1
|
Wei YF, Jiang XH, Song R, She CW. Molecular cytogenetic characterization of 9 populations of four species in the genus Polygonatum (Asparagaceae). COMPARATIVE CYTOGENETICS 2024; 18:73-95. [PMID: 38798789 PMCID: PMC11116888 DOI: 10.3897/compcytogen.18.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 05/29/2024]
Abstract
To characterize the chromosomes of the four species of Polygonatum Miller, 1754, used in traditional Chinese medicine, P.cyrtonema Hua, 1892, P.kingianum Collett et Hemsley, 1890, P.odoratum (Miller, 1768) Druce, 1906, and P.sibiricum Redouté, 1811, and have an insight into the karyotype variation of the genus Polygonatum, fluorescence in situ hybridization (FISH) with 5S and 45S rDNA oligonucleotide probes was applied to analyze the karyotypes of 9 populations of the four species. Detailed molecular cytogenetic karyotypes of the 9 populations were established for the first time using the dataset of chromosome measurements and FISH signals of 5S and 45S rDNA. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the asymmetry of the karyotypes and karyological relationships among species. Comparison of their karyotypes revealed distinct variations in the karyotypic parameters and rDNA patterns among and within species. The basic chromosome numbers detected were x = 9, 11 and 13 for P.cyrtonema, x = 15 for P.kingianum, x = 10 and 11 for P.odoratum, and x = 12 for P.sibiricum. The original basic chromosome numbers of the four species were inferred on the basis of the data of this study and previous reports. All the 9 karyotypes were of moderate asymmetry and composed of metacentric, submetacentric and subtelocentric chromosomes or consisted of two of these types of chromosomes. Seven populations have one locus of 5S rDNA and two loci of 45S rDNA, and two populations added one 5S or 45S locus. The karyological relationships among the four species revealed by comparison of rDNA patterns and PCoA based on x, 2n, TCL, CVCI, MCA and CVCL were basically accordant with the phylogenetic relationships revealed by molecular phylogenetic studies. The mechanisms of both intra- and inter-specific dysploidy in Polygonatum were discussed based on the data of this study and literature.
Collapse
Affiliation(s)
- Yan-Fang Wei
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, 412007, ChinaHunan University of TechnologyZhuzhouChina
| | - Xiang-Hui Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Rong Song
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, ChinaInstitute of Agricultural Environment and Ecology, Hunan Academy of Agricultural SciencesChangshaChina
| | - Chao-Wen She
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, 412007, ChinaHunan University of TechnologyZhuzhouChina
| |
Collapse
|
2
|
She CW, Jiang XH, He CP. Comparative karyotype analysis of eight Cucurbitaceae crops using fluorochrome banding and 45S rDNA-FISH. COMPARATIVE CYTOGENETICS 2023; 17:31-58. [PMID: 37305810 PMCID: PMC10252140 DOI: 10.3897/compcytogen.v17.i1.99236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 06/13/2023]
Abstract
To have an insight into the karyotype variation of eight Cucurbitaceae crops including Cucumissativus Linnaeus, 1753, Cucumismelo Linnaeus, 1753, Citrulluslanatus (Thunberg, 1794) Matsumura et Nakai, 1916, Benincasahispida (Thunberg, 1784) Cogniaux, 1881, Momordicacharantia Linnaeus, 1753, Luffacylindrica (Linnaeus, 1753) Roemer, 1846, Lagenariasicerariavar.hispida (Thunberg, 1783) Hara, 1948 and Cucurbitamoschata Duchesne ex Poiret, 1819, well morphologically differentiated mitotic metaphase chromosomes were prepared using the enzymatic maceration and flame-drying method, and the chromosomal distribution of heterochromatin and 18S-5.8S-26S rRNA genes (45S rDNA) was investigated using sequential combined PI and DAPI (CPD) staining and fluorescence in situ hybridization (FISH) with 45S rDNA probe. Detailed karyotypes were established using the dataset of chromosome measurements, fluorochrome bands and rDNA FISH signals. Four karyotype asymmetry indices, CVCI, CVCL, MCA and Stebbins' category, were measured to elucidate the karyological relationships among species. All the species studied had symmetrical karyotypes composed of metacentric and submetacentric or only metacentric chromosomes, but their karyotype structure can be discriminated by the scatter plot of MCA vs. CVCL. The karyological relationships among these species revealed by PCoA based on x, 2n, TCL, MCA, CVCL and CVCI was basically in agreement with the phylogenetic relationships revealed by DNA sequences. CPD staining revealed all 45S rDNA sites in all species, (peri)centromeric GC-rich heterochromatin in C.sativus, C.melo, C.lanatus, M.charantia and L.cylindrica, terminal GC-rich heterochromatin in C.sativus. DAPI counterstaining after FISH revealed pericentromeric DAPI+ heterochromatin in C.moschata. rDNA FISH detected two 45S loci in five species and five 45S loci in three species. Among these 45S loci, most were located at the terminals of chromosome arms, and a few in the proximal regions. In C.sativus, individual chromosomes can be precisely distinguished by the CPD band and 45S rDNA signal patterns, providing an easy method for chromosome identification of cucumber. The genome differentiation among these species was discussed in terms of genome size, heterochromatin, 45S rDNA site, and karyotype asymmetry based on the data of this study and previous reports.
