1
|
Levtchenko E, Ariceta G, Arguedas Flores O, Bichet DG, Bockenhauer D, Emma F, Hoorn EJ, Koster-Kamphuis L, Nijenhuis T, Trepiccione F, Vargas-Poussou R, Walsh SB, Knoers NVAM. International expert consensus statement on the diagnosis and management of congenital nephrogenic diabetes insipidus (arginine vasopressin resistance). Nat Rev Nephrol 2024:10.1038/s41581-024-00897-z. [PMID: 39438674 DOI: 10.1038/s41581-024-00897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Congenital nephrogenic diabetes insipidus (NDI; also known as arginine vasopressin resistance) is a rare inherited disorder of water homeostasis, caused by insensitivity of the distal nephron to arginine vasopressin. Consequently, the kidney loses its ability to concentrate urine, which leads to polyuria, polydipsia and the risk of hypertonic dehydration. The diagnosis and management of NDI are very challenging and require an integrated, multidisciplinary approach. Here, we present 36 recommendations for diagnosis, treatment and follow-up in both children and adults, as well as emergency management, genetic counselling and family planning, for patients with NDI. These recommendations were formulated and graded by an international group of experts in NDI from paediatric and adult nephrology, urology and clinical genetics from the European Rare Kidney Disease Reference Network and the European Society of Paediatric Nephrology, as well as patient advocates, and were validated by a voting panel in a Delphi process. The goal of these recommendations is to provide guidance to health care professionals who care for patients with NDI and to patients and their families. In addition, we emphasize the need for further research on different aspects of this potentially life-threatening disorder to support the development of evidence-based guidelines in the future.
Collapse
Affiliation(s)
- Elena Levtchenko
- Department of Paediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, The Netherlands.
| | - Gema Ariceta
- Department of Paediatric Nephrology, Hospital Vall d' Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Olga Arguedas Flores
- Department of Paediatric Urology, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Daniel G Bichet
- Nephrology Service, Hôpital du Sacré-Coeur de Montréal, Departments of Medicine, Pharmacology and Physiology, University of Montreal, Québec, Canada
| | - Detlef Bockenhauer
- Paediatric Nephrology, University Hospital and Catholic University Leuven, Leuven, Belgium
- Great Ormond Street Hospital for Children NHS Foundation Trust and Department of Renal Medicine, University College London, London, UK
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Linda Koster-Kamphuis
- Department of Paediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Francesco Trepiccione
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Rosa Vargas-Poussou
- Department of Genomic Medicine for Rare Diseases, Reference Centre for Hereditary Kidney Diseases of Children and Adults MARHEA, Assistance Publique Hôpitaux de Paris - Hôpital Européen Georges Pompidou, Paris, France
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, Department of Renal Medicine, University College London, London, UK
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Ryznychuk MO, Pishak VP, Bacyuk-Ponych NV, Pishak OV. Hereditary tubulopathies accompanying polyuia. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tubulopathies are a group of heterogeneous diseases that are manifested in the malfunction of the renal tubules. This review addresses tubulopathies associated with polyuria syndrome, namely renal glucosuria syndrome, nephrogenic diabetes insipidus and pseudohyperaldosteronism. Types of renal glucosuria are described, namely: type A, type B and the most severe type 0. Type A is characterized by a low filtration threshold and low glucose reabsorption. The type of inheritance is autosomal recessive. Type B, autosomal dominant, is characterized by uneven activity of glucose transport, in which its reabsorption is reduced only in some nephrons. That is, normal reabsorption of glucose is maintained, but the filtration threshold of the latter is reduced. Type 0 with a severe course is characterized by complete inability of epithelial cells of the proximal tubules to reabsorb glucose. Nephrogenic diabetes insipidus is a rare inherited disease caused by impaired response of the renal tubules to antidiuretic hormone (ADH). Depending on the degree of inability to concentrate urine, there are complete and partial forms. It is divided into nephrogenic diabetes insipidus type I (X-linked recessive); nephrogenic diabetes insipidus type II (autosomal recessive and autosomal dominant) and nephrogenic diabetes insipidus syndrome with dementia and intracerebral calcifications (type of inheritance remains unknown). Children with autosomal recessive type of inheritance suffer from the more severe disease course. Pseudohypoaldosteronism is characterized by a special condition of the renal tubules which is due to insufficient sensitivity of the tubular epithelium to aldosterone, which in turn leads to hyperaldosteronism, the development of hyponatremia, metabolic acidosis with hyperkalemia, polydipsia and polyuria, decreased sodium reabsorption and retardation of the child's physical development. The classification includes three syndromes of pseudohypoaldosteronism, namely: type I (PHA1), which is divided into PHA1A (autosomal dominant, renal), PHA1B (autosomal recessive, systemic); type II (PHA2; Gordon’s syndrome), type III (secondary), which develops as a result of renal pathology.
