes, breast cancer and diabetic breast cancer patients. METHODS Ornithine, arginine decarboxylase, ornithine decarboxylase and agmatinase levels have been measured in serum of all groups. Ornithine levels were measured spectrophotometrically. Arginine decarboxylase, ornithine decarboxylase and agmatinase levels were determined by ELISA kits. RESULTS Except for the diabetic group, the levels of enzymes in the polyamine synthesis pathway were increased in all and statistically significant (P < 0.05). The increase in the levels of agmatinase was very important among the enzymes (P < 0.001). CONCLUSIONS Decreased levels of polyamine synthase enzymes in diabetes mellitus were found to be increased patients with breast cancer. Whether and how diabetes-based breast cancer development relates to increase activity of enzymes responsible for polyamine synthesis requires further mechanistic and prospective monitoring studies in larger patient cohorts.
Collapse
Affiliation(s)
- V Kenan Çelik
- Department of BiochemistryCumhuriyet University School of Medicine, Sivas, Turkey
| | - Sercan Kapancık
- Department of BiochemistryCumhuriyet University School of Medicine, Sivas, Turkey
| | - Turgut Kaçan
- Department of Medical OncologyHigh Specialized Education and Research Hospital, Bursa, Turkey
| | | | - Serkan Kapancık
- Department of BiochemistryCumhuriyet University School of Medicine, Sivas, Turkey
| | - Hasan Kılıçgün
- Department of Nutrition and DieteticsHealth Science Faculty, University of Erzincan, Erzincan, Turkey
| |
Collapse
|
30
|
Lutz PE, Mechawar N, Turecki G. Neuropathology of suicide: recent findings and future directions. Mol Psychiatry 2017; 22:1395-1412. [PMID: 28696430 DOI: 10.1038/mp.2017.141] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Suicide is a major public health concern and a leading cause of death in most societies. Suicidal behaviour is complex and heterogeneous, likely resulting from several causes. It associates with multiple factors, including psychopathology, personality traits, early-life adversity and stressful life events, among others. Over the past decades, studies in fields ranging from neuroanatomy, genetics and molecular psychiatry have led to a model whereby behavioural dysregulation, including suicidal behaviour (SB), develops as a function of biological adaptations in key brain systems. More recently, the unravelling of the unique epigenetic processes that occur in the brain has opened promising avenues in suicide research. The present review explores the various facets of the current knowledge on suicidality and discusses how the rapidly evolving field of neurobehavioural epigenetics may fuel our ability to understand, and potentially prevent, SB.
Collapse
Affiliation(s)
- P-E Lutz
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - N Mechawar
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - G Turecki
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| |
Collapse
|
31
|
Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS. Therapeutic potential of agmatine for CNS disorders. Neurochem Int 2017; 108:318-331. [DOI: 10.1016/j.neuint.2017.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/06/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
|
32
|
Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 2017; 474:2619-2640. [DOI: 10.1042/bcj20170007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
Abstract
Agmatine, the decarboxylation product of arginine, was largely neglected as an important player in mammalian metabolism until the mid-1990s, when it was re-discovered as an endogenous ligand of imidazoline and α2-adrenergic receptors. Since then, a wide variety of agmatine-mediated effects have been observed, and consequently agmatine has moved from a wallflower existence into the limelight of clinical neuroscience research. Despite this quantum jump in scientific interest, the understanding of the anabolism and catabolism of this amine is still vague. The purification and biochemical characterization of natural mammalian arginine decarboxylase and agmatinase still are open issues. Nevertheless, the agmatinergic system is currently one of the most promising candidates in order to pharmacologically interfere with some major diseases of the central nervous system, which are summarized in the present review. Particularly with respect to major depression, agmatine, its derivatives, and metabolizing enzymes show great promise for the development of an improved treatment of this common disease.