Collapse
Affiliation(s)
- Chao-Wen She
- Key Laboratory of Research and Utilization of
Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan,
418008, ChinaHuaihua UniversityHuaihuaChina
- College of Life Sciences and Chemistry, Hunan University
of Technology, Zhuzhou, Hunan, 412007, ChinaHunan University of TechnologyZhuzhouChina
| | - Xiang-Hui Jiang
- Key Laboratory of Research and Utilization of
Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan,
418008, ChinaHuaihua UniversityHuaihuaChina
| | - Chun-Ping He
- College of Life Sciences and Chemistry, Hunan University
of Technology, Zhuzhou, Hunan, 412007, ChinaHunan University of TechnologyZhuzhouChina
| |
Collapse
|
3
|
Li J, Zhu K, Wang Q, Chen X. Genome size variation and karyotype diversity in eight taxa of Sorbus sensu stricto (Rosaceae) from China. COMPARATIVE CYTOGENETICS 2021; 15:137-148. [PMID: 34055237 PMCID: PMC8159915 DOI: 10.3897/compcytogen.v15i2.58278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/28/2021] [Indexed: 05/27/2023]
Abstract
Eight taxa of Sorbus Linnaeus, 1753 sensu stricto (Rosaceae) from China have been studied karyologically through chromosome counting, chromosomal measurement and karyotype symmetry. Genome size was also estimated by flow cytometry. Six taxa, S. amabilis Cheng ex T.T.Yu et K.C.Kuan, 1963, S. hupehensis var. paucijuga (D.K. Zang et P.C. Huang, 1992) L.T. Lu, 2000, S. koehneana C.K. Schneider, 1906, S. pohuashanensis (Hance, 1875) Hedlund, 1901, S. scalaris Koehne, 1913 and S. wilsoniana C.K. Schneider, 1906 are diploids with 2n = 34, whereas two taxa, S. filipes Handel-Mazzetti,1933 and S. ovalis McAllister, 2005 are tetraploid with 2n = 68. In general, the chromosome size is mainly small, and karyotypes are symmetrical with predominance of metacentric chromosomes. Genome size variation of diploids and tetraploids is 1.401 pg -1.676 pg and 2.674 pg -2.684 pg, respectively. Chromosome numbers of S. amabilis and S. hupehensis var. paucijuga, and karyotype and genome size of eight taxa studied are reported for the first time. This study emphasised the reliability of flow cytometry in genome size determination to infer ploidy levels in Chinese native Sorbus species.
Collapse
Affiliation(s)
- Jiabao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, ChinaNanjing Forestry UniversityNanjingChina
| | - Kailin Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, ChinaNanjing Forestry UniversityNanjingChina
| | - Qin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, ChinaNanjing Forestry UniversityNanjingChina
| | - Xin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
4
|
Silvestri MC, Ortiz AM, Robledo GA, Lavia GI. Chromosome diversity in species of the genus Arachis, revealed by FISH and CMA/DAPI banding, and inferences about their karyotype differentiation. AN ACAD BRAS CIENC 2020; 92:e20191364. [PMID: 32901677 DOI: 10.1590/0001-3765202020191364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
The species of the genus Arachis (Leguminosae) are ordered into nine sections. The assignment of genome types in this genus has been based on cross-compatibility analysis and molecular cytogenetic studies. The latter has also allowed karyotypically establishing well-defined genomes and reassigning the genome of several species. However, most of these studies have been focused mainly on the sections Arachis and Rhizomatosae. To increase the knowledge about the chromosome diversity of the whole genus, here we performed a detailed karyotype characterization of representative species of most of the sections and genomes of Arachis. This characterization included chromosome morphology, CMA/DAPI chromosome banding, and chromosome marker localization (rDNAloci and one satDNA sequence) by fluorescent in situ hybridization (FISH). Based on the data obtained and other previously published data, we established the karyotype similarities by cluster analysis and defined eleven karyotype groups. The grouping was partly coincident with the traditional genome assignment, except for some groups and some individual species. Karyotype similarities among some genomes were also found. The main characteristics of each karyotype group of Arachis were summarized. Together, our results provide information that may be beneficial for future cytogenetic and evolutionary studies, and also contribute to the identification of interspecific hybrids.
Collapse
Affiliation(s)
- MarÍa C Silvestri
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - Alejandra M Ortiz
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - GermÁn A Robledo
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| | - Graciela I Lavia
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| |
Collapse
|
5
|
Tapia-Pastrana F, Delgado-Salinas A, Caballero J. Patterns of chromosomal variation in Mexican species of Aeschynomene (Fabaceae, Papilionoideae) and their evolutionary and taxonomic implications. COMPARATIVE CYTOGENETICS 2020; 14:157-182. [PMID: 32206208 PMCID: PMC7080853 DOI: 10.3897/compcytogen.v14i1.47264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
A cytogenetic analysis of sixteen taxa of the genus Aeschynomene Linnaeus, 1753, which includes species belonging to both subgenera Aeschynomene (Léonard, 1954) and Ochopodium (Vogel, 1838) J. Léonard, 1954, was performed. All studied species had the same chromosome number (2n = 20) but exhibited karyotype diversity originating in different combinations of metacentric, submetacentric and subtelocentric chromosomes, chromosome size and number of SAT chromosomes. The plasticity of the genomes included the observation in a taxon belonging to the subgenus Aeschynomene of an isolated spherical structure similar in appearance to the extra chromosomal circular DNA observed in other plant genera. By superimposing the karyotypes in a recent phylogenetic tree, a correspondence between morphology, phylogeny and cytogenetic characteristics of the taxa included in the subgenus Aeschynomene is observed. Unlike subgenus Aeschynomene, the species of Ochopodium exhibit notable karyotype heterogeneity. However the limited cytogenetic information recorded prevents us from supporting the proposal of their taxonomic separation and raise it to the genus category. It is shown that karyotype information is useful in the taxonomic delimitation of Aeschynomene and that the diversity in the diploid level preceded the hybridization/polyploidization demonstrated in the genus. The systematic implications of our results and their value can be extended to other Dalbergieae genera as knowledge about the chromosomal structure and its evolution increases.