Collapse
|
3
|
Mortensen LA, Bistrup C, Jensen BL, Hinrichs GR. A mini-review of pharmacological strategies used to ameliorate polyuria associated with X-linked nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2020; 319:F746-F753. [PMID: 32924547 DOI: 10.1152/ajprenal.00339.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is characterized by renal resistance to the antidiuretic hormone arginine vasopressin (AVP), which leads to polyuria, plasma hyperosmolarity, polydipsia, and impaired quality of living. Inherited forms are caused by X-linked loss-of-function mutations in the gene encoding the vasopressin 2 receptor (V2R) or autosomal recessive/dominant mutations in the gene encoding aquaporin 2 (AQP2). A common acquired form is lithium-induced NDI. AVP facilitates reabsorption of water through increased abundance and insertion of AQP2 in the apical membrane of principal cells in the collecting ducts. In X-linked NDI, V2R is dysfunctional, which leads to impaired water reabsorption. These patients have functional AQP2, and thus the challenge is to achieve AQP2 membrane insertion independently of V2R. The current treatment is symptomatic and is based on distally acting diuretics (thiazide or amiloride) and cyclooxygenase inhibitors (indomethacin). This mini-review covers published data from trials in preclinical in vivo models and a few human intervention studies to improve NDI by more causal approaches. Promising effects on NDI in preclinical studies have been demonstrated by the use of pharmacological approaches with secretin, Wnt5a, protein kinase A agonist, fluconazole, prostaglandin E2 EP2 and EP4 agonists, statins, metformin, and soluble prorenin receptor agonists. In patients, only casuistic reports have evaluated the effect of statins, phosphodiesterase inhibitors (rolipram and sildenafil), and the guanylate cyclase stimulator riociguat without amelioration of symptoms. It is concluded that there is currently no established intervention that causally improves symptoms or quality of life in patients with NDI. There is a need to collaborate to improve study quality and conduct formal trials.
Collapse
Affiliation(s)
- Line A Mortensen
- Department of Nephrology, Odense University Hospital, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Gitte R Hinrichs
- Department of Nephrology, Odense University Hospital, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
D'Alessandri-Silva C, Carpenter M, Ayoob R, Barcia J, Chishti A, Constantinescu A, Dell KM, Goodwin J, Hashmat S, Iragorri S, Kaspar C, Mason S, Misurac JM, Muff-Luett M, Sethna C, Shah S, Weng P, Greenbaum LA, Mahan JD. Diagnosis, Treatment, and Outcomes in Children With Congenital Nephrogenic Diabetes Insipidus: A Pediatric Nephrology Research Consortium Study. Front Pediatr 2019; 7:550. [PMID: 32039113 PMCID: PMC6985429 DOI: 10.3389/fped.2019.00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background and Objectives: Congenital or primary nephrogenic diabetes insipidus (NDI) is a rare genetic disorder that severely impairs renal concentrating ability, resulting in massive polyuria. There is limited information about prognosis or evidence guiding the management of these patients, either in the high-risk period after diagnosis, or long-term. We describe the clinical presentation, genetic etiology, treatment and renal outcomes in a large group of children <21 years with NDI. Design: A multi-center retrospective chart review. Results: We report on 66 subjects from 16 centers. They were mainly male (89%) and white (67%). Median age at diagnosis was 4.2 months interquartile range (IQR 1.1, 9.8). A desmopressin acetate loading test was administered to 46% of children at a median age of 4.8 months (IQR 2.8, 7.6); only 15% had a water restriction test. Genetic testing or a known family history was present in 70% of the patients; out of those genetically tested, 89 and 11% had mutations in AVPR2 and AQP2, respectively. No positive family history or genetic testing was available for 30%. The most common treatments were thiazide diuretics (74%), potassium-sparing diuretics (67%) and non-steroidal anti-inflammatory drugs (42%). At the time of first treatment, 70 and 71% of children were below -2 standard deviations (SD) for weight and height, respectively. At last follow-up, median age was 72.3 months (IQR 40.9, 137.2) and the percentage below -2 SD improved to 29% and 38% for weight and height, respectively. Adverse outcomes included inpatient hospitalizations (61%), urologic complications (37%), and chronic kidney disease (CKD) stage 2 or higher in 23%. Conclusion: We found the majority of patients were treated with thiazides with either a potassium sparing diuretic and/or NSAIDs. Hospitalizations, urologic complications, short stature, and CKD were common. Prospective trials to evaluate different treatment strategies are needed to attempt to improve outcomes.
