Barbin A, Bartsch H. Nucleophilic selectivity as a determinant of carcinogenic potency (TD50) in rodents: a comparison of mono- and bi-functional alkylating agents and vinyl chloride metabolites.
Mutat Res 1989;
215:95-106. [PMID:
2811916 DOI:
10.1016/0027-5107(89)90222-4]
[Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using published data, the carcinogenic potency (TD50) in rodents of a series of monofunctional alkylating agents, bifunctional antitumor drugs and the vinyl chloride (VC) metabolites chloroethylene oxide (CEO) and chloroacetaldehyde (CAA) was compared to their nucleophilic selectivity (Swain and Scott's constant s or initial ratio of 7-/O6-alkylguanine in DNA). A positive correlation between the log of TD50 estimates and the s values for a series of 14, mostly monofunctional, alkylating agents was observed. This linear relationship also included 2 bifunctional chloroethylnitrosoureas, although their carcinogenic potency was compared to their initial 7-/O6-alkylguanine ratio rather than their s values (n = 16, r = 0.91, p less than 0.005). In addition, the carcinogenic potency of 2 alkyl sulfates, which is not yet known accurately, may correlate with their nucleophilic selectivity through the same relationship. By contrast, 2 methyl halides and 5 bifunctional antitumor drugs (nitrogen mustards and azyridinyl derivatives) did not follow this linear relationship: at similar nucleophilic selectivity, they were more potent carcinogens than the above 18 alkylating agents; this may hold true for CEO and CAA too, although further carcinogenicity experiments are needed to calculate their precise TD50 values. The possible molecular mechanisms involved in tumor induction by these agents are discussed on the basis of these findings. Comparison of the estimated TD50 for CEO, CAA and VC in rodents confirms that CEO is the ultimate carcinogenic metabolite of VC and suggests that only a very small proportion of metabolically generated CEO is available for DNA alkylation in vivo.
Collapse