Collapse
|
33
|
Plasma Metabolites Predict Severity of Depression and Suicidal Ideation in Psychiatric Patients-A Multicenter Pilot Analysis. PLoS One 2016; 11:e0165267. [PMID: 27984586 PMCID: PMC5161310 DOI: 10.1371/journal.pone.0165267] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022] Open
Abstract
Evaluating the severity of depression (SOD), especially suicidal ideation (SI), is crucial in the treatment of not only patients with mood disorders but also psychiatric patients in general. SOD has been assessed on interviews such as the Hamilton Rating Scale for Depression (HAMD)-17, and/or self-administered questionnaires such as the Patient Health Questionnaire (PHQ)-9. However, these evaluation systems have relied on a person's subjective information, which sometimes lead to difficulties in clinical settings. To resolve this limitation, a more objective SOD evaluation system is needed. Herein, we collected clinical data including HAMD-17/PHQ-9 and blood plasma of psychiatric patients from three independent clinical centers. We performed metabolome analysis of blood plasma using liquid chromatography mass spectrometry (LC-MS), and 123 metabolites were detected. Interestingly, five plasma metabolites (3-hydroxybutyrate (3HB), betaine, citrate, creatinine, and gamma-aminobutyric acid (GABA)) are commonly associated with SOD in all three independent cohort sets regardless of the presence or absence of medication and diagnostic difference. In addition, we have shown several metabolites are independently associated with sub-symptoms of depression including SI. We successfully created a classification model to discriminate depressive patients with or without SI by machine learning technique. Finally, we produced a pilot algorithm to predict a grade of SI with citrate and kynurenine. The above metabolites may have strongly been associated with the underlying novel biological pathophysiology of SOD. We should explore the biological impact of these metabolites on depressive symptoms by utilizing a cross species study model with human and rodents. The present multicenter pilot study offers a potential utility for measuring blood metabolites as a novel objective tool for not only assessing SOD but also evaluating therapeutic efficacy in clinical practice. In addition, modification of these metabolites by diet and/or medications may be a novel therapeutic target for depression. To clarify these aspects, clinical trials measuring metabolites before/after interventions should be conducted. Larger cohort studies including non-clinical subjects are also warranted to clarify our pilot findings.
Collapse
|
34
|
Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. Eur Neuropsychopharmacol 2016; 26:1885-1899. [PMID: 27836390 DOI: 10.1016/j.euroneuro.2016.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022]
Abstract
Major depressive disorder is the most common psychiatric disorder with lifetime prevalence of up to 20% worldwide. It is responsible for more years lost to disability than any other disorder. Despite the fact that current available antidepressant drugs are safe and effective, they are far from ideal. In addition to the need to administer the drugs for weeks or months to obtain clinical benefit, side effects are still a serious problem. Agmatine is an endogenous polyamine synthesized by the enzyme arginine decarboxylase. It modulates several receptors and is considered as a neuromodulator in the brain. In this review, studies demonstrating the antidepressant effects of agmatine are presented and discussed, as well as, the mechanisms of action related to these effects. Also, the potential beneficial effects of agmatine for the treatment of other neurological disorders are presented. In particular, we provide evidence to encourage future clinical studies investigating agmatine as a novel antidepressant drug.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
35
|
Limon A, Mamdani F, Hjelm BE, Vawter MP, Sequeira A. Targets of polyamine dysregulation in major depression and suicide: Activity-dependent feedback, excitability, and neurotransmission. Neurosci Biobehav Rev 2016; 66:80-91. [PMID: 27108532 DOI: 10.1016/j.neubiorev.2016.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 01/19/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide characterized by altered neuronal activity in brain regions involved in the control of stress and emotion. Although multiple lines of evidence suggest that altered stress-coping mechanisms underlie the etiology of MDD, the homeostatic control of neuronal excitability in MDD at the molecular level is not well established. In this review, we examine past and current evidence implicating dysregulation of the polyamine system as a central factor in the homeostatic response to stress and the etiology of MDD. We discuss the cellular effects of abnormal metabolism of polyamines in the context of their role in sensing and modulation of neuronal, electrical, and synaptic activity. Finally, we discuss evidence supporting an allostatic model of depression based on a chronic elevation in polyamine levels resulting in self-sustained stress response mechanisms maintained by maladaptive homeostatic mechanisms.