Collapse
Affiliation(s)
- Cynthia D'Alessandri-Silva
- Division of Nephrology, Connecticut Children's Medical Center, Hartford, CT, United States.,Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, United States
| | - Melinda Carpenter
- Division of Nephrology, Connecticut Children's Medical Center, Hartford, CT, United States.,Department of Research, Connecticut Children's Medical Center, Hartford, CT, United States
| | - Rose Ayoob
- Department of Nephrology, West Virginia University-Charleston, Charleston, WV, United States
| | - John Barcia
- Department of Pediatrics, University of Virginia, Charlottesville, VA, United States
| | - Aftab Chishti
- Division of Nephrology, Hypertension and Renal Transplantation, University of Kentucky, Lexington, KY, United States
| | | | - Katherine M Dell
- Center for Pediatric Nephrology, Cleveland Clinic Children's and Case Western Reserve University, Cleveland, OH, United States
| | - Julie Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Shireen Hashmat
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Sandra Iragorri
- Division of Nephrology and Hypertension, Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Cristin Kaspar
- Pediatric Nephrology, Virginia Commonwealth University, Children's Hospital of Richmond, Richmond, VA, United States
| | - Sherene Mason
- Division of Nephrology, Connecticut Children's Medical Center, Hartford, CT, United States.,Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, United States
| | - Jason M Misurac
- Division of Pediatric Nephrology, Dialysis and Transplantation, University of Iowa Stead Family Department of Pediatrics, Iowa City, IA, United States
| | - Melissa Muff-Luett
- Division of Pediatric Nephrology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Christine Sethna
- Division of Pediatric Nephrology, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, NY, United States
| | - Shweta Shah
- Renal Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Patricia Weng
- Department of Pediatric Nephrology, UCLA Medical Center and UCLA Medical Center-Santa Monica, Los Angeles, CA, United States
| | - Larry A Greenbaum
- Division of Pediatric Nephrology, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - John D Mahan
- Department of Nephrology, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Jain V, Ravindranath A. Diabetes insipidus in children. J Pediatr Endocrinol Metab 2016; 29:39-45. [PMID: 26353165 DOI: 10.1515/jpem-2014-0518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/27/2015] [Indexed: 11/15/2022]
Abstract
Diabetes insipidus (DI) is one of the common disorders affecting sodium and water homeostasis, and results when ADH is either inadequately produced, or unable to negotiate its actions on the renal collecting tubules through aquaporins. The diagnostic algorithm starts with exclusion of other causes of polyuria and establishing low urine osmolality in the presence of high serum osmolality. In this paper, we have reviewed the diagnosis, etiology and management of DI in children, with special emphasis on recent advances in the field.
