1
|
Kroupin PY, Ulyanov DS, Karlov GI, Divashuk MG. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma 2023:10.1007/s00412-023-00789-4. [PMID: 36905415 DOI: 10.1007/s00412-023-00789-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for "classical" wheat probes (pSc119.2 and Afa family) and "universal" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia.
| | - Daniil S Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| |
Collapse
|
2
|
Li G, Gao D, Zhang H, Li J, Wang H, La S, Ma J, Yang Z. Molecular cytogenetic characterization of Dasypyrum breviaristatum chromosomes in wheat background revealing the genomic divergence between Dasypyrum species. Mol Cytogenet 2016; 9:6. [PMID: 26813790 PMCID: PMC4727328 DOI: 10.1186/s13039-016-0217-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uncultivated species Dasypyrum breviaristatum carries novel diseases resistance and agronomically important genes of potential use for wheat improvement. The development of new wheat-D. breviaristatum derivatives lines with disease resistance provides an opportunity for the identification and localization of resistance genes on specific Dasypyrum chromosomes. The comparison of wheat-D. breviaristatum derivatives to the wheat-D. villosum derivatives enables to reveal the genomic divergence between D. breviaristatum and D. villosum. RESULTS The mitotic metaphase of the wheat- D. breviaristatum partial amphiploid TDH-2 and durum wheat -D. villosum amphiploid TDV-1 were studied using multicolor fluorescent in situ hybridization (FISH). We found that the distribution of FISH signals of telomeric, subtelomeric and centromeric regions on the D. breviaristatum chromosomes was different from those of D. villosum chromosomes by the probes of Oligo-pSc119.2, Oligo-pTa535, Oligo-(GAA)7 and Oligo-pHv62-1. A wheat line D2139, selected from a cross between wheat lines MY11 and TDH-2, was characterized by FISH and PCR-based molecular markers. FISH analysis demonstrated that D2139 contained 44 chromosomes including a pair of D. breviaristatum chromosomes which had originated from the partial amphiploid TDH-2. Molecular markers confirmed that the introduced D. breviaristatum chromosomes belonged to homoeologous group 7, indicating that D2139 was a 7V(b) disomic addition line. The D2139 displayed high resistance to wheat stripe rust races at adult stage plant, which may be inherited from, D. breviaristatum chromosome 7V(b). CONCLUSION The study present here revealed that the large divergence between D. breviaristatum and D. villosum with respected to the organization of different repetitive sequences. The identified wheat- D. breviaristatum chromosome addition line D2139 will be used to produce agronomically desirable germplasm for wheat breeding.
Collapse
Affiliation(s)
- Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Dan Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Hongjun Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jianbo Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Hongjin Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Shixiao La
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jiwei Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| |
Collapse
|
3
|
Zhang J, Long H, Pan Z, Liang J, Yu S, Deng G, Yu M. Characterization of a genome-specific Gypsy-like retrotransposon sequence and development of a molecular marker specific for Dasypyrum villosum (L.). J Genet 2013; 92:103-8. [PMID: 23640412 DOI: 10.1007/s12041-013-0218-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
4
|
Blanco A, Simeone R, Resta P, Pace CD, Delre V, Caccia R, Mugnozza GT, Frediani M, Cremonini R, Cionini PG. Genomic relationships between Dasypyrum villosum (L.) Candargy and D. hordeaceum (Cosson et Durieu) Candargy. Genome 2012; 39:83-92. [PMID: 18469881 DOI: 10.1139/g96-012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin and genomic constitution of the tetraploid perennial species Dasypyrum hordeaceum (2n = 4x = 28) and its phylogenetic relationships with the annual diploid Dasypyrum villosum (2n = 2x = 14) have been investigated by comparing the two genomes using different methods. There is no apparent homology between the conventional or Giemsa C-banded karyotypes of the two Dasypyrum species, nor can the karyotype of D. hordeaceum be split up into two similar sets. Polymorphism within several chromosome pairs was observed in both karyotypes. Cytophotometric determinations of the Feulgen-DNA absorptions showed that the genome size of D. hordeaceum was twice as large as that of D. villosum. Both the cross D. villosum x D. hordeaceum (crossability rate 12.1%) and the reciprocal cross (crossability rate 50.7%) produced plump seeds. Only those from the former cross germinated, producing sterile plants with a phenotype that was intermediate between those of the parents. In these hybrids (2n = 21), an average of 13.77 chromosomes per cell paired at meiotic metaphase I. Trivalents were only rarely observed. Through dot-blot hybridizations, a highly repeated DNA sequence of D. villosum was found not to be represented in the genome of D. hordeaceum. By contrast, very similar restriction patterns were observed when a low-repeated DNA sequence or different single-copy sequences of D. villosum or two sequences in the plastidial DNA of rice were hybridized to Southern blots of the genomic DNAs of the two Dasypyrum species digested with different restriction endonucleases. By analyzing glutamic-oxaloacetic-transaminase, superoxide dismutase, alcohol dehydrogenase, and esterase isozyme systems, it was shown that both Dasypyrum species shared the same phenotypes, which differed from those found in hexaploid wheat. In situ hybridizations using DNA sequences encoding gliadins showed that these genes were located close to the centromere of three pairs of D. villosum chromosomes and that they had the same locations in six pairs of D. hordeaceum chromosomes. We conclude that the autoploid origin of D. hordeaceum from D. villosum, which cannot be defended on the basis of chromosomal traits, is suggested by the other findings obtained by comparing the two genomes. Key words : Dasypyrum hordeaceum, Dasypyrum villosum, phylogenetic relationships.