Collapse
Affiliation(s)
- Fernando Tapia-Pastrana
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Laboratorio de Genecología, Batalla 5 de Mayo s/n esquina Fuerte de Loreto, Col. Ejército de Oriente, Iztapalapa, C.P. 09230, Ciudad de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Alfonso Delgado-Salinas
- Instituto de Biología, Departamento de Botánica, Universidad Nacional Autónoma de México, Apartado Postal 70-233, 04510, Cd. de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Javier Caballero
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Campos Deportivos, Ciudad Universitaria, Coyoacán 04510, Cd. de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| |
Collapse
|
6
|
Erenpreisa J, Giuliani A. Resolution of Complex Issues in Genome Regulation and Cancer Requires Non-Linear and Network-Based Thermodynamics. Int J Mol Sci 2019; 21:E240. [PMID: 31905791 PMCID: PMC6981914 DOI: 10.3390/ijms21010240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
The apparent lack of success in curing cancer that was evidenced in the last four decades of molecular medicine indicates the need for a global re-thinking both its nature and the biological approaches that we are taking in its solution. The reductionist, one gene/one protein method that has served us well until now, and that still dominates in biomedicine, requires complementation with a more systemic/holistic approach, to address the huge problem of cross-talk between more than 20,000 protein-coding genes, about 100,000 protein types, and the multiple layers of biological organization. In this perspective, the relationship between the chromatin network organization and gene expression regulation plays a fundamental role. The elucidation of such a relationship requires a non-linear thermodynamics approach to these biological systems. This change of perspective is a necessary step for developing successful 'tumour-reversion' therapeutic strategies.
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Alessandro Giuliani
- Environmental and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
7
|
Sedel’nikova TS, Pimenov AV. Karyological Study of Siberian Larch Species Larix sibirica and Larix gmelinii in Taimyr. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Hong X, Keene J, Qiu ZJ, Wen F. Primulina anisocymosa (Gesneriaceae), a new species with a unique inflorescence structure from Guangdong, China. PeerJ 2019; 7:e6157. [PMID: 30631650 PMCID: PMC6322489 DOI: 10.7717/peerj.6157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/25/2018] [Indexed: 11/20/2022] Open
Abstract
A new Primulina species from Guangdong, China with an unusual inflorescence is described here. Primulina anisocymosa is vegetatively most similar to P. bobaiensis. It can be distinguished from all species within Primulina morphologically by its unique zigzag monochasial cyme and infructescence. To confirm the phylogenetic relationships and generic placement of this species, not only morphological anatomical features but also chromosome and DNA sequence data were examined and analysed here. Two samples from different populations identified as Primulina anisocymosa are monophyletic and were nested in a monophyletic clade within Primulina with high branch support. The somatic chromosome number of the new species is also reported (2n = 36), supporting its placement in the genus.
Collapse
Affiliation(s)
- Xin Hong
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China.,The Gesneriad Conservation Center of China, Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guilin Botanical Garden, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China.,College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | | | - Zhi-Jing Qiu
- Laboratory of Southern Subtropical Plant Diversity, Fairylake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Fang Wen
- The Gesneriad Conservation Center of China, Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guilin Botanical Garden, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
9
|
Scherrer K. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Exp Cell Res 2018; 373:1-33. [PMID: 30266658 DOI: 10.1016/j.yexcr.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
The main purpose of this review is to recall for investigators - and in particular students -, some of the early data and concepts in molecular genetics and biology that are rarely cited in the current literature and are thus invariably overlooked. There is a growing tendency among editors and reviewers to consider that only data produced in the last 10-20 years or so are pertinent. However this is not the case. In exact science, sound data and lucid interpretation never become obsolete, and even if forgotten, will resurface sooner or later. In the field of gene expression, covered in the present review, recent post-genomic data have indeed confirmed many of the earlier results and concepts developed in the mid-seventies, well before the start of the recombinant DNA revolution. Human brains and even the most powerful computers, have difficulty in handling and making sense of the overwhelming flow of data generated by recent high-throughput technologies. This was easier when low throughput, more integrative methods based on biochemistry and microscopy dominated biological research. Nowadays, the need for organising concepts is ever more important, otherwise the mass of available data can generate only "building ruins" - the bricks without an architect. Concepts such as pervasive transcription of genomes, large genomic domains, full domain transcripts (FDTs) up to 100 kb long, the prevalence of post-transcriptional events in regulating eukaryotic gene expression, and the 3D-genome architecture, were all developed and discussed before 