Collapse
|
6
|
|
7
|
Kortenoeven MLA, Fenton RA. Renal aquaporins and water balance disorders. Biochim Biophys Acta Gen Subj 2013; 1840:1533-49. [PMID: 24342488 DOI: 10.1016/j.bbagen.2013.12.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS Dysfunctions of AQPs are involved in disorders associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists of fluid restriction, demeclocycline and vasopressin type-2 receptor antagonists. Decreased AQP levels can lead to diabetes insipidus (DI), characterized by polyuria and polydipsia. In central DI, vasopressin production is impaired, while in gestational DI, levels of the vasopressin-degrading enzyme vasopressinase are abnormally increased. Treatment consists of the vasopressin analogue dDAVP. Nephrogenic DI is caused by the inability of the kidney to respond to vasopressin and can be congenital, but is most commonly acquired, usually due to lithium therapy. Treatment consists of sufficient fluid supply, low-solute diet and diuretics. GENERAL SIGNIFICANCE In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Moeller HB, Rittig S, Fenton RA. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 2013; 34:278-301. [PMID: 23360744 PMCID: PMC3610677 DOI: 10.1210/er.2012-1044] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The water channel aquaporin-2 (AQP2), expressed in the kidney collecting ducts, plays a pivotal role in maintaining body water balance. The channel is regulated by the peptide hormone arginine vasopressin (AVP), which exerts its effects through the type 2 vasopressin receptor (AVPR2). Disrupted function or regulation of AQP2 or the AVPR2 results in nephrogenic diabetes insipidus (NDI), a common clinical condition of renal origin characterized by polydipsia and polyuria. Over several years, major research efforts have advanced our understanding of NDI at the genetic, cellular, molecular, and biological levels. NDI is commonly characterized as hereditary (congenital) NDI, arising from genetic mutations in the AVPR2 or AQP2; or acquired NDI, due to for exmple medical treatment or electrolyte disturbances. In this article, we provide a comprehensive overview of the genetic, cell biological, and pathophysiological causes of NDI, with emphasis on the congenital forms and the acquired forms arising from lithium and other drug therapies, acute and chronic renal failure, and disturbed levels of calcium and potassium. Additionally, we provide an overview of the exciting new treatment strategies that have been recently proposed for alleviating the symptoms of some forms of the disease and for bypassing G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine, Aarhus University, and Department of Pediatrics, Aarhus University Hospital, Wilhelm Meyers Alle 3, Building 1234, Aarhus 8000, Denmark.
| | | | | |
Collapse
|
9
|
Abstract
Over the past two decades, the genetic and molecular basis of familial forms of diabetes insipidus has been elucidated. Diabetes insipidus is a clinical syndrome characterized by the excretion of abnormally large volumes of diluted urine (polyuria) and increased fluid intake (polydipsia). The most common type of diabetes insipidus is caused by lack of the antidiuretic hormone arginine vasopressin (vasopressin), which is produced in the hypothalamus and secreted by the neurohypophysis. This type of diabetes insipidus is referred to here as neurohypophyseal diabetes insipidus. The syndrome can also result from resistance to the antidiuretic effects of vasopressin on the kidney, either at the level of the vasopressin 2 receptor or the aquaporin 2 water channel (which mediates the re-absorption of water from urine), and is referred to as renal or nephrogenic diabetes insipidus. Differentiation between these two types of diabetes insipidus and primary polydipsia can be difficult owing to the existence of partial as well as complete forms of vasopressin deficiency or resistance. Seven different familial forms of diabetes insipidus are known to exist. The clinical presentation, genetic basis and cellular mechanisms responsible for them vary considerably. This information has led to improved methods of differential diagnosis and could provide the basis of new forms of therapy.
Collapse
Affiliation(s)
- Muriel Babey
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Tarry 15, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
10
|
Nephrogenic diabetes insipidus: treat with caution. Pediatr Nephrol 2009; 24:1761-3. [PMID: 19373493 DOI: 10.1007/s00467-009-1187-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/17/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022]
Abstract
Current therapy for congenital nephrogenic diabetes insipidus consists of appropriate water intake coupled with decreased urine output obtained by means of a low-sodium diet and a combination of thiazide diuretics with renal prostaglandins inhibitors or amiloride. We report a case of congenital nephrogenic diabetes insipidus that was complicated by paradoxical water intoxication secondary to liberal water intake and the initiation of hydrochlorothiazide and indomethacin combination therapy. This report emphasizes the importance of evaluating the water balance and of a quick response with strict protocols following the initiation of indomethacin and thiazide diuretics in nephrogenic diabetes insipidus.