Collapse
Affiliation(s)
- Agenor Limon
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA
| | - Firoza Mamdani
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA
| | - Brooke E Hjelm
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA
| | - Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA.
| |
Collapse
|
36
|
Kaster MP, Moretti M, Cunha MP, Rodrigues ALS. Novel approaches for the management of depressive disorders. Eur J Pharmacol 2016; 771:236-40. [DOI: 10.1016/j.ejphar.2015.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/14/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
|
37
|
Moretti M, Neis VB, Matheus FC, Cunha MP, Rosa PB, Ribeiro CM, Rodrigues ALS, Prediger RD. Effects of Agmatine on Depressive-Like Behavior Induced by Intracerebroventricular Administration of 1-Methyl-4-phenylpyridinium (MPP(+)). Neurotox Res 2015; 28:222-31. [PMID: 26156429 DOI: 10.1007/s12640-015-9540-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
Abstract
Considering that depression is a common non-motor comorbidity of Parkinson's disease and that agmatine is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system disorders, this study investigated the antidepressant-like effect of agmatine in mice intracerebroventricularly (i.c.v.) injected with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)). Male C57BL6 mice were treated with agmatine (0.0001, 0.1 or 1 mg/kg) and 60 min later the animals received an i.c.v. injection of MPP(+) (1.8 µg/site). Twenty-four hours after MPP(+) administration, immobility time, anhedonic behavior, and locomotor activity were evaluated in the tail suspension test (TST), splash test, and open field test, respectively. Using Western blot analysis, we investigated the putative modulation of MPP(+) and agmatine on striatal and frontal cortex levels of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). MPP(+) increased the immobility time of mice in the TST, as well as induced an anhedonic-like behavior in the splash test, effects which were prevented by pre-treatment with agmatine at the three tested doses. Neither drug, alone or in combination, altered the locomotor activity of mice. I.c.v. administration of MPP(+) increased the striatal immunocontent of TH, an effect prevented by the three tested doses of agmatine. MPP(+) and agmatine did not alter the immunocontent of BDNF in striatum and frontal cortex. These results demonstrate for the first time the antidepressant-like effects of agmatine in an animal model of depressive-like behavior induced by the dopaminergic neurotoxin MPP(+).
Collapse
Affiliation(s)
- Morgana Moretti
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88049-900, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice. Mol Neurobiol 2015; 53:3030-3045. [DOI: 10.1007/s12035-015-9182-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
|
39
|
Neis VB, Moretti M, Manosso LM, Lopes MW, Leal RB, Rodrigues ALS. Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice. Pharmacol Biochem Behav 2015; 130:9-14. [DOI: 10.1016/j.pbb.2014.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 02/08/2023]
|
40
|
Freitas AE, Bettio LEB, Neis VB, Moretti M, Ribeiro CM, Lopes MW, Leal RB, Rodrigues ALS. Sub-chronic agmatine treatment modulates hippocampal neuroplasticity and cell survival signaling pathways in mice. J Psychiatr Res 2014; 58:137-46. [PMID: 25161097 DOI: 10.1016/j.jpsychires.2014.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
Agmatine is an endogenous neuromodulator which, based on animal and human studies, is a putative novel antidepressant drug. In this study, we investigated the ability of sub-chronic (21 days) p.o. agmatine administration to produce an antidepressant-like effect in the tail suspension test and examined the hippocampal cell signaling pathways implicated in such an effect. Agmatine at doses of 0.01 and 0.1 mg/kg (p.o.) produced a significant antidepressant-like effect in the tail suspension test and no effect in the open-field test. Additionally, agmatine (0.001-0.1 mg/kg, p.o.) increased the phosphorylation of protein kinase A substrates (237-258% of control), protein kinase B/Akt (Ser(473)) (116-127% of control), glycogen synthase kinase-3β (Ser(9)) (110-113% of control), extracellular signal-regulated kinases 1/2 (119-137% and 121-138% of control, respectively) and cAMP response elements (Ser(133)) (127-152% of control), and brain-derived-neurotrophic factor (137-175% of control) immunocontent in a dose-dependent manner in the hippocampus. Agmatine (0.001-0.1 mg/kg, p.o.) also reduced the c-jun N-terminal kinase 1/2 phosphorylation (77-71% and 65-51% of control, respectively). Neither protein kinase C nor p38(MAPK) phosphorylation was altered under any experimental conditions. Taken together, the present study extends the available data on the mechanisms that underlie the antidepressant action of agmatine by showing an antidepressant-like effect following sub-chronic administration. In addition, our results are the first to demonstrate the ability of agmatine to elicit the activation of cellular signaling pathways associated with neuroplasticity/cell survival and the inhibition of signaling pathways associated with cell death in the hippocampus.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | - Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | - Camille M Ribeiro
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | - Mark W Lopes
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | - Rodrigo B Leal
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
41
|
Abstract
Suicide ranks among the leading causes of death around the world and takes a heavy emotional and public health toll on most societies. Both distal and proximal factors contribute to suicidal behaviour. Distal factors - such as familial and genetic predisposition, as well as early-life adversity - increase the lifetime risk of suicide. They alter responses to stress and other processes through epigenetic modification of genes and associated changes in gene expression, and through the regulation of emotional and behavioural traits. Proximal factors are associated with the precipitation of a suicidal event and include alterations in key neurotransmitter systems, inflammatory changes and glial dysfunction in the brain. This Review explores the key molecular changes that are associated with suicidality and discusses some promising avenues for future research.
