1
|
Lo PW, Okajima T. Eogt-catalyzed O-GlcNAcylation. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2033.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Institute for Glyco-core Research (iGCORE), Nagoya University
| |
Collapse
|
2
|
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|
3
|
EOGT and O-GlcNAc on secreted and membrane proteins. Biochem Soc Trans 2017; 45:401-408. [PMID: 28408480 DOI: 10.1042/bst20160165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
Here, we describe a recently discovered O-GlcNAc transferase termed EOGT for EGF domain-specific O-GlcNAc transferase. EOGT transfers GlcNAc (N-acetylglucosamine) to Ser or Thr in secreted and membrane proteins that contain one or more epidermal growth factor-like repeats with a specific consensus sequence. Thus, EOGT is distinct from OGT, the O-GlcNAc transferase, that transfers GlcNAc to Ser/Thr in proteins of the cytoplasm or nucleus. EOGT and OGT are in separate cellular compartments and have mostly distinct substrates, although both can act on cytoplasmic (OGT) and lumenal (EOGT) domains of transmembrane proteins. The present review will describe known substrates of EOGT and biological roles for EOGT in Drosophila and humans. Mutations in EOGT that give rise to Adams-Oliver Syndrome in humans will also be discussed.
Collapse
|
4
|
Haltom AR, Jafar-Nejad H. The multiple roles of epidermal growth factor repeat O-glycans in animal development. Glycobiology 2015; 25:1027-42. [PMID: 26175457 DOI: 10.1093/glycob/cwv052] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022] Open
Abstract
The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives.
Collapse
Affiliation(s)
- Amanda R Haltom
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA Department of Molecular and Human Genetics
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Müller R, Jenny A, Stanley P. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One 2013; 8:e62835. [PMID: 23671640 PMCID: PMC3650022 DOI: 10.1371/journal.pone.0062835] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.
Collapse
Affiliation(s)
- Reto Müller
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AJ); (PS)
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AJ); (PS)
| |
Collapse
|
6
|
Von Ohlen T, Luce-Fedrow A, Ortega MT, Ganta RR, Chapes SK. Identification of critical host mitochondrion-associated genes during Ehrlichia chaffeensis infections. Infect Immun 2012; 80:3576-86. [PMID: 22851751 PMCID: PMC3457586 DOI: 10.1128/iai.00670-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium that causes human monocytic ehrlichiosis (HME). To determine what host components are important for bacterial replication, we performed microarray analysis on Drosophila melanogaster S2 cells by comparing host gene transcript levels between permissive and nonpermissive conditions for E. chaffeensis growth. Five-hundred twenty-seven genes had increased transcript levels unique to permissive growth conditions 24 h postinfection. We screened adult flies that were mutants for several of the "permissive" genes for the ability to support Ehrlichia replication. Three additional D. melanogaster fly lines with putative mutations in pyrimidine metabolism were also tested. Ten fly lines carrying mutations in the genes CG6479, separation anxiety, chitinase 11, CG6364 (Uck2), CG6543 (Echs1), withered (whd), CG15881 (Ccdc58), CG14806 (Apop1), CG11875 (Nup37), and dumpy (dp) had increased resistance to infection with Ehrlichia. Analysis of RNA by quantitative real-time reverse transcription-PCR (qRT-PCR) confirmed that the bacterial load was decreased in these mutant flies compared to wild-type infected control flies. Seven of these genes (san, Cht11, Uck2, Echs1, whd, Ccdc58, and Apop1) encoded proteins that had mitochondrial functions or could be associated with proteins with mitochondrial functions. Treatment of THP-1 cells with double-stranded RNA to silence the human UCK2 gene indicates that the disruption of the uridine-cytidine kinase affects E. chaffeensis replication in human macrophages. Experiments with cyclopentenyl cytosine (CPEC), a CTP synthetase inhibitor and cytosine, suggest that the nucleotide salvage pathway is essential for E. chaffeensis replication and that it may be important for the provision of CTP, uridine, and cytidine nucleotides.