Collapse
|
11
|
Loonen AJM, Knoers NVAM, van Os CH, Deen PMT. Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 2008; 28:252-65. [PMID: 18519086 DOI: 10.1016/j.semnephrol.2008.03.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Water reabsorption in the renal collecting duct is regulated by the antidiuretic hormone vasopressin (AVP). When the vasopressin V2 receptor, present on the basolateral site of the renal principal cell, becomes activated by AVP, aquaporin-2 (AQP2) water channels will be inserted in the apical membrane, and in this fashion, water can be reabsorbed from the pro-urine into the interstitium. The essential role of the vasopressin V2 receptor and AQP2 in the maintenance of body water homeostasis became clear when it was shown that mutations in their genes cause nephrogenic diabetes insipidus, a disorder in which the kidney is unable to concentrate urine in response to AVP. This review describes the current knowledge on AQP2 mutations in nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Anne J M Loonen
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
12
|
van der Vorst MMJ, Kist JE, van der Heijden AJ, Burggraaf J. Diuretics in pediatrics : current knowledge and future prospects. Paediatr Drugs 2006; 8:245-64. [PMID: 16898855 DOI: 10.2165/00148581-200608040-00004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This review summarizes current knowledge on the pharmacology, pharmacokinetics, pharmacodynamics, and clinical application of the most commonly used diuretics in children. Diuretics are frequently prescribed drugs in children. Their main indication is to reduce fluid overload in acute and chronic disease states such as congestive heart failure and renal failure. As with most drugs used in children, optimal dosing schedules are largely unknown and empirical. This is undesirable as it can potentially result in either under- or over-treatment with the possibility of unwanted effects. The pharmacokinetics of diuretics vary in the different pediatric age groups as well as in different disease states. To exert their action, all diuretics, except spironolactone, have to reach the tubular lumen by glomerular filtration and/or proximal tubular secretion. Therefore, renal maturation and function influence drug delivery and consequently pharmacodynamics. Currently advised doses for diuretics are largely based on adult pharmacokinetic and pharmacodynamic studies. Therefore, additional pharmacokinetic and pharmacodynamic studies for the different pediatric age groups are necessary to develop dosing regimens based on pharmacokinetic and pharmacodynamic models for all routes of administration.
Collapse
|
13
|
Robben JH, Knoers NVAM, Deen PMT. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2006; 291:F257-70. [PMID: 16825342 DOI: 10.1152/ajprenal.00491.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the renal collecting duct, water reabsorption is regulated by the antidiuretic hormone vasopressin (AVP). Binding of this hormone to the vasopressin V2 receptor (V2R) leads to insertion of aquaporin-2 (AQP2) water channels in the apical membrane, thereby allowing water reabsorption from the pro-urine to the interstitium. The disorder nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate pro-urine in response to AVP, which is mostly acquired due to electrolyte disturbances or lithium therapy. Alternatively, NDI is inherited in an X-linked or autosomal fashion due to mutations in the genes encoding V2R or AQP2, respectively. This review describes the current knowledge of the cell biological causes of NDI and how these defects may explain the patients' phenotypes. Also, the increased understanding of these cellular defects in NDI has opened exciting initiatives in the development of novel therapies for NDI, which are extensively discussed in this review.
Collapse
MESH Headings
- Amino Acid Sequence
- Aquaporin 2/genetics
- Aquaporin 2/physiology
- DNA/genetics
- Diabetes Insipidus, Nephrogenic/etiology
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/physiopathology
- Diabetes Insipidus, Nephrogenic/therapy
- Gene Expression Regulation/physiology
- Genetic Diseases, X-Linked/etiology
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/physiopathology
- Genetic Diseases, X-Linked/therapy
- Humans
- Molecular Sequence Data
- Mutation/genetics
- Mutation/physiology
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/physiology
- Vasopressins/physiology
Collapse
Affiliation(s)
- Joris H Robben
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences and Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
14
|
Kirchlechner V, Koller DY, Seidl R, Waldhauser F. Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch Dis Child 1999; 80:548-52. [PMID: 10332005 PMCID: PMC1717946 DOI: 10.1136/adc.80.6.548] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nephrogenic diabetes insipidus (NDI) is characterised by the inability of the kidney to concentrate urine in response to arginine vasopressin. The consequences are severe polyuria and polydipsia, often associated with hypertonic dehydration. Intracerebral calcification, seizures, psychosomatic retardation, hydronephrosis, and hydroureters are its sequelae. In this study, four children with NDI were treated with 3 mg/kg/day hydrochlorothiazide and 0.3 mg/kg/day amiloride orally three times a day for up to five years. While undergoing treatment, none of the patients had signs of dehydration or electrolyte imbalance, all showed normal body growth, and there was no evidence of cerebral calcification or seizures. All but one had normal psychomotor development and normal sonography of the urinary tract. However, normal fluid balance was not attainable (fluid intake, 3.8-7.7 l/m2/day; urine output, 2.2-7.4 l/m2/day). The treatment was well tolerated and no side effects could be detected. Prolonged treatment with hydrochlorothiazide/amiloride appears to be more effective and better tolerated than just hydrochlorothiazide. Its efficacy appears to be similar to that of hydrochlorothiazide/indomethacin but without their severe side effects.