1990, and are only now coming back into vogue. Thus, to review the impact of earlier concepts on later developments in the field, I will confront former and current data and ideas, including a discussion of old and new methods. Whenever useful, I shall first briefly report post-genomic developments before addressing former results and interpretations. Equally important, some of the terms often used sloppily in scientific discussions will be clearly defined. As a basis for the ensuing discussion, some of the issues and facts related to eukaryotic gene expression will first be introduced. In chapter 2 the evolution in perception of biology over the last 60 years and the impact of the recombinant DNA revolution will be considered. Then, in chapter 3 data and theory concerning the genome, gene expression and genetics will be reviewed. The experimental and theoretical definition of the gene will be discussed before considering the 3 different types of genetic information - the "Triad" - and the importance of post-transcriptional regulation of gene expression in the light of the recent finding that 90% of genomic DNA seems to be transcribed. Some previous attempts to provide a conceptual framework for these observations will be recalled, in particular the "Cascade Regulation Hypothesis" (CRH) developed in 1967-85, and the "Gene and Genon" concept proposed in 2007. A knowledge of the size of primary transcripts is of prime importance, both for experimental and theoretical reasons, since these molecules represent the primary units of the "RNA genome" on which most of the post-transcriptional regulation of gene expression occurs. In chapter 4, I will first discuss some current post-genomic topics before summarising the discovery of the high Mr-RNA transcripts, and the investigation of their processing spanning the last 50 years. Since even today, a consensus concerning the real form of primary transcripts in eukaryotic cells has not yet been reached, I will refer to the viral and specialized cellular models which helped early on to understand the mechanisms of RNA processing and differential splicing which operate in cells and tissues. As a well-studied example of expression and regulation of a specific cellular gene in relation to differentiation and pathology, I will discuss the early and recent work on expression of the globin genes in nucleated avian erythroblasts. An important concept is that the primary transcript not only embodies protein-coding information and regulation of its expression, but also the 3D-structure of the genomic DNA from which it was derived. The wealth of recent post-genomic data published in this field emphasises the importance of a fundamental principle of genome organisation and expression that has been overlooked for years even though it was already discussed in the 1970-80ties. These issues are addressed in chapter 5 which focuses on the involvement of the nuclear matrix and nuclear architecture in DNA and RNA biology. This section will make reference to the Unified Matrix Hypothesis (UMH), which was the first molecular model of the 3D organisation of DNA and RNA. The chapter on the "RNA-genome and peripheral memories" discusses experimental data on the ribonucleoprotein complexes containing pre-mRNA (pre-mRNPs) and mRNA (mRNPs) which are organised in nuclear and cytoplasmic spaces respectively. Finally, "Outlook " will enumerate currently unresolved questions in the field, and will propose some ideas that may encourage further investigation, and comprehension of available experimental data still in need of interpretation. In chapter 8, some propositions and paradigms basic to the authors own analysis are discussed. "In conclusion" the raison d'être of this review is recalled and positioned within the overall framework of scientific endeavour.
Collapse
Affiliation(s)
- Klaus Scherrer
- Institute Jacques Monod, CNRS, University Paris Diderot, Paris, France.
| |
Collapse
|
10
|
Celeste SM, Ortiz AM, Robledo GA, Valls JFM, Lavia GI. Genomic characterisation of Arachis porphyrocalyx (Valls & C.E. Simpson, 2005) (Leguminosae): multiple origin of Arachis species with x = 9. COMPARATIVE CYTOGENETICS 2017; 11:29-43. [PMID: 28919947 PMCID: PMC5599696 DOI: 10.3897/compcytogen.v11i1.10339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/31/2016] [Indexed: 06/07/2023]
Abstract
The genus Arachis Linnaeus, 1753 comprises four species with x = 9, three belong to the section Arachis: Arachis praecox (Krapov. W.C. Greg. & Valls, 1994), Arachis palustris (Krapov. W.C. Greg. & Valls, 1994) and Arachis decora (Krapov. W.C. Greg. & Valls, 1994) and only one belongs to the section Erectoides: Arachis porphyrocalyx (Valls & C.E. Simpson, 2005). Recently, the x = 9 species of section Arachis have been assigned to G genome, the latest described so far. The genomic relationship of Arachis porphyrocalyx with these species is controversial. In the present work, we carried out a karyotypic characterisation of Arachis porphyrocalyx to evaluate its genomic structure and analyse the origin of all x = 9 Arachis species. Arachis porphyrocalyx showed a karyotype formula of 14m+4st, one pair of A chromosomes, satellited chromosomes type 8, one pair of 45S rDNA sites in the SAT chromosomes, one pair of 5S rDNA sites and pericentromeric C-DAPI+ bands in all chromosomes. Karyotype structure indicates that Arachis porphyrocalyx does not share the same genome type with the other three x = 9 species and neither with the remaining Erectoides species. Taking into account the geographic distribution, morphological and cytogenetic features, the origin of species with x = 9 of the genus Arachis cannot be unique; instead, they originated at least twice in the evolutionary history of the genus.