Collapse
|
42
|
Freitas AE, Egea J, Buendía I, Navarro E, Rada P, Cuadrado A, Rodrigues ALS, López MG. Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 2014; 51:1504-19. [PMID: 25084759 DOI: 10.1007/s12035-014-8827-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022]
Abstract
Hyperactivation of the hypothalamic-pituitary-adrenal axis is a common finding in major depression; this may lead to increased levels of cortisol, which are known to cause oxidative stress imbalance and apoptotic neuronal cell death, particularly in the hippocampus, a key region implicated in mood regulation. Agmatine, an endogenous metabolite of L-arginine, has been proposed for the treatment of major depression. Corticosterone induced apoptotic cell death and increased ROS production in cultured hippocampal neuronal cells, effects that were abolished in a concentration- and time-dependent manner by agmatine. Interestingly, the combination of sub-effective concentrations of agmatine with fluoxetine or imipramine afforded synergic protection. The neuroprotective effect of agmatine was abolished by yohimbine (α2-adrenoceptor antagonist), ketanserin (5-HT2A receptor antagonist), LY294002 (PI3K inhibitor), PD98059 (MEK1/2 inhibitor), SnPP (HO-1 inhibitor), and cycloheximide (protein synthesis inhibitor). Agmatine increased Akt and ERK phosphorylation and induced the transcription factor Nrf2 and the proteins HO-1 and GCLc; induction of these proteins was prevented by yohimbine, ketanserin, LY294002, and PD98059. In conclusion, agmatine affords neuroprotection against corticosterone effects by a mechanism that implicates Nrf2 induction via α2-adrenergic and 5-HT2A receptors, Akt and ERK pathways, and HO-1 and GCLc expression.
Collapse
Affiliation(s)
- Andiara E Freitas
- Instituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 4-28029, Madrid, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:143-50. [PMID: 24370459 DOI: 10.1016/j.pnpbp.2013.12.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/02/2013] [Accepted: 12/14/2013] [Indexed: 12/11/2022]
Abstract
Agmatine has been recently emerged as a novel candidate to assist the conventional pharmacotherapy of depression. The acute restraint stress (ARS) is an unavoidable stress situation that may cause depressive-like behavior in rodents. In this study, we investigated the potential antidepressant-like effect of agmatine (10mg/kg, administered acutely by oral route) in the forced swimming test (FST) in non-stressed mice, as well as its ability to abolish the depressive-like behavior and hippocampal antioxidant imbalance induced by ARS. Agmatine reduced the immobility time in the mouse FST (1-100mg/kg) in non-stressed mice. ARS caused an increase in the immobility time in the FST, indicative of a depressive-like behavior, as well as hippocampal lipid peroxidation, and an increase in the activity of hippocampal superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, reduced catalase (CAT) activity and increased SOD/CAT ratio, an index of pro-oxidative conditions. Agmatine was effective to abolish the depressive-like behavior induced by ARS and to prevent the ARS-induced lipid peroxidation and changes in SOD, GR and CAT activities and in SOD/CAT activity ratio. Hippocampal levels of reduced glutathione (GSH) were not altered by any experimental condition. In conclusion, the present study shows that agmatine was able to abrogate the ARS-induced depressive-like behavior and the associated redox hippocampal imbalance observed in stressed restraint mice, suggesting that its antidepressant-like effect may be dependent on its ability to maintain the pro-/anti-oxidative homeostasis in the hippocampus.