Collapse
|
5
|
Yang ZJ, Liu C, Feng J, Li GR, Zhou JP, Deng KJ, Ren ZL. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas 2007; 143:47-54. [PMID: 17362333 DOI: 10.1111/j.2006.0018-0661.01930.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Dasypyrum breviaristatum and nine related species in Triticeae were analyzed using the random amplified polymorphic DNA (RAPD) technique, in order to understand the genetic relationship and to develop species specific markers. The genome relationship dendrogram shows that D. breviaristatum and D. villosum could not be grouped together, indicating that D. breviaristatum was unlikely to be directly derived from D. villosum, while D. breviaristatum was closest to Thinopyrum intermedium, which implied that they might have similar breeding behaviors when introducing their chromatins into wheat. A D. breviaristatum genome specific RAPD product of 1182bp, was cloned and designated as pDb12H. Sequence analysis revealed that pDb12H was strongly homologuos to a long terminal repeat (LTR) Sabrina retrotransposon newly reported in Hordeum. The pDb12H was converted into a PCR based marker, which allows effectively monitoring the D. breviaristatum chromatin introgression into wheat. Fluorescence in situ hybridization (FISH) suggested that pDb12H was specifically hybridized throughout all D. breviaristatum chromosomes arms except for the terminal and centromeric regions, which can be used to characterize wheat -D. breviaristatum chromosome translocation. The genomes repetitive element will also be useful to study gene interactions between the wheat and alien genomes after the polyploidization.
Collapse
Affiliation(s)
- Zu-Jun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Wei JZ, Wang RRC. Genome- and species-specific markers and genome relationships of diploid perennial species in Triticeae based on RAPD analyses. Genome 1995; 38:1230-6. [DOI: 10.1139/g95-161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eight different genomes (E, H, I, P, R, St, W, and Ns) represented by 22 diploid species of the tribe Triticeae were analyzed using the random amplified polymorphic DNA (RAPD) technique. The genome relationships were obtained based on 371 RAPD fragments produced with 30 primers. The four species of the genus Psathyrostachys (having various Ns genomes) were closely related. The genomes Ee and Eb had a similarly close relationship and were distinct from all other genomes analyzed. Genomes P, R, and St were grouped in one cluster and genomes H and I in another. Genome W had a distant relationship with all other genomes. These results agree with the conclusions from studies of chromosome pairing and isozyme and DNA sequence analyses. Twenty-nine and 11 RAPD fragments are considered to be genome- and species-specific markers, respectively. One to six genome-specific markers were identified for each genome. These RAPD markers are useful in studies of genome evolution, analysis of genome composition, and genome identification.Key words: Triticeae, perennial, diploid, genome, RAPD, genome-specific markers.
Collapse
|
7
|
Li WL, Chen PD, Qi LL, Liu DJ. Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:526-533. [PMID: 24173947 DOI: 10.1007/bf00221999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/1994] [Accepted: 09/22/1994] [Indexed: 06/02/2023]
Abstract
A species-specific repeated sequence, pHvNAU62, was cloned from Haynaldia villosa, a wheat relative of great importance. It strongly hybridized to H. villosa, but not to wheat. In situ hybridization localized this sequence to six of seven H. villosa chromosome pairs in telomeric or sub-telomeric regions. Southern hybridization to whea-H. villosa addition lines showed that chromosomes 1V through 6V gave strong signals in ladders while chromosome 7V escaped detection. In addition to H. villosa, several Triticeae species were identified for a high abundance of the pHvNAU62 repeated sequence, among which Thinopyrum bassarabicum and Leymus racemosus produced the strongest signals. Sequence analysis indicated that the cloned fragment was 292 bp long, being AT rich (61%), and showed 67% homology of pSc7235, a rye repeated sequence. Isochizomer analysis suggested that the present repeated sequence was heavily methylated at the cytosine of the CpG dimer in the genome of H. villosa.It was also demonstrated that pHvNAU62 is useful in tagging the introduced 6VS chromosome arm, which confers a resistance gene to wheat powdery mildew, in the segregating generations.
Collapse
Affiliation(s)
- W L Li
- Cytogenetics Institute, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | | | | | | |
Collapse
|