Collapse
Affiliation(s)
- Silvestri María Celeste
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - Alejandra Marcela Ortiz
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| | - Germán Ariel Robledo
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| | | | - Graciela Inés Lavia
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| |
Collapse
|
11
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
12
|
Roa F, Guerra M. Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 2012. [PMID: 23181612 PMCID: PMC3583730 DOI: 10.1186/1471-2148-12-225] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of the distribution of these sites along the chromosome in several genera has suggested some bias in their distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of some chromosomal and karyotypic features on the distribution of these sites, a database was built with the position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant species. Results In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted. The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm. The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families. Conclusions The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but some hypotheses are considered and the observed trends are discussed.
Collapse
Affiliation(s)
- Fernando Roa
- Department of Botany Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco Center of Biological Sciences, Rua Nelson Chaves, s/n Cidade Universitária, Recife, PE, 50,670-420, Brazil
| | | |
Collapse
|
13
|
Liu Y, Bi Y, Gu J, Li L, Zhou Z. Localization of a female-specific marker on the chromosomes of the brown seaweed Saccharina japonica using fluorescence in situ hybridization. PLoS One 2012; 7:e48784. [PMID: 23166593 PMCID: PMC3497718 DOI: 10.1371/journal.pone.0048784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is a heteromorphic alternative life in the brown seaweed, Saccharina japonica (Aresch.) C. E. Lane, C. Mayes et G. W. Saunders ( = Laminaria japonica Aresch.), with macroscopic monoecious sporophytes and microscopic diecious gametophytes. Female gametophytes are genetically different from males. It is very difficult to identify the parent of a sporophyte using only routine cytological techniques due to homomorphic chromosomes. A sex-specific marker is one of the best ways to make this determination. METHODOLOGY/PRINCIPAL FINDINGS To obtain clear images, chromosome preparation was improved using maceration enzymes and fluorochrome 4', 6-diamidino-2-phenylindole (DAPI). The chromosome number of both male and female haploid gametophytes was 31, and there were 62 chromosomes in diploid sporophytes. Although the female chromosomes ranged from 0.77 µm to 2.61 µm in size and were larger than the corresponding ones in the males (from 0.57 µm to 2.16 µm), there was not a very large X chromosome in the females. Based on the known female-related FRML-494 marker, co-electrophoresis and Southern blot profiles demonstrated that it was inheritable and specific to female gametophytes. Using modified fluorescence in situ hybridization (FISH), this marker could be localized on one unique chromosome of the female gametophytes as well as the sporophytes, whereas no hybridization signal was detected in the male gametophytes. CONCLUSIONS/SIGNIFICANCE Our data suggest that this marker was a female chromosome-specific DNA sequence. This is the first report of molecular marker localization on algal chromosomes. This research provides evidence for the benefit of using FISH for identifying molecular markers for sex identification, isolation of specific genes linked to this marker in the females, and sex determination of S. japonica gametophytes in the future.
Collapse
Affiliation(s)
- Yu Liu
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - YanHui Bi
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - JunGang Gu
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - LiHua Li
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - ZhiGang Zhou
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Lekhak MM, Yadav SR. Cytotaxonomy of some species of Amorphophallus sect. Rhaphiophallus (Schott) Engl. (Araceae) of the Indian Subcontinent. THE NUCLEUS 2011. [DOI: 10.1007/s13237-011-0046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
15
|
Sousa A, Barros e Silva A, Cuadrado A, Loarce Y, Alves M, Guerra M. Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the “chromosome field” hypothesis. Micron 2011; 42:625-31. [DOI: 10.1016/j.micron.2011.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
16
|
|
17
|
Scherthan H, Arnason U, Lima-de-Faria A. Localization of cloned, repetitive DNA sequences in deer species and its implications for maintenance of gene territory. Hereditas 2008; 112:13-20. [PMID: 2361878 DOI: 10.1111/j.1601-5223.1990.tb00132.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The deer family shows the largest variation in chromosome number known in mammals (2n = 6 to 2n = 70). The drastic rearrangement of the chromosomes allows to test the prediction, based on the chromosome field theory, according to which DNA sequences tend to occupy specific territories within the eukaryotic chromosome. Nuclear DNAs were isolated from eight Deer and two Bovidae species. These DNAs were cleaved with the restriction enzymes Eco RI and Alu I. Following Eco RI digestion highly repetitive sequences formed two bands which were common to all deer species. These bands had about 1520 and 2240 base pairs and were particularly clear in Capreolus capreolus (2n = 70, roe deer). The 1520 band DNA was cloned in plasmid pUC9, nick translated, and hybridized with the DNAs of all ten species. The Capreolus DNA showed a high homology with the DNAs of all the species including the Indian muntjac (Muntiacus muntjak, 2n = 7, male) and the Chinese muntjac (Muntiacus reevesi, 2n = 46). 3H hybridization was carried out in situ with metaphase chromosomes of Cervus elaphus (2n = 68, red deer), M. muntjak, and M. reevesi. In C. elaphus all the chromosomes are heavily labeled except the regions of the arms near the centromere. In the muntjacs all chromosomes and most regions appear to be labeled. These results were checked with a different technique that involved the use of two antibodies and biotin labeling of the DNA. The hybridization picture was essentially the same as obtained with 3H. These results disclose that the 1520 bp DNA piece maintains its main territory independently of the drastic changes in chromosome number.