Collapse
Affiliation(s)
- V Kirchlechner
- Department of Pediatrics, University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
15
|
Lam SS, Kjellstrand C. Emergency treatment of lithium-induced diabetes insipidus with nonsteroidal anti-inflammatory drugs. Ren Fail 1997; 19:183-8. [PMID: 9044466 DOI: 10.3109/08860229709026274] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Thiazides and amiloride are the most often suggested treatment for nephrogenic diabetic insipidus. We found this ineffectual in a patient with acute problems and reviewed the literature to see if there were other more efficient approaches. A 47-year-old woman on lithium had polyuria. When inadvertently fasted for 48 h she became confused, had a seizure, and her sodium was 170 mmol/L. Urinary output was 24 L/day. Large volumes of intravenous fluids were given but sodium remained > 170 mmol/L. Treatment with DDAVP, thiazides, and amiloride did not decrease urinary output. Indomethacin 150 mg was started and urine volume immediately fell to one-half. However, because of persistent high urine output the patient was then fluid depleted, with further reduction to normal in urine volume, and Na decreased to 140 mmol/L. Creatinine rose from 135 mumol/L to 173 mumol/L, but decreased to 152 mumol/L when indomethacin was decreased to 75 mg q.d.; urinary output remained stable around 2 L/day. The literature described 22 patients with nephrogenic diabetes insipidus (16 congenital, 6 lithium) treated with nonsteroidal anti-inflammatory drugs. Urine flow was reduced to 1/3, within hours. Rarely, mild renal failure ensued, improving in all but one case when nonsteroidal anti-inflammatory drugs were reduced. Indomethacin (and controlled volume reduction if continued high urine output), while observing renal function, appears the emergency treatment of choice for serious complications of nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- S S Lam
- University of Alberta, Edmonton, Canada
| | | |
Collapse
|
16
|
Abstract
Although lithium continues to be regarded as the treatment of choice for bipolar disorders, the clinical use of this mood stabiliser is associated with an extremely narrow therapeutic range. Relatively minor increases in serum concentrations may induce serious adverse sequelae, and concentrations within the therapeutic range may result in toxic reactions. The safety of combining lithium with other medications, therefore, is a major concern, and extensive clinical experience has served to identify several significant drug interactions. Lithium removal from the body is achieved almost exclusively via renal means. As a result, any medication that alters glomerular filtration rates or affects electrolyte exchange in the nephron may influence the pharmacokinetic disposition of lithium. Concomitant use of diuretics has long been associated with the development of lithium toxicity, but the risk of significant interactions varies with the site of pharmacological action of the diuretic in the renal tubule. Thiazide diuretics have demonstrated the greatest potential to increase lithium concentrations, with a 25 to 40% increase in concentrations often evident after initiation of therapy. Osmotic diuretics and methyl xanthines appear to have the opposite effect on lithium clearance and have been advocated historically as antidotes for lithium toxicity. Loop diuretics and potassium-sparing agents have minor variable effects. Nonsteroidal anti-inflammatory drugs (NSAIDs) have also been associated with lithium toxicity, although the relative interactive potential of specific NSAIDs is difficult to determine. Small prospective studies have demonstrated large interindividual differences in lithium clearance values associated with different NSAIDs. A growing body of evidence also suggests that ACE inhibitors may impair lithium elimination, but further investigations are needed to identify patients at risk. Anecdotal reports have linked numerous medications with the development of neurotoxicity without an apparent effect on the pharmacokinetic disposition of lithium. Antipsychotics, anticonvulsants and calcium antagonists have all be implicated in a sufficient number of case reports to warrant concern. As these medications have all been commonly coadministered with lithium, the relative risk of serious interactions appears to be quite low, but caution is advised.
Collapse
Affiliation(s)
- P R Finley
- Palo Alto Veterans Affairs Health Care System, Menlo Park Division, California, USA
| | | | | |
Collapse
|