1
|
Wu N, He Z, Fang J, Liu X, Shen X, Zhang J, Lei Y, Xia Y, He H, Liu W, Chu C, Wang C, Qi Z. Chromosome diversity in Dasypyrum villosum, an important genetic and trait resource for hexaploid wheat engineering. ANNALS OF BOTANY 2023; 131:185-198. [PMID: 35451455 PMCID: PMC9904354 DOI: 10.1093/aob/mcac054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Dasypyrum villosum (2n = 2x = 14) harbours potentially beneficial genes for hexaploid and tetraploid wheat improvement. Highly diversified chromosome variation exists among and within accessions due to its open-pollination nature. The wheat-D. villosum T6VS·6AL translocation was widely used in breeding mainly because gene Pm21 in the 6VS segment conferred high and lasting powdery mildew resistance. However, the widespread use of this translocation may narrow the genetic base of wheat. A better solution is to utilize diversified D. villosum accessions as the genetic source for wheat breeding. Analysis of cytological and genetic polymorphisms among D. villosum accessions also provides genetic evolution information on the species. Using cytogenetic and molecular tools we analysed genetic polymorphisms among D. villosum accessions and developed consensus karyotypes to assist the introgression of beneficial genes from D. villosum into wheat. METHODS A multiplex probe of repeats for FISH, GISH and molecular markers were used to detect chromosome polymorphisms among D. villosum accessions. Polymorphic signal block types, chromosome heterogeneity and heterozygosity, and chromosome polymorphic information content were used in genetic diversity analysis. KEY RESULTS Consensus karyotypes of D. villosum were developed, and the homoeologous statuses of individual D. villosum chromosomes relative to wheat were determined. Tandem repeat probes of pSc119.2, (GAA)10 and the AFA family produced high-resolution signals and not only showed different signal patterns in D. villosum chromosomes but also revealed the varied distribution of tandem repeats among chromosomes and accessions. A total of 106 polymorphic chromosomes were identified from 13 D. villosum accessions and high levels of chromosomal heterozygosity and heterogeneity were observed. A subset of 56 polymorphic chromosomes was transferred into durum wheat through wide crosses, and seven polymorphic chromosomes are described in two newly developed durum-D. villosum amphidiploids. CONCLUSIONS Consensus karyotypes of D. villosum and oligonucleotide FISH facilitated identification of polymorphic signal blocks and a high level of chromosomal heterozygosity and heterogeneity among D. villosum accessions, seen in newly developed amphiploids. The abundant genetic diversity of D. villosum and range of alleles, exploitable through interploid crosses, backcrosses and recombination (chromosome engineering), allow introduction of biotic and abiotic stress resistances into wheat, translating into increasing yield, end-use quality and crop sustainability.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziming He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhong Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chenggen Chu
- USDA-ARS, Sugarbeet & Potato Research Unit, Fargo, ND 58102, USA
| | - Conglei Wang
- Tianjin Crops Research Institute, Tianjin 300384, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Yu Z, Wang H, Jiang W, Jiang C, Yuan W, Li G, Yang Z. Karyotyping Dasypyrum breviaristatum chromosomes with multiple oligonucleotide probes reveals the genomic divergence in Dasypyrum. Genome 2021; 64:789-800. [PMID: 33513072 DOI: 10.1139/gen-2020-0147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The perennial species Dasypyrum breviaristatum (genome Vb) contains many potentially valuable genes for the improvement of common wheat. Construction of a detailed karyotype of D. breviaristatum chromosomes will be useful for the detection of Dasypyrum chromatin in wheat background. We established the standard karyotype of 1Vb-7Vb chromosomes through nondenaturing fluorescence in situ hybridization (ND-FISH) technique using 28 oligonucleotide probes from the wheat - D. breviaristatum partial amphiploid TDH-2 (AABBVbVb) and newly identified wheat - D. breviaristatum disomic translocation and addition lines D2138 (6VbS.2VbL), D2547 (4Vb), and D2532 (3VbS.6VbL) by comparative molecular marker analysis. The ND-FISH with multiple oligo probes was conducted on the durum wheat - D. villosum amphiploid TDV-1 and large karyotype differences between D. breviaristatum and D. villosum was revealed. These ND-FISH probes will be valuable for screening the wheat - Dasypyrum derivative lines for chromosome identification, and the newly developed wheat - D. breviaristatum addition lines may broaden the gene pool of wheat breeding. The differences between D. villosum and D. breviaristatum chromosomes revealed by ND-FISH will help us understand evolutionary divergence of repetitive sequences within the genus Dasypyrum.