Collapse
Affiliation(s)
- H Scherthan
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Federal Republic of Germany
| | | | | |
Collapse
|
18
|
VERSHININ AV, SALINA EA, SVITASHEV SK. Is there a connection between genomic changes and wide hybridization? Hereditas 2008. [DOI: 10.1111/j.1601-5223.1992.tb00826.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Scherthan H, Arnason U, Lima-de-Faria A. The chromosome field theory tested in muntjac species by DNA cloning and hybridization. Hereditas 2008; 107:175-84. [PMID: 3436828 DOI: 10.1111/j.1601-5223.1987.tb00282.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
20
|
Vershinin AV, Salina EA, Svitashev SK. Is there a connection between genomic changes and wide hybridization? Hereditas 2008; 116:213-7. [PMID: 1517115 DOI: 10.1111/j.1601-5223.1992.tb00144.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The structural organization of a set of highly repetitive DNA sequences (HRS) of barley (Hordeum vulgare) was studied by blot-hybridization in the genomes of seven Hordeum L. species and several Hordeum x Secale hybrids. The copy numbers of the sequences, and length and intensity of the hybridization fragments varied among barley species; so, this set appeared to be useful as molecular markers for barley species. Structural rearrangements of some HRS were observed in hybrids. It was noteworthy that the genomic changes in the hybrids partially coincided with those that take place during species divergence; so, chromosomal rearrangements are likely to proceed according to certain rules. The possibility of cryptic mobile elements participating in the genomic rearrangements under stress factors of the remote hybridization, is discussed, the primary structure of a Bam HI fragment (999 bp long) of Hordeum vulgare DNA being the example.
Collapse
Affiliation(s)
- A V Vershinin
- Institute of Cytology and Genetics, Novosibirsk, USSR
| | | | | |
Collapse
|
21
|
Scherrer K, Jost J. Gene and genon concept: coding versus regulation. A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology. Theory Biosci 2007; 126:65-113. [PMID: 18087760 PMCID: PMC2242853 DOI: 10.1007/s12064-007-0012-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 07/13/2007] [Indexed: 01/15/2023]
Abstract
We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term "genon". In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon.
Collapse
Affiliation(s)
- Klaus Scherrer
- Institut Jacques Monod, CNRS and Univ. Paris 7, 2, place Jussieu, 75251 Paris-Cedex 5, France
| | - Jürgen Jost
- Max Planck Institute for Mathematics in the Sciences MPI MIS, Inselstrasse 22, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Lin CC, Li YC. Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis). Cytogenet Genome Res 2006; 114:147-54. [PMID: 16825767 DOI: 10.1159/000093331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/24/2006] [Indexed: 11/19/2022] Open
Abstract
The species-specific profile and centromeric heterochromatin localization of satellite DNA in mammalian genomes imply that satellite DNA may play an important role in mammalian karyotype evolution and speciation. A satellite III DNA family, CCsatIII was thought to be specific to roe deer (Capreolus capreolus). In this study, however, this satellite DNA family was found also to exist in Chinese water deer (Hydropotes inermis) by PCR-Southern screening. A satellite III DNA element of this species was then generated from PCR-cloning by amplifying this satellite element using primer sequences from the roe deer satellite III clone (CCsatIII). The newly generated satellite III DNA along with previously obtained satellite I and II DNA clones were used as probes for FISH studies to investigate the genomic distribution and organization of these three satellite DNA families in centromeric heterochromatin regions of Chinese water deer chromosomes. Satellite I and II DNA were observed in the pericentric/centric regions of all chromosomes, whereas satellite III was distributed on 38 out of 70 chromosomes. The distribution and orientation of satellite DNAs I, II and III in the centromeric heterochromatin regions of the genome were further classified into four different types. The existence of a Capreolus-like satellite III in Chinese water deer implies that satellite III is not specific to the genus Capreolus (Buntjer et al., 1998) and supports the molecular phylogeny classification of Randi et al. (1998) which suggests that Chinese water deer and roe deer are closely related.
Collapse
Affiliation(s)
- C C Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | |
Collapse
|
23
|
Abstract
There has been limited corroboration to date for McClintock's vision of gene regulation by transposable elements (TEs), although her proposition on the origin of species by TE-induced complex chromosome reorganizations in combination with gene mutations, i.e., the involvement of both factors in relatively sudden formations of species in many plant and animal genera, has been more promising. Moreover, resolution is in sight for several seemingly contradictory phenomena such as the endless reshuffling of chromosome structures and gene sequences versus synteny and the constancy of living fossils (or stasis in general). Recent wide-ranging investigations have confirmed and enlarged the number of earlier cases of TE target site selection (hot spots for TE integration), implying preestablished rather than accidental chromosome rearrangements for nonhomologous recombination of host DNA. The possibility of a partly predetermined generation of biodiversity and new species is discussed. The views of several leading transposon experts on the rather abrupt origin of new species have not been synthesized into the macroevolutionary theory of the punctuated equilibrium school of paleontology inferred from thoroughly consistent features of the fossil record.