Collapse
|
44
|
Idrus NM, McGough NNH, Riley EP, Thomas JD. Administration of memantine during withdrawal mitigates overactivity and spatial learning impairments associated with neonatal alcohol exposure in rats. Alcohol Clin Exp Res 2014; 38:529-37. [PMID: 24428701 DOI: 10.1111/acer.12259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 07/02/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prenatal alcohol exposure can disrupt central nervous system development, manifesting as behavioral deficits that include motor, emotional, and cognitive dysfunction. Both clinical and animal studies have reported binge drinking during development to be highly correlated with an increased risk of fetal alcohol spectrum disorders (FASD). We hypothesized that binge drinking may be especially damaging because it is associated with episodes of alcohol withdrawal. Specifically, we have been investigating the possibility that NMDA receptor-mediated excitotoxicity occurs during alcohol withdrawal and contributes to developmental alcohol-related neuropathology. Consistent with this hypothesis, administration of the NMDA receptor antagonists MK-801 or eliprodil during withdrawal attenuates behavioral alterations associated with early alcohol exposure. In this study, we investigated the effects of memantine, a clinically used NMDA receptor antagonist, on minimizing ethanol-induced overactivity and spatial learning deficits. METHODS Sprague-Dawley pups were exposed to 6.0 g/kg ethanol via intubation on postnatal day (PD) 6, a period of brain development that models late gestation in humans. Controls were intubated with a calorically matched maltose solution. During withdrawal, 24 and 36 hours after ethanol exposure, subjects were injected with a total of either 0, 20, or 30 mg/kg memantine. The subjects' locomotor levels were recorded in open field activity monitors on PDs 18 to 21 and on a serial spatial discrimination reversal learning task on PDs 40 to 43. RESULTS Alcohol exposure induced overactivity and impaired performance in spatial learning. Memantine administration significantly attenuated the ethanol-associated behavioral alterations in a dose-dependent manner. Thus, memantine may be neuroprotective when administered during ethanol withdrawal. CONCLUSIONS These data have important implications for the treatment of EtOH's neurotoxic effects and provide further support that ethanol withdrawal significantly contributes to FASD.
Collapse
Affiliation(s)
- Nirelia M Idrus
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| | | | | | | |
Collapse
|
45
|
Piletz JE, Klenotich S, Lee KS, Zhu QL, Valente E, Collins MA, Jones V, Lee SN, Yangzheng F. Putative agmatinase inhibitor for hypoxic-ischemic new born brain damage. Neurotox Res 2013; 24:176-90. [PMID: 23334804 DOI: 10.1007/s12640-013-9376-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/10/2012] [Accepted: 01/08/2013] [Indexed: 01/27/2023]
Abstract
Agmatine is an endogenous brain metabolite, decarboxylated arginine, which has neuroprotective properties when injected intraperitoneally (i.p.) into rat pups following hypoxic-ischemia. A previous screen for compounds based on rat brain lysates containing agmatinase with assistance from computational chemistry, led to piperazine-1-carboxamidine as a putative agmatinase inhibitor. Herein, the neuroprotective properties of piperazine-1-carboxamidine are described both in vitro and in vivo. Organotypic entorhinal-hippocampal slices were firstly prepared from 7-day-old rat pups and exposed in vitro to atmospheric oxygen depletion for 3 h. Upon reoxygenation, the slices were treated with piperazine-1-carboxamidine or agmatine (50 μg/ml agents), or saline, and 15 h later propidium iodine was used to stain. Piperazine-1-carboxamidine or agmatine produced substantial in vitro protection compared to post-reoxygenated saline-treated controls. An in vivo model involved surgical right carotid ligation followed by exposure to hypoxic-ischemia (8 % oxygen) for 2.5 h. Piperazine-1-carboxamidine at 50 mg/kg i.p. was given 15 min post-reoxygenation and continued twice daily for 3 days. Cortical agmatine levels were elevated (+28.5 %) following piperazine-1-carboxamidine treatment with no change in arginine or its other major metabolites. Histologic staining with anti-Neun monoclonal antibody also revealed neuroprotection of CA1-3 layers of the hippocampus. Until endpoint at 22 days of age, no adverse events were observed in treated pups' body weights, rectal temperatures, or prompted ambulation. Piperazine-1-carboxamidine therefore appears to be a neuroprotective agent of a new category, agmatinase inhibitor.
Collapse
Affiliation(s)
- John E Piletz
- Department of Psychiatry, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, 2160 South First Ave, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|