Collapse
Affiliation(s)
- Zhihui Yu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Hongjin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Wenxi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Chengzhi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Weiguang Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| |
Collapse
|
3
|
Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Sun H, Song J, Lei J, Song X, Dai K, Xiao J, Yuan C, An S, Wang H, Wang X. Construction and application of oligo-based FISH karyotype of Haynaldia villosa. J Genet Genomics 2018; 45:463-466. [PMID: 30170984 DOI: 10.1016/j.jgg.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/30/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Jingjing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Jia Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Xinying Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Keli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Shengmin An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China.
| |
Collapse
|
5
|
Li GR, Zhao JM, Li DH, Yang EN, Huang YF, Liu C, Yang ZJ. A Novel Wheat- Dasypyrum breviaristatum Substitution Line with Stripe Rust Resistance. Cytogenet Genome Res 2014; 143:280-7. [DOI: 10.1159/000366051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
|
6
|
Baum BR, Edwards T, Johnson DA. What does the nr5S DNA multigene family tell us about the genomic relationship between Dasypyrum breviaristatum and D. villosum (Triticeae: Poaceae)? Mol Genet Genomics 2014; 289:553-65. [PMID: 24609469 DOI: 10.1007/s00438-014-0825-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/06/2014] [Indexed: 01/08/2023]
Abstract
The genus Dasypyrum contains two species: the annual and widespread D. villosum (2x = 2n = 14) and the perennial and generally rare D. breviaristatum (2x = 2n = 14 and 4x = 2n = 28). The origin of the latter and its genome constitution have been subject of several studies. There is agreement that the genome of the diploid D. villosum (VV) is different from the diploid cytotype of D. breviaristatum (VbVb), but there is no agreement of the constitution of the tetraploid cytotype, specifically whether is it an autotetraploid or an allotetraploid. This is a long-standing disagreement that this study aims to resolve using the 5S nrDNA as a genomic marker. Our studies suggest that the 4x D. breviaristatum is an allotetraploid (VVVbVb).
Collapse
Affiliation(s)
- B R Baum
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A OC6, Canada,
| | | | | |
Collapse
|
7
|
Genetic rearrangements of six wheat-agropyron cristatum 6P addition lines revealed by molecular markers. PLoS One 2014; 9:e91066. [PMID: 24595330 PMCID: PMC3942500 DOI: 10.1371/journal.pone.0091066] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP) not only is cultivated as pasture fodder but also could provide many desirable genes for wheat improvement. It is critical to obtain common wheat–A. cristatum alien disomic addition lines to locate the desired genes on the P genome chromosomes. Comparative analysis of the homoeologous relationships between the P genome chromosome and wheat genome chromosomes is a key step in transferring different desirable genes into common wheat and producing the desired alien translocation line while compensating for the loss of wheat chromatin. In this study, six common wheat–A. cristatum disomic addition lines were produced and analyzed by phenotypic examination, genomic in situ hybridization (GISH), SSR markers from the ABD genomes and STS markers from the P genome. Comparative maps, six in total, were generated and demonstrated that all six addition lines belonged to homoeologous group 6. However, chromosome 6P had undergone obvious rearrangements in different addition lines compared with the wheat chromosome, indicating that to obtain a genetic compensating alien translocation line, one should recombine alien chromosomal regions with homoeologous wheat chromosomes. Indeed, these addition lines were classified into four types based on the comparative mapping: 6PI, 6PII, 6PIII, and 6PIV. The different types of chromosome 6P possessed different desirable genes. For example, the 6PI type, containing three addition lines, carried genes conferring high numbers of kernels per spike and resistance to powdery mildew, important traits for wheat improvement. These results may prove valuable for promoting the development of conventional chromosome engineering techniques toward molecular chromosome engineering.