Collapse
Affiliation(s)
- Wolf-Ekkehard Lonnig
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany.
| | | |
Collapse
|
24
|
Almada RD, Seijo G, Daviña J. Karyological Studies in Argentinian Species of Eryngium(Apiaceae). CYTOLOGIA 2002. [DOI: 10.1508/cytologia.67.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Rubén Darío Almada
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones
| | | | - Julio Daviña
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones
| |
Collapse
|
25
|
Sosa MM, Seijo G. Chromosome Stuides in Argentinian Species of Stemodia L.(Scrophulariaceae). CYTOLOGIA 2002. [DOI: 10.1508/cytologia.67.261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Erenpreisa J, Zhukotsky A. Interphase genome as the active space: chromatin dynamics during chick embryo chondrogenesis. Mech Ageing Dev 1993; 67:21-32. [PMID: 7682271 DOI: 10.1016/0047-6374(93)90109-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The rearrangement of the chromatin that takes place during cytodifferentiation was studied using TV image analysis in chick limb bud cartilage stained for DNA. The redistribution of the chromatin was compatible with the Rabl orientation: chromatin was extended radially from the centromeric ring to the telomere pole in young chondroblasts, and contracted back in ageing chondrocytes. The direction and gradient of this redistribution correlate with the changes in DNA content within the chromocentres formed by pericentromeric heterochromatin. In turn, intercalary heterochromatin regulates the condensation of the adjacent euchromatin depending upon the position in this radial-polar gradient.
Collapse
Affiliation(s)
- J Erenpreisa
- Latvian Institute of Experimental and Clinical Medicine, Riga
| | | |
Collapse
|
27
|
Scherrer K. A unified matrix hypothesis of DNA-directed morphogenesis, protodynamism and growth control. Biosci Rep 1989; 9:157-88. [PMID: 2765661 DOI: 10.1007/bf01115994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A theoretical concept is proposed, in order to explain some enigmatic aspects of cellular and molecular biology of eukaryotic organisms. Among these are the C-value paradox of DNA redundancy, the correlation of DNA content and cell size, the disruption of genes at DNA level, the "Chromosome field" data of Lima de Faria (Hereditas 93:1, 1980), the "quantal mitosis" proposition of Holtzer et al. (Curr. Top. Dev. Biol. 7:229 1972), the inheritance of morphological patterns, the relations of DNA and chromosome organisation to cellular structure and function, the molecular basis of speciation, etc. The basic proposition of the "Unified Matrix Hypothesis" is that the nuclear DNA has a direct morphogenic function, in addition to its coding function in protein synthesis. This additional genetic information is thought to be largely contained in the non-protein coding transcribed DNA, and in the untranscribed part of the genome.
Collapse
Affiliation(s)
- K Scherrer
- Institut Jacques Monod, Université Paris VII, France
| |
Collapse
|
28
|
Menzel MY, Dougherty BJ. Transmission of duplication-deficiencies from cotton translocations is unrelated to map lengths of the unbalanced segments. Genetics 1987; 116:321-30. [PMID: 17246386 PMCID: PMC1203142 DOI: 10.1093/genetics/116.2.321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Adjacent-1 duplication-deficiencies (dp-dfs) are readily recovered from most heterozygous translocations in Gossypium hirsutum L., but frequencies of specific cytotypes differ widely in progenies from heterozygote (female symbol) x standard crosses. Surprisingly, these frequencies seem to be unrelated to the primary (postmeiotic) frequencies predicted by metaphase I configurations or to the proportion of the chromosome arm that is duplicate or deficient. Deficiencies and duplications from different translocations involving the same arm, as well as the two complementary dp-dfs from the same translocation, seldom exhibit similar frequencies. We conclude that the frequency of each of 101 different adjacent-1 cytotypes is largely idiosyncratic and may depend in part on interactions between the specific chromosome regions that are respectively trisegmental and monosegmental. Few, if any, of these interactions can be between homoeologues of the A(h) and D(h) genomes. Adjacent-2 dp-dfs are seldom recovered, even if they involve chromosomes that are readily tolerated in monosomic condition. Comparison of monosomes and telosomes with deficiencies suggests that some chromosomes and chromosome regions may be more dosage-sensitive than others, but their identification is not strongly supported by these data.
Collapse
Affiliation(s)
- M Y Menzel
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-3050
| | | |
Collapse
|
29
|
|
30
|
Lima-de-Faria A, Arnason U, Widegren B, Isaksson M, Essen-Möller J, Jaworska H. DNA cloning and hybridization in deer species supporting the chromosome field theory. Biosystems 1986; 19:185-212. [PMID: 3022841 DOI: 10.1016/0303-2647(86)90039-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Cervidae show the largest variation in chromosome number found within any mammalian family. The eight species of deer which are the subject of this study vary in chromosome number from 2n = 70 to 2n = 6. Three species of Bovidae are also included since they belong to a closely related family. Digestion of nuclear DNAs with the restriction endonucleases Hae III, Hpa II, Msp I, Eco RI, Xba I, Pst I and Bam HI reveals that there is a series of highly repetitive sequences forming similar band patterns in the different species. There are two bands (1100 and 550 base pairs) which are common to all species although the two families separated more than 40 million years ago. To obtain information on the degree of homology among these conserved sequences we isolated a Bam HI restriction fragment of approximately 770 base pairs from red deer DNA. This sequence was 32P labeled and hybridized by the Southern blot technique with DNAs cleaved with Bam HI, Eco RI, Hpa II and Msp I. Moreover, the same sequence was cloned in the plasmid vector pBR322 nick translated with 32P and hybridized with the DNAs of 8 species of Cervidae and 3 of Bovidae. The same cloned probe was labeled with 3H and hybridized in situ with the metaphase chromosomes of red deer (2n = 68) and Muntiacus muntjak (2n = 7 male). Homologies are still present between the highly repetitive sequences of the 8 species of Cervidae despite the drastic reorganization that led to extreme chromosome numbers. Moreover, the cloned DNA sequence was found to occupy the same position, in the proximal regions of the arms, in both red deer (2n = 68) and M. muntjak (2n = 7 male) chromosomes. The ribosomal RNA genes and the centromeres in these species have also maintained their main territory despite the drastic chromosome reorganization. These results are experimental confirmation of the chromosome field theory which predicted that each DNA sequence has an optimal territory within the centromere-telomere field and tends to occupy this same territory following chromosome reorganization.