Collapse
Affiliation(s)
- Tonia Von Ohlen
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
- Kansas State University, Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | | | - M. Teresa Ortega
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
| | - Roman R. Ganta
- Kansas State University, Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | - Stephen K. Chapes
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
| |
Collapse
|
7
|
Borycz J, Borycz JA, Edwards TN, Boulianne GL, Meinertzhagen IA. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. ACTA ACUST UNITED AC 2012; 215:1399-411. [PMID: 22442379 DOI: 10.1242/jeb.060699] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain unclear. Immunohistochemically detected β-alanine is present throughout the fly's entire brain, and is enhanced in the retina especially in the pseudocone, pigment and photoreceptor cells of the ommatidia. HPLC determinations reveal 10.7 ng of β-alanine in the wild-type head, roughly five times more than histamine. When wild-type flies drink uracil their head β-alanine increases more than after drinking l-aspartic acid, indicating the effectiveness of the uracil pathway. Mutants of black, which lack aspartate decarboxylase, cannot synthesize β-alanine from l-aspartate but can still synthesize it efficiently from uracil. Our findings demonstrate a novel function for pigment cells, which not only screen ommatidia from stray light but also store and transport β-alanine and carcinine. This role is consistent with a β-alanine-dependent histamine recycling pathway occurring not only in the photoreceptor terminals in the lamina neuropile, where carcinine occurs in marginal glia, but vertically via a long pathway that involves the retina. The lamina's marginal glia are also a hub involved in the storage and/or disposal of carcinine and β-alanine.
Collapse
Affiliation(s)
- Janusz Borycz
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada, B3H 4J1
| | | | | | | | | |
Collapse
|
8
|
Strub BR, Parkes TL, Mukai ST, Bahadorani S, Coulthard AB, Hall N, Phillips JP, Hilliker AJ. Mutations of the withered (whd) gene in Drosophila melanogaster confer hypersensitivity to oxidative stress and are lesions of the carnitine palmitoyltransferase I (CPT I) gene. Genome 2008; 51:409-20. [PMID: 18521119 DOI: 10.1139/g08-023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since some oxygen defense mutants of Drosophila melanogaster exhibit a crinkled wing phenotype, a screen was performed on strains bearing mutant alleles conferring a visible wing phenotype to determine whether any were hypersensitive to oxidative stress. One mutant, withered (whd), was found to be sensitive to both dietary paraquat and hyperoxia. New alleles of whd were induced on a defined genetic background and strains carrying these alleles were also found to be sensitive to oxidative stress. To identify the product of the whd gene we used a sequence-based positional candidate approach and by this method we determined that whd encodes carnitine palmitoyltransferase I (CPT I), an enzyme of the outer mitochondrial membrane that is required for the import of long-chain fatty acids into the mitochondria for beta-oxidation. Although this function is not vital under laboratory conditions, whd adults were found to be highly sensitive to starvation and to heavy metal toxicity relative to controls. This work uncovers a novel relationship between fatty acid metabolism and reactive oxygen metabolism. Further, these results in conjunction with past research on whd and on mammalian CPT I support the hypothesis that CPT I serves a vital function in the response to thymine supplementation.