Collapse
|
8
|
Mahelka V, Kopecký D, Baum BR. Contrasting Patterns of Evolution of 45S and 5S rDNA Families Uncover New Aspects in the Genome Constitution of the Agronomically Important Grass Thinopyrum intermedium (Triticeae). Mol Biol Evol 2013; 30:2065-86. [DOI: 10.1093/molbev/mst106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
Li GR, Liu C, Yang EN, Yang ZJ. Isolation and phylogenetic analysis of novel γ-gliadin genes in genus Dasypyrum. GENETICS AND MOLECULAR RESEARCH 2013; 12:783-90. [PMID: 23546962 DOI: 10.4238/2013.march.13.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the most ancient member of the wheat gluten family, the γ-gliadin genes are suitable for phylogenetic analysis among wheat and related species. Species in the grass genus Dasypyrum have been widely used for wheat cross breeding. However, the genomic relationships among Dasypyrum species have been little studied. We isolated 22 novel γ-gliadin gene sequences, among which 10 are putatively functional. The open reading frame lengths of these sequences range from 642 to 933 bp, and these putative proteins consist of five domains. Phylogenetic analyses showed that all Dasypyrum γ-gliadin gene sequences clustered in a large group; D. villosum and tetraploid D. breviaristatum γ-gliadin gene sequences clustered in a subgroup, while diploid D. breviaristatum γ-gliadin gene sequences clustered at the edge of the subgroup. All of the Dasypyrum γ-gliadin gene sequences were absent in three major T cell-stimulatory epitopes binding to HLA-DQ2/8 in celiac disease patients. Based on the phylogenetic analyses, we suggest that D. villosum and tetraploid D. breviaristatum evolved in parallel from a diploid ancestor D. breviaristatum.
Collapse
Affiliation(s)
- G R Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | | |
Collapse
|
10
|
Grosso V, Farina A, Gennaro A, Giorgi D, Lucretti S. Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe. PLoS One 2012; 7:e50151. [PMID: 23185561 PMCID: PMC3502404 DOI: 10.1371/journal.pone.0050151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
Dasypyrum villosum (L.) Candargy (sin. Haynaldia villosa) is an annual wild diploid grass species (2n = 2x = 14; genome VV) belonging to the Poaceae family, which is considered to be an important source of biotic and abiotic stress resistance genes for wheat breeding. Enhanced characterization of D. villosum chromosomes can facilitate exploitation of its gene pool and its use in wheat breeding programs. Here we present the cytogenetic identification of D. villosum chromosomes on slide by fluorescent in situ hybridization (FISH), with the GAA simple sequence repeat (SSR) as a probe. We also describe the isolation and the flow cytometric analysis of D. villosum chromosomes in suspension, resulting in a distinguished flow karyotype. Chromosomes were flow sorted into three fractions, according their DNA content, one of which was composed of a single type of chromosome, namely 6 V, sorted with over 85% purity. Chromosome 6 V is known to carry genes to code for important resistance and seed storage characteristics, and its isolation represents a new source of genetic traits and specific markers useful for wheat improvement.