Collapse
|
31
|
Abstract
Nonrandom chromosome changes were sought in direct preparations of tumour material from the primary site of four carcinomas and one leiomyosarcoma of the prostate. Two of the carcinomas had previously received oestrogen therapy. A deleted chromosome 10, del(10)(q24), was found in all four carcinomas and may represent a specific marker in prostatic carcinoma. Three of the carcinomas also had a deleted chromosome 7, del(7)(q22), while the fourth had a 7p+. Deleted chromosomes 7 and 10 were not identified among the markers present in the leiomyosarcoma. All five tumours contained one or more abnormal chromosomes derived from chromosome 1. A Y chromosome was present in the leiomyosarcoma but in none of the carcinomas.
Collapse
|
32
|
Falkenhagen ER. Isozyme studies in provenance research of forest trees. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1985; 69:335-347. [PMID: 24253901 DOI: 10.1007/bf00570897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/1984] [Accepted: 09/15/1984] [Indexed: 06/02/2023]
Abstract
The nature and origin of the isozymes and the techniques for their detection in forest trees are briefly reviewed. The theories used to interpret the isozyme variation are summarized. Recent isozyme variation studies in provenance research are discussed in relation to known variation pattern detected by classical nursery and field tests. The populations of a tree species can be sometimes, but not always, distinguished by their isozyme patterns. For a number of species, relationships between environment of origin of the provenances and some isozyme frequencies have been statistically established. In one case (Picea sitchensis) where direct comparison between the variation pattern detected by isozymes and the genetic variation of silviculturally important traits was possible, no meaningful relationships between both patterns could be detected. Nei's genetic distances and indices of gene diversity do not appear to be useful in provenance research. The concept of genetic distance based on gene frequencies is probably not very useful in provenance research either.
Collapse
Affiliation(s)
- E R Falkenhagen
- South African Forestry Research Institute, P.O. Box 727, Pretoria, South Africa
| |
Collapse
|
33
|
Morris CM, Fitzgerald PH, Neville MA, Wyld PJ, Beard ME. Does multisomy of chromosome 1q confer a proliferative advantage in B-cell acute lymphoblastic leukemia? Cancer 1984; 54:48-53. [PMID: 6609760 DOI: 10.1002/1097-0142(19840701)54:1<48::aid-cncr2820540112>3.0.co;2-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two patients fulfilled the clinical and hematologic criteria for B-cell acute lymphoblastic leukemia: the malignant cells had L3 morphology, bore B-cell markers, and carried the specific t(8;14) translocation. The leukemic cells of one patient were tetrasomic for 1q, and those of the other patient showed several separate cell lines with complete or partial trisomy of 1q. In the latter patient it appeared that a break close to the heterochromatin of 1q produced an unstable chromosome end which formed associations with the telomeres of at least seven other chromosomes. It is suggested that multisomy of 1q gives tumor cells a proliferative advantage and is secondary to the basic neoplastic event.
Collapse
|
34
|
Abstract
The paper presents a new model of chromosome structure based on the assumption that multiple circular subunits of DNA exist. The essential difference with previously described models is the circular DNA unit forms a central chromosome axis. Chromosome configurations during various phases of the cell cycle depend on the various conformations of this central integrating unit. The described model can be generalized for all haploid set of eukaryotic nucleus. Some aspects of the chromosome structure and their functions have been discussed.
Collapse
|
35
|
Israelewski N, Schmidt ER. Spacer size heterogeneity in ribosomal DNA of Chironomus thummi is due to a 120 bp repeat homologous to a predominantly centromeric repeated sequence. Nucleic Acids Res 1982; 10:7689-700. [PMID: 6296786 PMCID: PMC327039 DOI: 10.1093/nar/10.23.7689] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The rDNA of Ch. tepperi is homogeneous in structure with a repeat size of 8.4 kb. This size seems to be typical for the basic repeat unit in Chironomus species. Ch. th. piger rDNA cistrons are slightly increased in length (9.0 kb). In the non-transcribed spacer (NTS) an appr. 0.18 kb segment is additionally present in about 50% of the repeats. Ch. th. thumni DNA contains largely heterogeneous rDNA repeats, mainly between 10 and 16 kb. The heterogeneity is due to varying numbers of 120 bp elements present in the NTS. The different spacer size classes are not randomly distributed. The short repetitive 120 bp elements (Cla I elements) hybridize in situ with the nucleolus and with centromere regions. The Cla I elements are regularly present in the thummi NTS, but are absent in the piger NTS. Only very few piger rDNA cistrons may contain Cla I elements.
Collapse
|