1
|
Sugiura K, Yoshida Y, Hayashi K, Arakawa K, Kunieda T, Matsumoto M. Sexual dimorphism in the tardigrade Paramacrobiotus metropolitanus transcriptome. ZOOLOGICAL LETTERS 2024; 10:11. [PMID: 38902818 PMCID: PMC11191345 DOI: 10.1186/s40851-024-00233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism. RESULTS Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress. CONCLUSIONS This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.
Collapse
Affiliation(s)
- Kenta Sugiura
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yuki Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Kohei Hayashi
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nihonkoku, Daihoji, Tsuruoka, Yamagata, 997-0017, Japan
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takekazu Kunieda
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Midori Matsumoto
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
2
|
|
3
|
Sugiura K, Minato H, Suzuki AC, Arakawa K, Kunieda T, Matsumoto M. Comparison of Sexual Reproductive Behaviors in Two Species of Macrobiotidae (Tardigrada: Eutardigrada). Zoolog Sci 2019; 36:120-127. [DOI: 10.2108/zs180103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Kenta Sugiura
- School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan
| | - Hiroki Minato
- School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan
| | - Atsushi C. Suzuki
- Department of Biology, School of Medicine, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8521, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka-shi, Yamagata 997-0035, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Midori Matsumoto
- School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan
| |
Collapse
|
4
|
|
5
|
Jönsson KI, Holm I, Tassidis H. Cell Biology of the Tardigrades: Current Knowledge and Perspectives. Results Probl Cell Differ 2019; 68:231-249. [PMID: 31598859 DOI: 10.1007/978-3-030-23459-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The invertebrate phylum Tardigrada has received much attention for containing species adapted to the most challenging environmental conditions where an ability to survive complete desiccation or freezing in a cryptobiotic state is necessary for persistence. Although research on tardigrades has a long history, the last decade has seen a dramatic increase in molecular biological ("omics") studies, most of them with the aim to reveal the biochemical mechanisms behind desiccation tolerance of tardigrades. Several other aspects of tardigrade cell biology have been studied, and we review some of them, including karyology, embryology, the role of storage cells, and the question of whether tardigrades are eutelic animals. We also review some of the theories about how anhydrobiotic organisms are able to maintain cell integrity under dry conditions, and our current knowledge on the role of vitrification and DNA protection and repair. Many aspects of tardigrade stress tolerance have relevance for human medicine, and the first transfers of tardigrade stress genes to human cells have now appeared. We expect this field to develop rapidly in the coming years, as more genomic information becomes available. However, many basic cell biological aspects remain to be investigated, such as immunology, cell cycle kinetics, cell metabolism, and culturing of tardigrade cells. Such development will be necessary to allow tardigrades to move from a nonmodel organism position to a true model organism with interesting associations with the current models C. elegans and D. melanogaster.
Collapse
Affiliation(s)
- K Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden.
| | - Ingvar Holm
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Helena Tassidis
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
6
|
|
7
|
Xu B, Li Y, Hua B. A chromosomal investigation of four species of Chinese Panorpidae (Insecta, Mecoptera). COMPARATIVE CYTOGENETICS 2013; 7:229-39. [PMID: 24260703 PMCID: PMC3833739 DOI: 10.3897/compcytogen.v7i3.5500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
The male adults of four species of the Chinese Panorpidae in Mecoptera were cytogenetically studied using conventional squashing procedures. The results show that their sex-chromosome system belongs to the XO type, with n = 19 + X(O) in Panorpa emarginata Cheng, 1949 and Panorpa dubia Chou & Wang, 1981, n = 23 + X(O) in Panorpa sp., and n = 20 + X(O) in Neopanorpa lui Chou & Ran, 1981. X chromosomes of these species usually appear dot-shaped in late prophase I and are easily differentiated from autosomal bivalents. Meiosis in these Panorpidae lacks typical diplotene and diakinesis. In late prophase I, pairs of homologous chromosomes remain parallel in a line and show no evidence of crossing-over. Some of them even appear as a single unit because of extremely intimate association, all with a tendency of increasing condensation. The evolutionary significance of their chromosomal differences and the achiasmatic meiosis of Panorpidae are briefly discussed.
Collapse
Affiliation(s)
- Bo Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yankai Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baozhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM. Complex meiotic configuration of the holocentric chromosomes: the intriguing case of the scorpion Tityus bahiensis. Chromosome Res 2009; 17:883-98. [PMID: 19760509 DOI: 10.1007/s10577-009-9076-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 11/29/2022]
Abstract
Mitotic and meiotic chromosomes of Tityus bahiensis were investigated using light (LM) and transmission electron microscopy (TEM) to determine the chromosomal characteristics and disclose the mechanisms responsible for intraspecific variability in chromosome number and for the presence of complex chromosome association during meiosis. This species is endemic to Brazilian fauna and belongs to the family Buthidae, which is considered phylogenetically basal within the order Scorpiones. In the sample examined, four sympatric and distinct diploid numbers were observed: 2n = 5, 2n = 6, 2n = 9, and 2 = 10. The origin of this remarkable chromosome variability was attributed to chromosome fissions and/or fusions, considering that the decrease in chromosome number was concomitant with the increase in chromosome size and vice versa. The LM and TEM analyses showed the presence of chromosomes without localised centromere, the lack of chiasmata and recombination nodules in male meiosis, and two nucleolar organiser regions carrier chromosomes. Furthermore, male prophase I cells revealed multivalent chromosome associations and/or unsynapsed or distinctly associated chromosome regions (gaps, less-condensed chromatin, or loop-like structure) that were continuous with synapsed chromosome segments. All these data permitted us to suggest that the chromosomal rearrangements of T. bahiensis occurred in a heterozygous state. A combination of various factors, such as correct disjunction and balanced segregation of the chromosomes involved in complex meiotic pairing, system of achiasmate meiosis, holocentric nature of the chromosomes, population structure, and species dispersion patterns, could have contributed to the high level of chromosome rearrangements present in T. bahiensis.
Collapse
Affiliation(s)
- Marielle Cristina Schneider
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, UNIFESP, Av. Prof. Artur Riedel, 275, 09972-270, Diadema, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Schneider MC, Zacaro AA, Pinto-Da-Rocha R, Candido DM, Cella DM. A Comparative Cytogenetic Analysis of 2 Bothriuridae Species and Overview of the Chromosome Data of Scorpiones. J Hered 2009; 100:545-55. [DOI: 10.1093/jhered/esp023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|