Collapse
Affiliation(s)
- Benjamin R Strub
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
KJAER TORBEN. The physiological effects of dumpy mutations on de-novo pyrimidine synthesis in Drosophila melanogaster. Hereditas 2008. [DOI: 10.1111/j.1601-5223.1987.tb00287.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
KJAER TORBEN. A new X-bound suppressor mutation in Drosophila melanogaster: suppressor of dumpy. Hereditas 2008. [DOI: 10.1111/j.1601-5223.1989.tb00411.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Rawls JM. Analysis of pyrimidine catabolism in Drosophila melanogaster using epistatic interactions with mutations of pyrimidine biosynthesis and beta-alanine metabolism. Genetics 2005; 172:1665-74. [PMID: 16361227 PMCID: PMC1456268 DOI: 10.1534/genetics.105.052753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biochemical pathway for pyrimidine catabolism links the pathways for pyrimidine biosynthesis and salvage with beta-alanine metabolism, providing an array of epistatic interactions with which to analyze mutations of these pathways. Loss-of-function mutations have been identified and characterized for each of the enzymes for pyrimidine catabolism: dihydropyrimidine dehydrogenase (DPD), su(r) mutants; dihydropyrimidinase (DHP), CRMP mutants; beta-alanine synthase (betaAS), pyd3 mutants. For all three genes, mutants are viable and fertile and manifest no obvious phenotypes, aside from a variety of epistatic interactions. Mutations of all three genes disrupt suppression by the rudimentary gain-of-function mutation (r(Su(b))) of the dark cuticle phenotype of black mutants in which beta-alanine pools are diminished; these results confirm that pyrimidines are the major source of beta-alanine in cuticle pigmentation. The truncated wing phenotype of rudimentary mutants is suppressed completely by su(r) mutations and partially by CRMP mutations; however, no suppression is exhibited by pyd3 mutations. Similarly, su(r) mutants are hypersensitive to dietary 5-fluorouracil, CRMP mutants are less sensitive, and pyd3 mutants exhibit wild-type sensitivity. These results are discussed in the context of similar consequences of 5-fluoropyrimidine toxicity and pyrimidine catabolism mutations in humans.
Collapse
Affiliation(s)
- John M Rawls
- Molecular and Cellular Biology Group, Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA.
| |
Collapse
|
12
|
Nash D, Woloshyn EP, Mehl YM, Janca FC. PLEIOTROPIC, RECESSIVE-LETHAL MUTANTS ASSOCIATED WITH PURINE METABOLISM IN DROSOPHILA MELANOGASTER. ACTA ACUST UNITED AC 1981. [DOI: 10.1139/g81-044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three kinds of complementing mutants of Drosophila melanogaster assigned to the gua 1, pur 1 and ras loci fail to complement with a single class of recessive lethals, previously designated raspberry lethals (ras-1). These lethals are apparently point mutations. The gua 1, pur 1 and ras loci are closely linked. Their phenotypes implicate defects in three components of purine metabolism. It is suggested that the complementation pattern is best explained if the three loci are functionally related at the genetic as well as at the metabolic level.
Collapse
|
13
|
Blass DH, Hunt DM. Pyrimidine biosynthesis in the dumpy mutants of Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1980; 178:437-42. [PMID: 6771489 DOI: 10.1007/bf00270496] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The status of de novo pyrimidine synthesis in the dp mutant of Drosophila melanogaster was examined by measuring the activity of the rate-limiting orotate phosphribosyl transferase (OPRT) enzyme. Activity is significantly elevated in late third instar larvae of 5 different dp mutant strains. A more detailed analysis of a dpovc allele has shown that this elevation arises at about mid-larval life and persists until pupation. A low nucleotide diet causes a depression in OPRT activity in dpovc larvae which can be reversed by dietary supplementation of uracil. However, neither the low nucleotide diet nor uracil supplementation results in a change in the expressivity of the dp mutant phenotypes. Changes in expressivity are produced by 6-azauracil and by elevated temperature although, in those cases, the effect on OPRT activity is minimal. The significance of the observations is discussed in relation to the role of pyrimidine biosynthesis in dp expressivity and chitin synthesis.
Collapse
|
14
|
Naguib FN, Nash D. Nucleoside auxotrophy in Drosophila: an autosomal locus yielding mutants supplementable by purine and pyrimidine ribonucleosides. MOLECULAR & GENERAL GENETICS : MGG 1976; 147:13-21. [PMID: 822279 DOI: 10.1007/bf00337930] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two allelic auxotrophic mutants at a locus close to the bw locus (2-104.5) of Drosophila melanogaster are described. The mutants respond to dietary ribonucleosides (uridine, cytidine, adenosine, guanosine and inosine) but less well to bases or pyrimidine precursors. This phenotype is unique to these mutants. We suggest that the mutants are defective in phosphoribosyl pyrophosphate biosynthesis.
Collapse
|
15
|
Fausto-Sterling A, Hsieh L. Studies on the female-sterile mutant rudimentary of Drosophila melanogaster. 1. An analysis of the rudimentary wing phenotype. Dev Biol 1976; 51:269-81. [PMID: 821800 DOI: 10.1016/0012-1606(76)90143-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|