Collapse
Affiliation(s)
| | | | - Andrea Gennaro
- Department of Agriculture, Forestry, Nature and Energy - DAFNE, University of Tuscia, Viterbo, Italy
| | | | | |
Collapse
|
11
|
Mahelka V, Kopecký D, Paštová L. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evol Biol 2011; 11:127. [PMID: 21592357 PMCID: PMC3123223 DOI: 10.1186/1471-2148-11-127] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/18/2011] [Indexed: 11/17/2022] Open
Abstract
Background The wheat tribe Triticeae (Poaceae) is a diverse group of grasses representing a textbook example of reticulate evolution. Apart from globally important grain crops, there are also wild grasses which are of great practical value. Allohexaploid intermediate wheatgrass, Thinopyrum intermedium (2n = 6x = 42), possesses many desirable agronomic traits that make it an invaluable source of genetic material useful in wheat improvement. Although the identification of its genomic components has been the object of considerable investigation, the complete genomic constitution and its potential variability are still being unravelled. To identify the genomic constitution of this allohexaploid, four accessions of intermediate wheatgrass from its native area were analysed by sequencing of chloroplast trnL-F and partial nuclear GBSSI, and genomic in situ hybridization. Results The results confirmed the allopolyploid origin of Thinopyrum intermedium and revealed new aspects in its genomic composition. Genomic heterogeneity suggests a more complex origin of the species than would be expected if it originated through allohexaploidy alone. While Pseudoroegneria is the most probable maternal parent of the accessions analysed, nuclear GBSSI sequences suggested the contribution of distinct lineages corresponding to the following present-day genera: Pseudoroegneria, Dasypyrum, Taeniatherum, Aegilops and Thinopyrum. Two subgenomes of the hexaploid have most probably been contributed by Pseudoroegneria and Dasypyrum, but the identity of the third subgenome remains unresolved satisfactorily. Possibly it is of hybridogenous origin, with contributions from Thinopyrum and Aegilops. Surprising diversity of GBSSI copies corresponding to a Dasypyrum-like progenitor indicates either multiple contributions from different sources close to Dasypyrum and maintenance of divergent copies or the presence of divergent paralogs, or a combination of both. Taeniatherum-like GBSSI copies are most probably pseudogenic, and the mode of their acquisition by Th. intermedium remains unclear. Conclusions Hybridization has played a key role in the evolution of the Triticeae. Transfer of genetic material via extensive interspecific hybridization and/or introgression could have enriched the species' gene pools significantly. We have shown that the genomic heterogeneity of intermediate wheatgrass is higher than has been previously assumed, which is of particular concern to wheat breeders, who frequently use it as a source of desirable traits in wheat improvement.
Collapse
Affiliation(s)
- Václav Mahelka
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice.
| | | | | |
Collapse
|
12
|
Identification of Dasypyrum villosum (L.) P. Candargy genetic material introgression to rye using RAPD and STS molecular markers. ACTA ACUST UNITED AC 2009. [DOI: 10.2478/v10081-009-0025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Abstract
To elucidate the genome relationships in the genus Dasypyrum and the ancestry of tetraploid D. breviaristatum, two cytotypes of D. breviaristatum and D. villosum were reciprocally crossed with one another. Chromosome pairing at the first metaphase of meiosis and fertility were examined in the F1 hybrids and the parental plants. The mean pairing configuration and mean arm pairing frequency in D. villosum-D. breviaristatum (2x) hybrids were 11.12I + 1.44II per cell and 0.107, respectively, and they were almost completely sterile. In D. breviaristatum (4x)-D. breviaristatum (2x) hybrid, up to seven trivalents were formed, and the mean pairing configuration was 3.38I + 3.20II + 3.74III + 0.005IV per cell. The mean arm pairing frequency and relative affinity calculated in that F1 hybrid were 0.915 and 0.641, respectively. Seven bivalents and seven univalents were characteristically formed in D. villosum-D. breviaristatum (4x) hybrids. Based on the present results, we clearly concluded that the genome of diploid D. breviaristatum is distantly related to the genome V of D. villosum, and that these two species have different basic genomes. We, therefore, proposed the symbol Vb for the haploid genome of diploid cytotype of D. breviaristatum. Moreover, we concluded that tetraploid D. breviaristatum is an autotetraploid with doubled sets of the genomes homologous with that of diploid D. breviaristatum, and we proposed the genome constitution VbVb for the haploid genome set of tetraploid cytotype of D. breviaristatum. Furthermore, from the chromosome pairing in the F1 hybrids involving Moroccan and Greek accessions, it was suggested that complicated rearrangements of chromosome structure have occurred in tetraploid D. breviaristatum in its natural populations across the entire distribution area.
Collapse
Affiliation(s)
- S Ohta
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka-cho, Yoshida-gun, Fukui 910-1195, Japan.
| | | |
Collapse
|